Halting Problem

- Halting Machine takes as input an encoding of a Turing Machine $e(M)$ and an encoding of an input string $e(w)$, and returns “yes” if M halts on w, and “no” if M does not halt on w.
- Like writing a Java program that parses a Java function, and determines if that function halts on a specific input
Halting Machine takes as input an encoding of a Turing Machine $e(M)$ and an encoding of an input string $e(w)$, and returns “yes” if M halts on w, and “no” if M does not halt on w.

Like writing a Java program that parses a Java function, and determines if that function halts on a specific input.

How might the Java version work?

- Check for loops
- `while (<test>) <body>`
 Use program verification techniques to see if test can ever be false, etc.
FR2-2: Halting Problem

- The Halting Problem is *Undecidable*
 - There exists no Turing Machine that decides it
 - There is no Turing Machine that halts on all inputs, and always says “yes” if M halts on w, and always says “no” if M does not halt on w
- Prove Halting Problem is Undecidable by Contradiction:
Halting Problem

- Prove Halting Problem is Undecidable by Contradiction:
 - Assume that there is some Turing Machine that solves the halting problem.
 - We can use this machine to create a new machine Q:

```
Halting Machine

e(M)  yes

e(w)  no

Q

e(M)  runs forever

e(M)  yes

e(M)  no

yes

no
```

FR2-4: Halting Problem

The diagram illustrates the halting problem with the following flow:

- **Q**: e(M) -> Halting Machine
 - Halting Machine processes e(M) and outputs:
 - yes (runs forever)
 - no
 - yes (runs forever)

- **R**: e(M) -> M_{DUPLICATE} -> M_{HALT}
 - yes
 - yes
 - no
 - yes
Halting Problem

- Machine Q takes as input a Turing Machine M, and either halts, or runs forever.
- What happens if we run Q on $e(Q)$?
 - If M_{HALT} says Q should run forever on $e(Q)$, Q halts
 - If M_{HALT} says Q should halt on $e(Q)$, Q runs forever
- Q must not exist – but Q is easy to build if M_{HALT} exists, so M_{HALT} must not exist
Quick sideline: Prove that there can be no Java program that takes as input two strings, one containing source code for a Java program, and one containing an input, and determines if that program will halt when run on the given input.

```java
boolean Halts(String SourceCode, String Input);
```
boolean Halts(String SourceCode, String Input);

void Contrarian(String SourceCode) {
 if (Halts(SourceCode, SourceCode))
 while (true);
 else
 return;
}
Halting Problem (Java)

```java
boolean Halts(String SourceCode, String Input);

void Contrarian(String SourceCode) {
    if (Halts(SourceCode, SourceCode))
        while (true);
    else
        return;
}
Contrarian("void Contrarian(String SourceCode {
    if (Halts(SourceCode, SourceCode))
        ...
    }

What happens?
```
FR2-9: Undecidable

- Once we have one undecidable problem, it is (easier) to find more
- Use a reduction
FR2-10: Reduction

- Reduce Problem A to Problem B
 - Convert instance of Problem A to an instance of Problem B
 - Problem A: Power – x^y
 - Problem B: Multiplication – $x \times y$
 - If we can solve Problem B, we can solve Problem A
 - If we can multiply two numbers, we can calculate the power x^y
FR2-11: Reduction

- If we can reduce Problem A to Problem B, and
- Problem A is undecidable, then:
- Problem B must also be undecidable
 - Because, if we could solve B, we could solve A
To prove a problem B is undecidable:

- Start with a known undecidable problem (like the Halting Problem)
- Create an instance of Problem B, such that the answer to the instance of Problem B gives the answer to the undecidable problem
- If we could solve Problem B, we could solve the halting problem . . .
- . . . thus Problem B must be undecidable
Reduction

- Professor Shadey has given a reduction from a problem P_{new} to the Halting Problem
 - Given any instance of P_{new}:
 - Create an instance of the halting problem
 - Use the solution to the halting problem to find a solution for P_{new}
- What has Professor Shadey shown?
Professor Shadey has given a reduction from a problem P_{new} to the Halting Problem.

- Given any instance of P_{new}:
 - Create an instance of the halting problem
 - Use the solution to the halting problem to find a solution for P_{new}

What has Professor Shadey shown? NOTHING!
FR2-15: More Reductions ...

- Given two Turing Machines M_1, M_2, is $L[M_1] = L[M_2]$?
Given two Turing Machines M_1, M_2, is $L[M_1] = L[M_2]$?

- Start with an instance M, w of the halting problem
- Create M_1, which accepts everything
- Create M_2, which ignores its input, and runs M, w through the Universal Turing Machine. Accept if M halts on w.

- If M halts on w, then $L[M_2] = \Sigma^*$, and $L[M_1] = L[M_2]$
- If M does not halt on w, then $L[M_2] = \{\}$, and $L[M_1] \neq L[M_2]$
Given two Turing Machines M_1, M_2, is $L[M_1] = L[M_2]$?
If we had a machine \(M_{\text{same}} \) that took as input the encoding of two machines \(M_1 \) and \(M_2 \), and determined if \(L[M_1] = L[M_2] \), we could solve the halting problem for any pair \(M, w \):

- Create a Machine that accepts everything (easy!). Encode this machine.
- Create a Machine that first erases its input, then writes \(e(M), e(w) \) on input, then runs Universal TM. Encode this machine
- Feed encoded machines into \(M_{\text{same}} \). If \(M_{\text{same}} \) says “yes”, then \(M \) halts on \(w \), otherwise \(M \) does not halt on \(w \)
FR2-19: Rice’s Theorem

- Determining if the language accepted by a Turing machine has any non-trivial property is undecidable

- “Non-Trivial” property means:
 - At least one recursively enumerable language has the property
 - Not all recursively enumerable languages have the property

- Example: Is the language accepted by a Turing Machine M regular?
• Problem: Is the language defined by the Turing Machine M recursively enumerable?
 • Is this problem decidable?
FR2-21: Rice’s Theorem

- Problem: Is the language defined by the Turing Machine M recursively enumerable?
 - Is this problem decidable? YES!
- All recursively enumerable languages are recursively enumerable.
- The question is “trivial”
FR2-22: Rice’s Theorem

- Problem: Does the Turing Machine M accept the string w in k computational steps?
- Is this problem decidable?
Problem: Does the Turing Machine M accept the string w in k computational steps?

- Is this problem decidable? YES!
- Problem is not language related – we’re not asking a question about the language that is accepted, but about the language that is accepted within a certain number of steps.
We will prove Rice’s theorem by showing that, for any non-trivial property P, we can reduce the halting problem to the problem of determining if the language accepted by a Turing Machine has Property P.

Given any Machine M, string w, and non-trivial property P, we will create a new machine M', such that either

- $L[M']$ has property P if and only if M halts on w
- $L[M']$ has property P if and only if M does not halt on w
Let P be some non-trivial property of a language.

Two cases:

- The empty language $\{}$ has the property
- The empty language $\{}$ does not have the property
FR2-26: Rice’s Theorem – Proof

- Properties that the empty language has:
 - Regular Languages
 - Languages that do not contain the string “aab”
 - Languages that are finite

- Properties that the empty language does not have:
 - Languages containing the string “aab”
 - Languages containing at least one string
 - Languages that are infinite
Rice’s Theorem – Proof

Let \(M \) be any Turing Machine, \(w \) be any input string, and \(P \) be any non-trivial property of a language, such that \(\{ \} \) has property \(P \).

Let \(L_{NP} \) be some recursively enumerable language that does not have the property \(P \), and let \(M_{NP} \) be a Turing Machine such that \(L[M_{NP}] = L_{NP} \).

We will create a machine \(M' \) such that \(M' \) has property \(P \) if and only if \(M \) does not halt on \(w \).
Rice’s Theorem – Proof

- M':
 - Save input
 - Erase input, simulate running M on w
 - Restore input
 - Simulates running M_{NP} on input
FR2-29: Rice’s Theorem – Proof

- M':
 - Save input
 - Erase input, simulate running M on w
 - Restore input
 - Simulates running M_{NP} on input

- If M halts on w, $L[M'] = L_{NP}$, and $L[M']$ does not have property P

- If M does not halt on w, $L[M'] = \emptyset$, and $L[M']$ does have property P
FR2-30: Rice’s Theorem – Proof

Let M be any Turing Machine, w be any input string, and P be any non-trivial property of a language, such that \emptyset does not have property P.

Let L_{NP} be some recursively enumerable language that does have the property P, and let M_P be a Turing Machine such that $L[M_P] = L_P$.

We will create a machine M' such that M' has property P if and only if M does halt on w.
Rice’s Theorem – Proof

\[M' : \]
- Save input
- Erase input, simulate running \(M \) on \(w \)
- Restore input
- Simulates running \(M_p \) on input
FR2-32: Rice’s Theorem – Proof

- M':
 - Save input
 - Erase input, simulate running M on w
 - Restore input
 - Simulates running M_P on input

- If M halts on w, $L[M'] = L_P$, and $L[M']$ does have property P

- If M does not halt on w, $L[M'] = \{\}$, and $L[M']$ does not have property P
A language L is polynomially decidable if there exists a polynomially bound Turing machine that decides it.

A Turing Machine M is polynomially bound if:
- There exists some polynomial function $p(n)$
- For any input string w, M always halts within $p(|w|)$ steps

The set of languages that are polynomially decidable is P
A language L is non-deterministically polynomially decidable if there exists a polynomially bound non-deterministic Turing machine that decides it.

A Non-Deterministic Turing Machine M is polynomially bound if:

- There exists some polynomial function $p(n)$
- For any input string w, M always halts within $p(|w|)$ steps, for all computational paths

The set of languages that are non-deterministically polynomially decidable is NP
If a Language L is in \textbf{NP}:

- There exists a non-deterministic Turing machine M
- M halts within $p(|w|)$ steps for all inputs w, in all computational paths
- If $w \in L$, then there is at least one computational path for w that accepts (and potentially several that reject)
- If $w \notin L$, then all computational paths for w reject
FR2-36: **NP vs P**

- A problem is in \(P \) if we can *generate* a solution quickly (that is, in polynomial time).
- A problem is in \(NP \) if we can *check* to see if a potential solution is correct quickly:
 - Non-deterministically create (guess) a potential solution
 - Check to see that the solution is correct
All problems in P are also in NP
- That is, $P \subseteq NP$
- If you can generate correct solutions, you can check if a guessed solution is correct
FR2-38: Reduction Redux

- Given a problem instance P, if we can
 - Create an instance of a different problem P', in polynomial time, such that the solution to P' is the same as the solution to P
 - Solve the instance P' in polynomial time
- Then we can solve P in polynomial time
A language L is NP-Complete if:

- L is in NP
- If we could decide L in polynomial time, then all NP languages could be decided in polynomial time
- That is, we could reduce any NP problem to L in polynomial time
How do you show a problem is \(\text{NP-Complete} \)?

- Given *any* polynomially-bound non-deterministic Turing machine \(M \) and string \(w \):
 - Create an instance of the problem that has a solution if and only if \(M \) accepts \(w \).
• First NP-Complete Problem: Satisfiability (SAT)
 • Given any (possibly non-deterministic) Turing Machine M, string w, and polynomial bound $p(n)$
 • Create a boolean formula f, such that f is satisfiable if and only if M accepts w
So, if we could solve Satisfiability in Polynomial Time, we could solve \textit{any NP} problem in polynomial time.

- Including factoring large numbers ...

Satisfiability is \textit{NP}-Complete

There are many \textit{NP}-Complete problems

- Prove \textit{NP}-Completeness using a reduction
To prove that a problem \(P_{\text{new}} \) is NP-Complete:

- Start with an instance of a known NP-Complete problem \(NP \).
- Use this instance of \(NP \) to create an instance of \(P_{\text{new}} \), such that the solution of \(P_{\text{new}} \) gives us a solution to the instance of \(NP \).
- If we could solve \(P_{\text{new}} \) in polynomial time, we could solve \(NP \) in polynomial time, hence \(P_{\text{new}} \) is NP-Complete.
What does it mean if I could reduce a new problem to a known NP-Complete problem?
What does it mean if I could reduce a new problem to a known NP-Complete problem?

If I could solve the NP-Complete problem quickly, I could solve the new problem quickly.
What does it mean if I could reduce a new problem to a known NP-Complete problem?

- If I could solve the NP-Complete problem quickly, I could solve the new problem quickly.
- But if I could solve the NP-Complete problem quickly, then I could solve any problem quickly.
What does it mean if I could reduce a new problem to a known NP-Complete problem?

- If I could solve the NP-Complete problem quickly, I could solve the new problem quickly.
- But if I could solve the NP-Complete problem quickly, then I could solve any problem quickly.
- Haven’t learned anything.
To prove P_{new} is NP-Complete:

- Need to reduce a known NP-Complete problem to P_{new}
- Not the other way around
- Can be confusion the first (or second) time you see it
Undirected Hamilton Cycle is NP-Complete

How would we show this?
Undirected Hamilton Cycle is NP-Complete

- Start with a known NP-Complete problem
- Reduce the NP-Complete problem to Undirected Hamilton Cycle
- What would be a good choice, given what we’ve already proven NP-Complete in this class?
FR2-51: NP-Complete Problems

- Undirected Hamilton Cycle is NP-Complete
 - Reduction from Directed Hamilton Cycle
 - Given any instance of Directed Hamilton Cycle:
 - Create an instance of Undirected Hamilton Cycle
 - Show that the solution to Undirected Hamilton Cycle gives solution to Directed Hamilton Cycle
FR2-52: Undir. Ham. Cycle
FR2-53: Undir. Ham. Cycle