
Automata Theory
CS411-2015S-FR2

Final Review

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

FR2-0: Halting Problem

Halting Machine takes as input an encoding of a

Turing Machine e(M) and an encoding of an input

string e(w), and returns “yes” if M halts on w, and
“no” if M does not halt on w.

Like writing a Java program that parses a Java
function, and determines if that function halts on a
specific input

Halting
Machine

e(M)

e(w)

yes

no

FR2-1: Halting Problem

Halting Machine takes as input an encoding of a

Turing Machine e(M) and an encoding of an input

string e(w), and returns “yes” if M halts on w, and
“no” if M does not halt on w.

Like writing a Java program that parses a Java
function, and determines if that function halts on a
specific input

How might the Java version work?

Check for loops

while (<test>) <body>
Use program verification techniques to see if
test can ever be false, etc.

FR2-2: Halting Problem

The Halting Problem is Undecidable

There exists no Turing Machine that decides it

There is no Turing Machine that halts on all
inputs, and always says “yes” if M halts on w,
and always says “no” if M does not halt on w

Prove Halting Problem is Undecidable by
Contradiction:

FR2-3: Halting Problem

Prove Halting Problem is Undecidable by
Contradiction:

Assume that there is some Turing Machine that
solves the halting problem.

Halting
Machine

e(M)

e(w)

yes

no

We can use this machine to create a new
machine Q:

Halting
Machine

yes

e(M)

e(M)

e(M)

runs

forever

no yes

Q

FR2-4: Halting Problem

Halting
Machine

yes

e(M)

e(M)

e(M)

runs

forever

no yes

Q

MDUPLICATE MHALT

R
yes

no
yes

FR2-5: Halting Problem

Machine Q takes as input a Turing Machine M ,
and either halts, or runs forever.

What happens if we run Q on e(Q)?

If MHALT says Q should run forever on e(Q), Q
halts

If MHALT says Q should halt on e(Q), Q runs
forever

Q must not exist – but Q is easy to build if MHALT

exists, so MHALT must not exist

FR2-6: Halting Problem (Java)

Quick sideline: Prove that there can be no Java
program that takes as input two strings, one
containig source code for a Java program, and one
containing an input, and determines if that program
will halt when run on the given input.

boolean Halts(String SourceCode, String Input);

FR2-7: Halting Problem (Java)

boolean Halts(String SourceCode, String Input);

void Contrarian(String SourceCode) {

if (Halts(SourceCode, SourceCode))

while (true);

else

return;

}

FR2-8: Halting Problem (Java)

boolean Halts(String SourceCode, String Input);

void Contrarian(String SourceCode) {

if (Halts(SourceCode, SourceCode))

while (true);

else

return;

}

Contrarian("void Contrarian(String SourceCode { \

if (Halts(SourceCode, SourceCode)) \

...

} ");

What happens?

FR2-9: Undecidable

Once we have one undecidable problem, it is
(easier) to find more

Use a reduction

FR2-10: Reduction

Reduce Problem A to Problem B

Convert instance of Problem A to an instance of
Problem B

Problem A: Power – xy

Problem B: Multiplication – x ∗ y

If we can solve Problem B, we can solve
Problem A

If we can multiply two numbers, we can
calculate the power xy

FR2-11: Reduction

If we can reduce Problem A to Problem B, and

Problem A is undecidable, then:

Problem B must also be undecidable

Because, if we could solve B, we could solve A

FR2-12: Reduction

To prove a problem B is undecidable:

Start with a an instance of a known undecidable
problem (like the Halting Problem)

Create an instance of Problem B, such that the
answer to the instance of Problem B gives the
answer to the undecidable problem

If we could solve Problem B, we could solve the
halting problem . . .

. . . thus Problem B must be undecidable

FR2-13: Reduction

Professor Shadey has given a reduction from a
problem Pnew to the Halting Problem

Given any instance of Pnew:
Create an instance of the halting problem
Use the solution to the halting problem to find
a solution for Pnew

What has Professor Shadey shown?

FR2-14: Reduction

Professor Shadey has given a reduction from a
problem Pnew to the Halting Problem

Given any instance of Pnew:
Create an instance of the halting problem
Use the solution to the halting problem to find
a solution for Pnew

What has Professor Shadey shown? NOTHING!

FR2-15: More Reductions ...

Given two Turing Machines M1, M2, is

L[M1] = L[M2]?

FR2-16: More Reductions ...

Given two Turing Machines M1, M2, is

L[M1] = L[M2]?

Start with an instance M,w of the halting
problem

Create M1, which accepts everything

Create M2, which ignores its input, and runs
M,w through the Universal Turing Machine.
Accept if M halts on w.

If M halts on w, then L[M2] = Σ∗, and

L[M1] = L[M2]

If M does not halt on w, then L[M2] = {}, and

L[M1] 6= L[M2]

FR2-17: More Reductions ...

Given two Turing Machines M1, M2, is

L[M1] = L[M2]?

Universal
Turing
Machine

input

e(M)

e(w)

M

(ignored)
input

(ignored)
yes

2 M1

FR2-18: More Reductions ...

If we had a machine Msame that took as input the
encoding of two machines M1 and M2, and

determined if L[M1] = L[M2], we could solve the
halting problem for any pair M,w:

Create a Machine that accepts everything
(easy!). Encode this machine.

Create a Machine that first erases its input,
then writes e(M), e(w) on input, then runs
Universal TM. Encode this machine

Feed encoded machines into Msame. If Msame

says “yes”, then M halts on w, otherwise M
does not halt on w

FR2-19: Rice’s Theorem

Determining if the language accepted by a Turing
machine has any non-trivial property is
undecidable

“Non-Trivial” property means:

At least one recursively enumerable language
has the property

Not all recursively enumerable languages have
the property

Example: Is the language accepted by a Turing
Machine M regular?

FR2-20: Rice’s Theorem

Problem: Is the language defined by the Turing
Machine M recursively enumerable?

Is this problem decidable?

FR2-21: Rice’s Theorem

Problem: Is the language defined by the Turing
Machine M recursively enumerable?

Is this problem decidable? YES!

All recursively enumerable languages are
recursively enumerable.

The question is “trivial”

FR2-22: Rice’s Theorem

Problem: Does the Turing Machine M accept the
string w in k computational steps?

Is this problem decidable?

FR2-23: Rice’s Theorem

Problem: Does the Turing Machine M accept the
string w in k computational steps?

Is this problem decidable? YES!

Problem is not language related – we’re not
asking a question about the language that is
accepted, but about the language that is
accepted within a certain number of steps

FR2-24: Rice’s Theorem – Proof

We will prove Rice’s theorem by showing that, for
any non-trivial property P , we can reduce the
halting problem to the problem of determining if the
language accepted by a Turing Machine has
Property P .

Given any Machine M , string w, and non-trivial
property P , we will create a new machine M ′, such
that either

L[M ′] has property P if and only if M halts on
w

L[M ′] has property P if and only if M does not
halt on w

FR2-25: Rice’s Theorem – Proof

Let P be some non-trivial property of a language.

Two cases:

The empty language {} has the property

The empty language {} does not have the
property

FR2-26: Rice’s Theorem – Proof

Properties that the empty language has:

Regular Languages

Languages that do not contain the string “aab”

Languages that are finite

Properties that the empty language does not have:

Languages containing the string “aab”

Languages containing at least one string

Languages that are infinite

FR2-27: Rice’s Theorem – Proof

Let M be any Turing Machine, w be any input
string, and P be any non-trivial property of a

language, such that {} has property P .

Let LNP be some recursively enumerable language
that does not have the property P , and let MNP be
a Turing Machine such that L[MNP] = LNP

We will create a machine M ′ such that M ′ has
property P if and only if M does not halt on w.

FR2-28: Rice’s Theorem – Proof

M ′:

Save input

Erase input, simulate running M on w

Restore input

Simulates running MNP on input

FR2-29: Rice’s Theorem – Proof

M ′:

Save input

Erase input, simulate running M on w

Restore input

Simulates running MNP on input

If M halts on w, L[M ′] = LNP , and L[M ′] does not
have property P

If M does not halt on w, L[M ′] = {}, and L[M ′]
does have property P

FR2-30: Rice’s Theorem – Proof

Let M be any Turing Machine, w be any input
string, and P be any non-trivial property of a

language, such that {} does not have property P .

Let LNP be some recursively enumerable language
that does have the property P , and let MP be a
Turing Machine such that L[MP] = LP

We will create a machine M ′ such that M ′ has
property P if and only if M does halt on w.

FR2-31: Rice’s Theorem – Proof

M ′:

Save input

Erase input, simulate running M on w

Restore input

Simulates running MP on input

FR2-32: Rice’s Theorem – Proof

M ′:

Save input

Erase input, simulate running M on w

Restore input

Simulates running MP on input

If M halts on w, L[M ′] = LP , and L[M ′] does have
property P

If M does not halt on w, L[M ′] = {}, and L[M ′]
does not have property P

FR2-33: Language Class P

A language L is polynomially decidable if there
exists a polynomially bound Turing machine that
decides it.

A Turing Machine M is polynomially bound if:

There exists some polynomial function p(n)

For any input string w, M always halts within

p(|w|) steps

The set of languages that are polynomially
decidable is P

FR2-34: Language Class NP

A language L is non-deterministically polynomially
decidable if there exists a polynomially bound
non-deterministic Turing machine that decides it.

A Non-Deterministic Turing Machine M is
polynomially bound if:

There exists some polynomial function p(n)

For any input string w, M always halts within

p(|w|) steps, for all computational paths

The set of languages that are non-deterministically
polynomially decidable is NP

FR2-35: Language Class NP

If a Language L is in NP:

There exists a non-deterministic Turing
machine M

M halts within p(|w|) steps for all inputs w, in
all computational paths

If w ∈ L, then there is at least one
computational path for w that accepts (and
potentially several that reject)

If w 6∈ L, then all computational paths for w
reject

FR2-36: NP vs P

A problem is in P if we can generate a solution
quickly (that is, in polynomial time

A problem is in NP if we can check to see if a
potential solution is correct quickly

Non-deterministically create (guess) a potential
solution

Check to see that the solution is correct

FR2-37: NP vs P

All problems in P are also in NP

That is, P ⊆ NP

If you can generate correct solutions, you can
check if a guessed solution is correct

FR2-38: Reduction Redux

Given a problem instance P , if we can

Create an instance of a different problem P ′, in
polynomial time, such that the solution to P ′ is
the same as the solution to P

Solve the instance P ′ in polynomial time

Then we can solve P in polynomial time

FR2-39: NP-Complete

A language L is NP-Complete if:

L is in NP

If we could decide L in polynomial time, then all
NP languages could be decided in polynomial
time

That is, we could reduce any NP problem to L
in polynomial time

FR2-40: NP-Complete

How do you show a problem is NP-Complete?

Given any polynomially-bound
non-deterministic Turing machine M and string
w:

Create an instance of the problem that has a
solution if and only if M accepts w

FR2-41: NP-Complete

First NP-Complete Problem: Satisfiability (SAT)

Given any (possibly non-deterministic) Turing
Machine M , string w, and polynomial bound

p(n)
Create a boolean formula f , such that f is
satisfiable if and only of M accepts w

FR2-42: More NP-Complete Problems

So, if we could solve Satisfiability in Polynomial
Time, we could solve any NP problem in
polynomial time

Including factoring large numbers ...

Satisfiability is NP-Complete

There are many NP-Complete problems

Prove NP-Completeness using a reduction

FR2-43: Proving NP-Complete

To prove that a problem Pnew is NP-Complete

Start with an instance of a known NP-Complete
problem NP

Use this instance of NP to create an instance
of Pnew, such that the solution of Pnew gives us a
solution to the instance of NP

If we could solve Pnew in polynomial time, we
could solve NP in polynomial time, hence Pnew

is NP-Complete

FR2-44: Proving NP-Complete

What does it mean if I could reduce a new problem
to a known NP-Complete problem?

FR2-45: Proving NP-Complete

What does it mean if I could reduce a new problem
to a known NP-Complete problem?

If I could solve the NP-Complete problem
quickly, I could solve the new poblem quickly

FR2-46: Proving NP-Complete

What does it mean if I could reduce a new problem
to a known NP-Complete problem?

If I could solve the NP-Complete problem
quickly, I could solve the new poblem quickly

But if I could solve the NP-Complete problem
quickly, then I could solve any problem quickly

FR2-47: Proving NP-Complete

What does it mean if I could reduce a new problem
to a known NP-Complete problem?

If I could solve the NP-Complete problem
quickly, I could solve the new poblem quickly

But if I could solve the NP-Complete problem
quickly, then I could solve any problem quickly

Haven’t learned anything

FR2-48: Proving NP-Complete

To prove Pnew is NP-Complete:

Need to reduce a know NP-Complete problem
to Pnew

Not the other way around

Can be confusion the first (or second) time you
see it

FR2-49: NP-Complete Problems

Undirected Hamilton Cycle is NP-Complete

How would we show this?

FR2-50: NP-Complete Problems

Undirected Hamilton Cycle is NP-Complete

Start with a known NP-Complete problem

Reduce the NP-Complete problem to
Undirected Hamilton Cycle

What would be a good choice, given what we’ve
already proven NP-Complete in this class?

FR2-51: NP-Complete Problems

Undirected Hamilton Cycle is NP-Complete

Reduction from Directed Hamilton Cycle

Given any instance of Directed Hamilton Cycle:
Create an insance of Undirected Hamilon
Cycle
Show that the solution to Undirected
Hamilton Cycle gives solution to Directed
Hamilton Cycle

FR2-52: Undir. Ham. Cycle

v

FR2-53: Undir. Ham. Cycle

v v v
0 1 2

	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problem (Java)addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problem (Java)addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problem (Java)addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Undecidableaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More Reductions ...addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More Reductions ...addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More Reductions ...addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More Reductions ...addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Class ${�f P}$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Class ${�f NP}$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Class ${�f NP}$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ${�f NP}$ vs ${�f P}$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ${�f NP}$ vs ${�f P}$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Reduxaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ${�f NP}$-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ${�f NP}$-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ${�f NP}$-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Proving NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Proving NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Proving NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Proving NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Proving NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Proving NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Undir. Ham. Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Undir. Ham. Cycleaddtocounter {blocknumber}{1}

