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Fr-0: Sets & Functions

® Sets
* Membership:
- a €?a,b,c}
-« a €2, c}
- a €?{b,{a,b,c},d}
- {a,b,c} €?{b,{a,b,c}, d}




Fr-1: Sets & Functions

® Sets
* Membership:
- a € {a,b,c}
- a & {b,c}
- a & {b,{a,b,c},d}
- {a,b,c} € {b,{a,b,c},d}




Fr-2: Sets & Functions

® Sets
e Subset:

» {a} C?{a,b,c}
+ {a} SNHb, ¢, {a}}
- {a,b} g?{a, b, c,d}
- {a,b} C?{a,b}
- {} C{a,b,¢,d}




Fr-3: Sets & Functions

® Sets
e Subset:

. {a} C {a,b,c}
+ {a} £ {b,c,{a}}
- {a,b} C {a, b,c,d}
- {a,b} C {a,b}
- {} C{a,b,c, d}




Fr-4: Sets & Functions

® Sets

e Cross Product:
- Ax B={(a,b):a€ Abe B}
- {a,b} x {a,b} =
* {a, 0} x {{a,b}} =




Fr-5: Sets & Functions

® Sets

e Cross Product:
- Ax B={(a,b):a€ Abe B}
+ {a,b} x {a,b} ={(a,a),(a,0),(b,a), (b,b)}
. {a,0} x {{a,b}} = {(a, {a,b}), (b, {a,b})}




Fr-6: Sets & Functions

® Sets

 Power Set:
» 24 ={5:5C A}
. aby —
. ap —
. 92l _




Fr-7: Sets & Functions

® Sets

e Power Set:
e {S:5C A}

. 2ett — £ L) (b}, {a,b}}
- 21 = {{}, {a}}
- 22" = {1 A0 o} {0 {al}




Fr-8: Sets — Partition

IT is a partition of S if:

o [[ C2°
° {} £1I
o V(X,)Yell),X#A#Y = XnNnY ={}
o | JII =S5

{{a, c}, {b, d, e}, {f}} is a partition of {a,b,c,d,e,f}

{{a, b, c, d, e, f}} is a partition of {a,b,c,d,e,f}
{{a, b, c}, {d, e, f}} is a partition of {a,b,c,d,e,f}




Fr-9: Sets — Partition

In other words, a partition of a set S is just a division
of the elements of S into 1 or more groups.

® All the partitions of the set {a, b, c}?




Fr-10: Sets — Partition

In other words, a partition of a set S is just a division
of the elements of S into 1 or more groups.

® All the partitions of the set {a, b, c}?

* 118, b, cj}, {{a, b}, {c}}, {1a, ¢}, (b}, 1ahib, cil,
(1a}, b}, {C}}




Fr-11: Sets & Functions

® Relation
* A relation R is a set of ordered pairs
e That's allthat a relation is
* Relation Graphs




Fr-12: Sets & Functions

® Properties of Relations
* Reflexive
e Symmetric
* Transitive
e Antisymmetric

® Equivalence Relation: Reflexive, Symmetric,
Transitive

® Partial Order: Reflexive, Antisymmetric, Transitive

® Total Order: Partial order, for each a,a’ € A, either
(a,a’) € Ror (a',a) € R




Fr-13: Sets & Functions

® What does a graph of an Equivalence relation look
like?

® What does a graph of a Total Order look like
® What does a graph of a Partial Order look like?




Fr-14: Closure

® Aset A C B isclosed under a relation
R C ((B x B) x B)if:

¢ CLl,CLQGA/\((a,l,aQ),C) e R — CEA

e Thatis, if a; and a, are both in A4, and
((a1,as),c) isin the relation, then cis also in A

® N s closed under addtion
® N is not closed under subtraction or division




Fr-15: Closure

® Relations are also sets (of ordered pairs)
® We can talk about a relation R being closed over
another relation R’

e Each element of R’ is an ordered triple of
ordered pairs!




Fr-16: Closure

® Relations are also sets (of ordered pairs)
® We can talk about a relation R being closed over
another relation R’

e Each element of R’ is an ordered triple of
ordered pairs!

® Example:
e RCAXx A
e R ={(((a,b),(b,c)),(a,c)) :a,b,ce A}
e If Ris closed under R’, then ...




Fr-17: Closure

® Relations are also sets (of ordered pairs)
® We can talk about a relation R being closed over
another relation R’

e Each element of R’ is an ordered triple of
ordered pairs!

® Example:
e RCAXA
e R ={(((a,b),(b,c)),(a,c)):a,bce A}
e If Ris closed under R’, then R is transitive!




Fr-18: Closure

® Reflexive closure of arelation R C A x A is the
smallest possible superset of R which is reflexive

* Add self-loop to every node in relation
e Add (a,a) to R foreverya € A
® Transitive Closure of arelaton R C A x Ais

the smallest possible superset of R which is
transitive

e Add direct link for every path of length 2.
e V(a,b,ce A)if (a,b) € RA (b,c) € R add
(a,c) to R.

(examples on board)




Fr-19: Sets & Functions

® Functions
e Relation R over A x B

* Foreach a € A:
- Exactly one element (z,y) € Rwithx = a




Fr-20: Sets & Functions

® For a function f over (A x A), what does the graph
look like?

® For a function f over (A x B), what does the
graph look like?




Fr-21: Sets & Functions

® Functions
e one-to-one: f(a) # f(a’) when a # o’ (nothing
IS mapped to twice)
e onto: for each b € B, da such that f(a) = b
(everything is mapped to)
* bijection: Both one-to-one and onto




Fr-22: Sets & Functions

® For a function f over (A x B)

 What does the graph look like for a one-to-one
function?

 What does the graph look like for an onto
function?

 What does the graph look like for a bijection?




Fr-23: Sets & Functions

® |nfinite sets

e Countable, Countably infinite
- Bijection with the Natural Numbers

e Uncountable, uncountable infinite
. [nfinite
- No bijection with the Natural Numbers




Fr-24: INfinite Sets

® \We can show that a set is countable infinite by
giving a bjiection between that set an the natural
numbers

® Same thing as as imposing an ordering on an
Infinite set




Fr-25: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

e Even elements of N?




Fr-26: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

e Even elements of N?

e f(x)=2x




Fr-27: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

* Integers (Z)?




Fr-28: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

* Integers (Z)?

* flz) =[5+ (=1)°




Fr-29: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

* Union of 3 (disjoint) countable sets A, B, C?




Fr-30: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

* Union of 3 (disjoint) countable sets A, B, C?

ar A1 a2 ds a4 ...

bo bl b: bs bs ...

Co C1 C2 C3 Ca ...

az ifxmod3=0
e f(x)=14q bz IfXxXmod3=1

3

ca—2 IfXmMod 3 =2

3

w8




Fr-31: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

e N x N?
(0,00 (0,1) (0,2) (0,3) (0,4) ..

(1,00 (1,1 (1,2) (1,3) (14) ..
(2,00 (2,1) (2,2) 23 (24) ..
3,00 3,1 32 33 B4 ..

(4,00 4,1) (42) 43 (“44) ..




Fr-32: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

e N x N?

0,0 0, 1) (5,2) (2,3) (5,4) ..
(1,0) (L, (L,2) (1,3) (1,4) ..
(2,0) (2,1) (2,2) 2,3) (24) ..
3,09 @R 32 33 B4 ..

4,0) 4,1 42) 43 (“44) ..

* f((w,y) =




Fr-33: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

* Real numbers between 0 and 1 (exclusive)?




Fr-34: Uncountable R

® Proof by contradiction

e Assume that iR between 0 and 1 (exclusive) is
countable
- (that is, assume that there is some bijection
from N to R between 0 and 1)

e Show that this leads to a contradiction
- Find some element of R between 0 and 1
that is not mapped to by any element in N




Fr-35: Uncountable R

® Assume that there is some bijection from N to R
between 0 and 1

0.3412315569...
0.0123506541...
0.1143216751...
0.2839143215...
0.2311459412...
0.8381441234...
0.7415296413...

OBk WN RO




Fr-36: Uncountable R

® Assume that there is some bijection from N to R
between 0 and 1

0.3412315569...
0.0123506541...
0.1142216751...
0.2829143215...
0.2311459412...
0.8381441234...
0.7415296413...

OOk WNRHRO

Consider: 0.425055...




Fr-37: Formal Languages

® Alphabet >.: Set of symbols
e {0,1},{a,b,c}, etc
® String w: Sequence of symbols
* cat,dog, firehouse etc
® | anguage L: Set of strings
e {cat, dog, firehouse}, {a, aa, aaa, ...}, etc

® | anguage class: Set of Languages
* Regular languages, P, NP, etc.




Fr-3s: Formal Languages

® | anguage Hierarchy.

Context Free

Polynomial

Recursive

Recursively Enumerable

Not Recursively Enumerable




Fr-30: Regular Expressions

® Regular expressions are a way to describe formal
anguages

® Regular expressions are defined recursively
* Base case — simple regular expressions

e Recursive case — how to build more complex
regular expressions from simple regular
expressions




Fr-40: Regular Expressions

® ¢ is a regular expression, representing {¢}
® () is a regular expression, representing {}
® Ya € ., ais aregular expression representing {a}

® if r; and r, are regular expressions, then (r;r;) is a
regular expression

e L[(T‘ﬂ“g)] = L[Tl] O L[Tg]
® if r; and r, are regular expressions, then (r; + ry)
IS a regular expression
o L|(ry 4+ 1ry)| = Lir)| U L|ry]

® if r is regular expressions, then (r*) is a regular
expression

o L{(r*)] = (L|r])*




Fr-41: I.e. Precedence

From highest to Lowest:

Kleene Closure *
Concatenation
Alternation +

ab*c+e = (a(b*)c) + e

(We will still need parentheses for some regular expres-
sions: (a+b)(a+b))




Fr-42: Regular Expressions

® |ntuitive Reading of Regular Expressions
e Concatenation == “is followed by”
* +=="0r

* == “Zero or more occurances”

( )( b)(a-+b)
+b)”

aab(aa)

/-\




Fr-43: Regular Languages

® A language L is regular if there exists a regular
expression which generates it

® Give a regular expression for:
e All strings over {a, b} that have an odd # of a’s




Fr-44: Regular Languages

® A language L is regular if there exists a regular
expression which generates it

® Give a regular expression for:
e All strings over {a, b} that have an odd # of a’s
b*a(b*ab*a)*b*
e All strings over {a, b} that contain exactly two

occurrences of bb (bbb counts as 2
occurrences!)




Fr-45: Regular Languages

® A language L is regular if there exists a regular
expression which generates it

® Give a regular expression for:

e All strings over {a, b} that have an odd # of a’s
b*a(b*ab*a)*b*

e All strings over {a, b} that contain exactly two
occurrences of bb (bbb counts as 2
occurrences!)
a*(baa*)*bb(aa*b)*aa*bb(aa*b)*a* +
a*(baa*)*bbb(aa*b)*a*




Fr46: Regular Languages

® All strings over {0, 1} that begin (or end) with 11

® All strings over {0, 1} that begin (or end) with 11,
but not both




Fr-47: Regular Languages

® All strings over {0, 1} that begin (or end) with 11
11 (0+1)* 11 + 11
® All strings over {0, 1} that begin (or end) with 11,
but not both
e 11(0+1)*0 + 11(0+1)*01 + O(0O+1)*11 +
10(0+17)11




Fr4s: Regular Languages

® Shortest string not described by following regular
expressions?

. a*b*a*b*
* a*(ab)*(ba)*b*a*
e a*b*(ab)*b*a*




Fr-49: Regular Languages

® Shortest string not described by following regular
expressions?

* a*b*a*b”
+ baba

* a*(ab)*(ba)*b*a*
 baab

* a*b*(ab)*b*a*
+ baab




Fr-50: Regular Languages

® English descriptions of following regular
expressions:
* (aa+aaa)”
* pb(a+b)™b + a(a+b)*a+a +b
e a*(baa*)*bb(aa*b)*a*




Fr-51: Regular Languages

® A language L is regular if there exists a DFA which
accepts it

* DFA for all strings with exactly 2 occurrences of
bb




Fr-52: DFA Definition

® ADFAis a5-tuple M = (K, X,9,s, F)
* K Set of states
e 3 Alphabet
e ) : (K x X)— K is a Transition function

e s ¢ K Initial state
e ' C K Final states




Fr-53: Regular Languages

® A language L is regular if there exists a DFA which
accepts it

* DFA for all strings with exactly 2 occurrences of
bb

a,b

.

) a
b
b~ b b = b
99'9 OO
b
a a




Fr-54: Regular Languages

® A language L is regular if there exists a DFA which
accepts it

* DFA for all strings over {0,1} that start and end
with 111




Fr-55: Regular Languages

® A language L is regular if there exists a DFA which
accepts it

* DFA for all strings over {0,1} that start and end
with 111




Fr-56: Regular Languages

® A language L is regular if there exists a DFA which
accepts it

* DFA for all strings over {0,1} that start with 110,
end with 011




Fr-57: Regular Languages

® A language L is regular if there exists a DFA which

accepts it
* DFA for all strings over {0,1} that start with 110,
end with 011
0,1 ]
©
| O
(O~(1)(2)- (5




Fr-58: Regular Languages

® Give a DFA for all strings over {0,1} that begin or
end with 11

® Give a DFA for all strings over {0,1} that begin or
end with 11 (but not both)




Fr-59: Regular Languages

® Give a DFA for all strings over {0,1} that contain
101010

® Give a DFA for all strings over {0,1} that contain
101 or 010

® Give a DFA for all strings over {0,1} that contain
010 and 101




Fr-60: DFA Configuration & -,

® Way to describe the computation of a DFA

® Configuration: What state the DFA is currently
in, and what string is left to process

e c K xX*°

* (g2, abba) Machine is in state g,, has abba left to
process

* (gs,bba) Machine is in state gs, has bba left to
process

* (q4,¢) Machine is in state ¢, at the end of the
computation (accept iff ¢4, € F))




Fr61: DFA Configuration & -,

® Way to describe the computation of a DFA
® Configuration: What state the DFA is currently
in, and what string is left to process
e c K x X~
® Binary relation =,,: What machine M yields in one
step
e FyC (K x ¥*) x (K x X"
® |_M: {((C.haafw)a (QZ7w)) - 1,42 & KMaw -
Z}k\ha < ZM) ((Q1>a)7QQ) S 5M}




Fr62: DFA Configuration & -,

Given the following machine M::
a,b

.
OaC
e

a,b

® ((q,abba), (g2, bba)) €y
e can also be written (g, abba) 3, (g2, bba)




Fr-63: DFA Configuration & -,

0 1
ORS00 O
\ 0 J \
(C]O, 11101) Vi (q17 1101)
M (Qza 101)
M (QSaol)
M (QOa 1)
M (QD 5)




Fr-6a: DFA Configuration & -,

0 1
D@0y ’1 (&)
0 0

(C]o, 10111) M (ql,OI_ll)
M (QOa 1)
M (QD )
M (QZa )
i (QSve)




Fr-65: DFA Configuration & 3,

® . Is the reflexive, transitive closure of -,

e Smallest superset of -, that is both reflexive
and transitive

* “yields in O or more steps”

® Machine M accepts string w |if:
(sar,w) 4, (f, €) for some f € Fy,




Fr-66: DFA & Languages

® Language accepted by a machine M = L[M]|
o {w: (sy,w) 3, (f,e) forsome f € Fy}
® DFA Languages, Lprg

e Set of all languages that can be defined by a
DFA

* Lppa = {L : EIMaL[M] — L}
® To think about: How does Lprs = Lrrc




Fr-67: NFA Definition

® Difference between a DFA and an NFA

* DFA has exactly only transition for each
state/symbol pair
- Transition function: ¢ : (K x X)) — K

e NFA has 0, 1 or more transitions for each
state/symbol pair
- Transition relation: A C ((K x X)) x K)




Fr-68: NFA Definition

® ANFAis a5-tuple M = (K, X, A, s, F)
* K Set of states
e 3 Alphabet
e A: (K x X) x K is a Transition relation

e s ¢ K Initial state
e ' C K Final states




Fr-69: FUN wWith NFA

Create an NFA for:

® All strings over {a, b} that start with a and end with
b

(also create a DFA, and regular expression)




Fr-70: FUN with NFA

Create an NFA for:

® All strings over {a, b} that contain 010 or 101




Fr-71: Regular Languages

® A language L is reqgular if there exists an NFA
which accepts it

e NFA for all strings over {a, b} that contain abba




Fr-72: Regular Languages

® A language L is reqgular if there exists an NFA
which accepts it

e NFA for all strings over {a, b} that contain abba

a.b a.b

OO OO O




Fr-73: Regular Languages

® A language L is reqgular if there exists an NFA
which accepts it

e NFA for all strings over {a, b} that do not
contain abba




Fr-74: Regular Languages

® A language L is reqgular if there exists an NFA
which accepts it

e NFA for all strings over {a, b} that do not
contain abba




Fr-75: Regular Expression & NFA

® Give a regular expression for all strings over {a,b}
that have an even number of a’s, and a number of
b’s divisible by 3




FrR-76: Pumping Lemma

® Not all languages are Regular

® [, = all strings over {a, b, c} that contain more a’s
than b's and c’'s combined




FrR-7zz Pumping Lemma

® o show that a language L is not regular, using the
pumping lemma:
* Let n be the constant of the pumping lemma
e Create a string w € L, such that |w| > n

* For each way of breaking w = xyz such that
lzy| < n, |y| > 0:
- Show that there is some i such that zy'z & L
* By the pumping lemma, L is not regular




Fr-7s: Pumping Lemma

® Prove L = all strings over {a, b, ¢} that contain
more a’s than b’'s and ¢'s combined is not regular

® | et n be the constant of the pumping lemma
® Consider w = b"a"™ € L

® |f we break w = xyz such that |zy| < n, then y
must be all b’s. Let |y| =k

® Consider w' = zy*x = b"*a". w' & L for any
k > 0, thus by the pumping lemma, L is not regular




Fr-79: Context-Free Languages

® A language is context-free if a CFG generates it
e All strings over {a, b, c} with same # of a’s as b’s




Fr-80: Context-Free Languages

® A language is context-free if a CFG generates it
e All strings over {a, b, c} with same # of a’s as b’s

— aSb
— bSa
— 55
— ¢S

— Sc

— €

N N »”n »”n &”n 4y




rFr-81: Context-Free Languages

® A language is context-free if a CFG generates it
e All strings over {a, b, c} with more a’s than b’s




Fr-82: Context-Free Languages

® A language is context-free if a CFG generates it
e All strings over {a, b, c} with more a’s than b’s

— ¢S|Sc
— aSb|bSa
— aAlAa
— SA

— aAb

— bAa

— AA

— cA|Ac
— aA|Aa
— €

S s s s s s o U U U




rFr-83: Context-Free Languages

® A language is context-free if a PDA accepts it

e All strings over {a, b, c} that contain more a’s
than 0’'s and c¢'s combined




rFr-84: Context-Free Languages

® A language is context-free if a PDA accepts it

e All strings over {a, b, c} that contain more a’s
than b’'s and c¢’'s combined

(b,e,X)
(b,A,g)
(c,e,X)
(c,A,€)

@ (£,6,X) @

(a,€,8)
(a,e,A)
(a,X,€)




Fr-85: Recursive Languages

® A language L is recursive if an always-halting
Turing Machine accepts it

* In other words, a Turing Machine decides L

® Create a Turing Machine for all strings over
{a,b, c} with an equal number of a’s, b’s and c’s.




Fr-86: Recursive Languages

® Computing functions with TMs

* Give a TM that computes negation, for a 2’s
complement binary number

* (flip bits, add one, discard overflow)




Fr-s7: Recursive Languages

® Computing functions with TMs

* Give a TM that computes negation, for a 2’s
complement binary number




Fr-8s: Recursive Languages

® Computing functions with TMs

* Give a TM that computes negation, for a 2’s
complement binary number

* (flip bits, add one, discard overflow)

Q) v D




Fr-g9: I.e. Languages

® A language L is recursively enumerable if there is
some Turing Machine M that halts and accepts
everything in L, and runs forever on everything not
in L
® Give a TM that semi-decides L = a"0"
* Note that this language is also context-free —

context-free languages are a subset of the r.e.
languages




Fr-90: I.e. Languages

® Enumeration Machines
e Create a Turing Machine that enumerate the
language:
L = all strings of the form wcw, w € (a + b)*




Fr-91: Counter Machines

® Finite automata with a counter (never negative)
® Add one, subtract 1, check for zero

® Create a 1-counter machine for all strings over
{a,b} that contain the same number of a’s as b’s




Fr-92: Unrestricted Grammars

G=(V,X,R,S5)

® |/ = Set of symbols, both terminals & non-terminals

® > C V setof terminals (alphabet for the language
being described)

® RC (V*(V —X)V* x V*) Set of rules
® S e (V—13) Start symbol




Fr-93: Unrestricted Grammars

® RC (V*(V —X)V* x V*) Set of rules

® |n an Unrestricted Grammar, the left-hand side of a
rule contains a string of terminals and
non-terminals (at least one of which must be a

non-terminal)

® Rules are applied just like CFGs:
* Find a substring that matches the LHS of some
rule
* Replace with the RHS of the rule




Fr-94: Unrestricted Grammars

® To generate a string with an Unrestricted
Grammar:

e Start with the initial symbol

* While the string contains at least one
non-terminal:
- Find a substring that matches the LHS of
some rule
- Replace that substring with the RHS of the
rule




Fr-95: Unrestricted Grammars

® Example: Grammar for L = {a"b"c" : n > 0}
 First, generate (ABC')*
* Next, non-deterministically rearrange string

e Finally, convert to terminals (A — a, B — b,
etc.), ensuring that string was reordered to form

a*b*c*




Fr-96: Unrestricted Grammars

® Example: Grammar for L = {a"b"c" : n > 0}
S — ABCS
S =T
CA — AC
BA — AB
CB — BC
CTy — 1qc
1 — 15
BTy — Tgb
Ts — Ty
ATy — Tha
Ty — €




Fr-97: Unrestricted Grammars

S = ABCS
— ABCABCS
= ABACBCS
= AABCBCS
= AABBCCS
= AABBCCT,
= AABBCT:c
— AABB1cc
= AABBTxcc
= AABT3bce
= AATzbbce

= AAT  bbcc
= AT abbcce
= T1aabbcc

= aabbcc




Fr-9s: Unrestricted Grammars

S = ABCS

= ABCABCS

= ABCABCABCS
= ABACBCABCS
= AABCBCABCS
— AABCBACBCS
= AABCABCBCS
— AABACBCBCS
= AAABCBCBCS
= AAABBCCBCS
= AAABBCBCCS
= AAABBBCCCS

= AAABBBBCCCTg
= AAABBBCCTc
= AAABBBCTcc

= AAABBB'I ~ccc

= AAABBBTxccce

= AAABBTgbcce

= AAABT5bbcce

= AAATgbbbcee

= AAAT  bbbcce

= AAT sabbbcce

= ATy aabbbcce

= T'yaaabbbcce = aaabbbccece
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