07-0: Fun with Finite Automata

- Create a Finite Automata (DFA or NFA) for the language:
 - \(L = \{0^n1^n : n > 0\} \)
 - \{01, 0011, 000111, 00001111, \ldots \}

07-1: Fun with Finite Automata

- \(L = \{0^n1^n : n > 0\} \) is not regular!
- Why?
 - Need to keep track of how many 0’s there are, and match 1’s
 - Only way to store information in DFA is through what state the machine is in
 - Finite number of states (DFA)
 - Unbounded number of 0’s before the 1’s

07-2: Non-Regular Languages

- If a DFA \(M \) has \(k \) states, and a string \(w \) accepted by \(M \) has \(n \) characters, \(n > k \), computation must include a loop

```
\[ \text{Finite Automaton Diagram} \]
```

- Pigeonhole Principle:
 - More transitions than states
 - Some transition must enter the same state twice

07-3: Non-Regular Languages

```
\[ \text{Finite Automaton Diagram} \]
```

- Break string into \(w = xyz \)
- If \(w = xyz \) is accepted, then \(w' = xyyz \) will also be accepted
- If \(w = xyz \) is accepted, then \(w' = xyyyz \) will also be accepted
- If \(w = xyz \) is accepted, then \(w' = xz \) will also be accepted

07-4: Pumping Lemma

- If a language \(L \) is regular, then:
Non-Regular Languages
Closure Properties of Regular Languages
DFA State Minimization

07-5: Using the Pumping Lemma

• Assume L is regular
• Let n be the constant of the pumping lemma
• Create a string w such that |w| > n
• Show that for every legal decomposition of w = xyz such that:
 • |xy| < n
 • y ≠ ε

 There is an i such that xy^i z ∉ L
• Conclude that L must not be regular

07-6: Using the Pumping Lemma

• Assume L is regular
• Let n be the constant of the pumping lemma
• Create a string w such that |w| > n
• Show that for every legal decomposition of w = xyz such that:
 • |xy| < n
 • y ≠ ε

 There is an i such that xy^i z ∉ L
• Conclude that L must not be regular

07-7: Using the Pumping Lemma
L = \{0^n1^n : n > 0\}

• Let n be the constant of the pumping lemma
• Consider the string w = 0^n1^n
• If we break w = xyz such that |xy| < n, |y| > 0,
 then x and y must be all 0’s
 • x = 0^j, y = 0^k, z = 0^{n-k-j}1^n
 • Consider w' = xy^2z = 0^n+k1^n for some 0 < k < n
 • w' ∉ L
• L is not regular (by the pumping lemma)
07-8: Using the Pumping Lemma

- Assume L is regular
- Let n be the constant of the pumping lemma
- Create a string w such that $|w| > n$
- Show that for every legal decomposition of $w = xyz$ such that:
 - $|xy| < n$
 - $y \neq \epsilon$

 There is an i such that $xy^i z \not\in L$
- Conclude that L must not be regular

$L = \{ww : w \in (a+b)^*\}$ 07-9: Using the Pumping Lemma

$L = \{ww : w \in (a+b)^*\}$

- Let n be the constant of the pumping lemma
- Consider $w = a^n ba^n b \in L$
- If we break $w = xyz$ such that $|xy| < n$, $|y| > 0$,
 then x and y must be all a’s
 - $x = a^j$, $y = a^k$, $z = a^{n-k-j} ba^n$
- Consider $w' = xy^{2}z = a^{n+k} ba^n b$. As long as $k > 0$, the first half of w' contains all a’s, while the second half contains two b’s. Thus w' is not of the form ww, and is not in L. Hence, L is not regular by the pumping lemma.

07-10: Using the Pumping Lemma

You have an adversary who thinks L is regular. You need to prove that your adversary is wrong.

- Your adversary picks an n
- You pick a $w \in L$ (such that $|w| > n$)
- Your adversary breaks w into xyz (subject to $|xy| < n$, $|y| > 0$)
- You pick an i such that $xy^i z \not\in L$

07-11: Using the Pumping Lemma

You have an adversary who thinks L is regular. You need to prove that your adversary is wrong.

- Your adversary picks an n
- You pick a $w \in L$ (such that $|w| > n$)
- Your adversary breaks w into xyz (subject to $|xy| < n$, $|y| > 0$)
- You pick an i such that $xy^i z \not\in L$

07-12: Using the Pumping Lemma

You have an adversary who thinks L is regular. You need to prove that your adversary is wrong.
Your adversary picks an \(n \)

You pick a \(w \in L \) (such that \(|w| > n\))

Your adversary breaks \(w \) into \(xyz \) (subject to \(|xy| < n, |y| > 0\))

You pick an \(i \) such that \(xy^i z \not\in L \)

You don’t really have an adversary, so you need to show that for any \(n \), you can create a string \(w \), and for any way that \(w \) can be broken into \(xyz \), there is an \(i \) such that \(xy^i z \not\in L \)

07-13: Using the Pumping Lemma

Assume \(L \) is regular

Let \(n \) be the constant of the pumping lemma

Create a string \(w \) such that \(|w| > n\)

Show that for every legal decomposition of \(w = xyz \) such that:

- \(|xy| < n\)
- \(y \neq \epsilon\)

There is an \(i \) such that \(xy^i z \not\in L \)

Conclude that \(L \) must not be regular

\[L = \{ w : w \in (a^*b^*) \land w \text{ contains more } a \text{'s than } b \text{'s } \} \]

07-14: Using the Pumping Lemma

\[L = \{ w : w \in (a^*b^*) \land w \text{ contains more } a \text{'s than } b \text{'s } \} \]

Let \(n \) be the constant of the pumping lemma

Consider \(w = a^n b^{n-1} \in L \)

If we break \(w = xyz \) such that \(|xy| < n, |y| > 0\),

then \(x \) and \(y \) must be all \(a \)'s

- \(x = a^j, y = a^k, z = a^{n-k-j}b^{n-1} \)

Consider \(w' = xy^0z = a^{n-k}b^{n-1} \). As long as \(k > 0 \), \(w' \) has at least as many \(b \)'s as \(a \)'s, and is not in \(L \). Hence, \(L \) is not regular, by the pumping lemma.

07-15: Using the Pumping Lemma

Assume \(L \) is regular

Let \(n \) be the constant of the pumping lemma

Create a string \(w \) such that \(|w| > n\)

Show that for every legal decomposition of \(w = xyz \) such that:

- \(|xy| < n\)
- \(y \neq \epsilon\)

There is an \(i \) such that \(xy^i z \not\in L \)
• Conclude that L must not be regular

$L = \{w : w \in (a + b)^* \land w \text{ has an even number of } a\text{'s and an odd number of } b\text{'s }\}$

07-16: Using the Pumping Lemma

$L = \{w : w \in (a + b)^* \land w \text{ has an even number of } a\text{'s and an odd number of } b\text{'s }\}$

• Let n be the constant of the pumping lemma

• Consider $w = a^{2n}b \in L$

• If we break $w = xyz$ such that $|xy| < n, |y| > 0,$
then x and y must be all a's

• $x = a^j, y = a^k, z = a^{2n-k-j}b$

• As long as k is even, $w' = xy^iz \in L$ for all i

Remember, we don’t get to choose how the string is broken into xyz – need to show that for any way the string can be broken into xyz, there exists an i such that $xy^iz \not\in L$

07-17: Using the Pumping Lemma

$L = \{w : w \in (a + b)^* \land w \text{ has an even number of } a\text{'s and an odd number of } b\text{'s }\}$

• We failed to prove L is not regular. Does that mean that L must be regular?

07-18: Using the Pumping Lemma

$L = \{w : w \in (a + b)^* \land w \text{ has an even number of } a\text{'s and an odd number of } b\text{'s }\}$

• We failed to prove L is not regular. Does that mean that L must be regular?

• No! We may not have chosen a clever enough w

• Similarly, failing to create an NFA for a language does not prove that it is not regular.

• How can we prove that L is regular?

07-19: Using the Pumping Lemma

$L = \{w : w \in (a + b)^* \land w \text{ has an even number of } a\text{'s and an odd number of } b\text{'s }\}$

• We failed to prove L is not regular. Does that mean that L must be regular?

• No! We may not have chosen a clever enough w

• Similarly, failing to create an NFA for a language does not prove that it is not regular.

• How can we prove that L is regular?

• Create a regular expression, DFA, or NFA that describes L

07-20: Closure Properties

Since some languages are regular, and some are not, we can consider closure properties of regular languages

• Is L_{REG} closed under union?

• Is L_{REG} closed under complementation?

• Is L_{REG} closed under intersection?
• Is L_{REG} closed under union?

07-22: Closure Properties

• Is L_{REG} closed under union?

\[
L_1 = L[r_1], \quad L_2 = L[r_2] \\
L_1 \cup L_2 = L[(r_1 + r_2)]
\]

07-23: Closure Properties

• Is L_{REG} closed under complementation?

Given any DFA $M = (K, \Sigma, \delta, s, F)$, create $M' = (K', \Sigma', \delta', s', F')$ such that $L[M'] = \overline{L[M]}$

07-24: Closure Properties

• Is L_{REG} closed under complementation?

Given any DFA $M = (K, \Sigma, \delta, s, F)$, create $M' = (K', \Sigma', \delta', s', F')$ such that $L[M'] = \overline{L[M]}$

• $K' = K$
• $\Sigma' = \Sigma$
• $\delta' = \delta$
• $s' = s$
• $F' = K - F$

07-25: Closure Properties

• Is L_{REG} closed under intersection?

07-26: Closure Properties

• Is L_{REG} closed under intersection?

 • $A \cup B = A \cap B$

 (diagram on board)

• We can also use a direct construction

 • L_1 = all strings over $\{a, b\}$ that begin with aa

 • L_2 = all strings over $\{a, b\}$ that end with aa

 • Construct $L_1 \cap L_2$

07-27: Closure Properties

Given DFA $M_1 = (K_1, \Sigma_1, \delta_1, s_1, F_1)$ and DFA $M_2 = (K_2, \Sigma_2, \delta_2, s_2, F_2)$, create DFA M such that $L[M] = L[M_1] \cap L[M_2]$

07-28: Closure Properties

Given $M_1 = (K_1, \Sigma_1, \delta_1, s_1, F_1)$ and $M_2 = (K_2, \Sigma_2, \delta_2, s_2, F_2)$, create M such that $L[M] = L[M_3] \cap L[M_2]$
Non-Regular Languages
Closure Properties of Regular Languages
DFA State Minimization

- $K = K_1 \times K_2$
- $\Sigma = \Sigma_1 = \Sigma_2$
- $\delta = \{(((q_1, q_2), a), (q'_1, q'_2)) : ((q_1, a), q'_1) \in \delta_1, ((q_2, a), q'_2) \in \delta_2\}$
- $s = (s_1, s_2)$
- $F = \{(f_1, f_2) : f_1 \in F_1, f_2 \in F_2\}$

07-29: State Minimization
- Possible to have several different DFA that all accept the same language
- Redundant states – duplicate the effort of other states

07-30: State Minimization

What is $L[M]$? 07-31: State Minimization
07-32: State Minimization

![Diagram](Image)

07-33: State Minimization

- Two states \(q_1\) and \(q_2\) are equivalent if:
 - Every string that drives \(q_1\) to an accept state also drives \(q_2\) to an accept state
 - Every string that drives \(q_2\) to an accept state also drives \(q_1\) to an accept state

07-34: State Minimization

- Two states \(q_1\) and \(q_2\) of DFA \(M\) are equivalent if:
 - \(\forall w \in \Sigma^*, ((q_1, w) \xrightarrow{*} M (f_1, \epsilon)) \land (q_2, w) \xrightarrow{*} M (f_2, \epsilon) \land f_1 \in F_M \Rightarrow f_2 \in F_M\)

07-35: State Minimization

- Two states \(q_1\) and \(q_2\) are equivalent with respect to a string \(w\) if and only if
 - \((q_1, w) \xrightarrow{*} M (f_1, \epsilon)\)
 - \((q_2, w) \xrightarrow{*} M (f_2, \epsilon) \land f_1 \in F_M \Rightarrow f_2 \in F_M\)
 - and
 - \((q_1, w) \xrightarrow{*} M (q_3, \epsilon)\)
 - \((q_2, w) \xrightarrow{*} M (q_4, \epsilon) \land q_3 \notin F_M \Rightarrow q_4 \notin F_M\)
- Two states \(q_1\) and \(q_2\) are equivalent if they are equivalent with respect to all strings \(w \in \Sigma^*\)

07-36: State Minimization

- How do we determine if two states \(q_1\) and \(q_2\) are equivalent?
 - Check to see if they are equivalent with respect to strings of length 0

07-37: State Minimization
- How do we determine if two states \(q_1 \) and \(q_2 \) are equivalent?
 - Check to see if they are equivalent with respect to strings of length 0
 - Check to see if they are equivalent with respect to strings of length 1

07-38: **State Minimization**

- How do we determine if two states \(q_1 \) and \(q_2 \) are equivalent?
 - Check to see if they are equivalent with respect to strings of length 0
 - Check to see if they are equivalent with respect to strings of length 1
 - Check to see if they are equivalent with respect to strings of length 2
 - ... and so on

07-39: **State Minimization**

- When are \(q_1 \) and \(q_2 \) equivalent with respect to all strings of length 0?

07-40: **State Minimization**

- When are \(q_1 \) and \(q_2 \) equivalent with respect to all strings of length 0?
 - Both \(q_1 \) and \(q_2 \) are accept states, or neither \(q_1 \) nor \(q_2 \) are accept states

07-41: **State Minimization**

- Two states \(q_1 \) and \(q_2 \) are equivalent with respect to all strings of length \(n \) if ..
 - Hint: Think inductively

07-42: **State Minimization**

- Two states \(q_1 \) and \(q_2 \) are equivalent with respect to all strings of length \(n \) if ..
 - Hint: Think inductively
 - Hint 2: If we knew which states were equivalent with respect to all strings of length \(n - 1 \) ...

07-43: **State Minimization**

- Two states \(q_1 \) and \(q_2 \) are equivalent with respect to all strings of length \(n \) if, for all \(a \in \Sigma \)
 - \(((q_1, a), q_3) \in \delta \) \[\delta(q_1, a) = q_3 \]
 - \(((q_2, a), q_4) \in \delta \) \[\delta(q_2, a) = q_4 \]
 - \(q_3 \) and \(q_4 \) are equivalent with respect to all strings of length \(n - 1 \)

07-44: **State Minimization**

- Equivalence matrix \(E^{(i)} \):
 - \(E^{(i)}[i, j] = 1 \) iff \(q_i \) and \(q_j \) are equivalent with respect to all strings of length \(\leq i \)
 - Only need to calculate upper triangle of matrix (why?)
 - \(E^{(\ast)}[i, j] = 1 \) iff \(q_i \) and \(q_j \) are equivalent with respect to all strings (that is, if \(q_i \) and \(q_j \) are equivalent)
07-45: State Minimization

- \(E^{(0)} \):
 - \(E^{(0)}[i, j] = \ldots \)

07-46: State Minimization

- \(E^{(0)} \):
 - \(E^{(0)}[i, j] = 1 \) if \(q_i \) and \(q_j \) are both accept states, or both non-accept states
 - \(E^{(0)}[i, j] = 0 \) if \(q_i \) is an accept state, and \(q_j \) is not an accept state
 - \(E^{(0)}[i, j] = 0 \) if \(q_i \) is not an accept state, and \(q_j \) is an accept state

07-47: State Minimization

- \(E^{(n)}[i, j] = 1 \) if, for all \(a \in \Sigma \)
 - \((q_i, a), q_k \in \delta \):
 - \([\delta(q_i, a) = q_k] \)
 - \((q_j, a), q_l \in \delta \):
 - \([\delta(q_j, a) = q_l] \)
 - \(E^{(n-1)}[q_k, q_l] = 1 \)

07-48: State Minimization

- Creating \(E^{(*)} \):
 - First, create \(E^{(0)} \)

for \(i = 0 \) to \(n \)
for \(j = (i + 1) \) to \(n \)
 if \((q_i \in F \land q_j \in F) \lor (q_i \notin F \land q_j \notin F) \)
 \(E[i, j] = 1 \)
 else
 \(E[i, j] = 0 \)

07-49: State Minimization

Repeat:

for \(i = 0 \) to \(n \)
for \(j = (i + 1) \) to \(n \)
 for each \(a \in \Sigma \)
 \(k = \delta(i, a) \)
 \(l = \delta(j, a) \)
 if \(E[k, l] == 0 \)
 set \(E[i, j] = 0 \)

Until no changes are made

07-50: State Minimization

- Given any DFA \(M \), we can create an equivalent DFA with the minimum number of states as follows:
 - Calculate \(E^{(*)} \), to find equivalent states
While there is a pair q_i, q_j of equivalent states in M

- Change all transitions into q_j to transitions to q_i
- Remove q_j and all transitions out of q_j
- Finally do a DFS from the initial state, and remove all states not reachable from the initial state.

07-51: State Minimization Example

```
0 1 2 3 4 5 6
0 0 1 1 0 1 1
1 0 0 1 0 0
2 1 0 1 1
3 1 0 1 1
4 0 0 1 0
5 1 0 1 1
```

07-52: State Minimization Example

07-53: State Minimization Example
Non-Regular Languages
Closure Properties of Regular Languages
DFA State Minimization

07-54: State Minimization Example

07-55: State Minimization Example
Non-Regular Languages
Closure Properties of Regular Languages

DFA State Minimization

07-56: State Minimization Example

07-57: State Minimization Example