FR2-0: Halting Problem

- Halting Machine takes as input an encoding of a Turing Machine $e(M)$ and an encoding of an input string $e(w)$, and returns “yes” if M halts on w, and “no” if M does not halt on w.

- Like writing a Java program that parses a Java function, and determines if that function halts on a specific input.

\[
\begin{array}{|c|c|}
\hline
e(M) & \text{Halting Machine} \\
\hline
\end{array}
\]

FR2-1: Halting Problem

- Halting Machine takes as input an encoding of a Turing Machine $e(M)$ and an encoding of an input string $e(w)$, and returns “yes” if M halts on w, and “no” if M does not halt on w.

- Like writing a Java program that parses a Java function, and determines if that function halts on a specific input.

- How might the Java version work?

 - Check for loops

 - \textbf{while (<test>) <body>}

 Use program verification techniques to see if test can ever be false, etc.

FR2-2: Halting Problem

- The Halting Problem is Undecidable

- There exists no Turing Machine that decides it

- There is no Turing Machine that halts on all inputs, and always says “yes” if M halts on w, and always says “no” if M does not halt on w

- Prove Halting Problem is Undecidable by Contradiction:

FR2-3: Halting Problem

- Prove Halting Problem is Undecidable by Contradiction:

 - Assume that there is some Turing Machine that solves the halting problem.

\[
\begin{array}{|c|c|}
\hline
e(M) & \text{Halting Machine} \\
\hline
\end{array}
\]

- We can use this machine to create a new machine Q:

\[
\begin{array}{|c|c|c|}
\hline
e(M) & \text{Halting Machine} & \text{runs forever} \\
\hline
\end{array}
\]
FR2-4: **Halting Problem**

![Halting Problem Diagram]

FR2-5: **Halting Problem**

- Machine Q takes as input a Turing Machine M, and either halts, or runs forever.
- What happens if we run Q on $e(Q)$?
 - If M_{HALT} says Q should run forever on $e(Q)$, Q halts
 - If M_{HALT} says Q should halt on $e(Q)$, Q runs forever
- Q must not exist – but Q is easy to build if M_{HALT} exists, so M_{HALT} must not exist

FR2-6: **Halting Problem (Java)**

- Quick sideline: Prove that there can be no Java program that takes as input two strings, one containing source code for a Java program, and one containing an input, and determines if that program will halt when run on the given input.

```java
boolean Halts(String SourceCode, String Input);
```

FR2-7: **Halting Problem (Java)**

```java
boolean Halts(String SourceCode, String Input);

void Contrarian(String SourceCode) {
    if (Halts(SourceCode, SourceCode))
        while (true);
    else
        return;
}
```

FR2-8: **Halting Problem (Java)**
boolean Halts(String SourceCode, String Input);

void Contrarian(String SourceCode) {
 if (Halts(SourceCode, SourceCode))
 while (true);
 else
 return;
}
Contrarian("void Contrarian(String SourceCode { \
 if (Halts(SourceCode, SourceCode)) \
 ...
} ");

What happens?
FR2-9: Undecidable

• Once we have one undecidable problem, it is (easier) to find more
• Use a reduction

FR2-10: Reduction

• Reduce Problem A to Problem B
 • Convert instance of Problem A to an instance of Problem B
 • Problem A: Power \(- x^y\)
 • Problem B: Multiplication \(- x \ast y\)
 • If we can solve Problem B, we can solve Problem A
 • If we can multiply two numbers, we can calculate the power \(x^y\)

FR2-11: Reduction

• If we can reduce Problem A to Problem B, and
• Problem A is undecidable, then:
 • Problem B must also be undecidable
 • Because, if we could solve B, we could solve A

FR2-12: Reduction

• To prove a problem B is undecidable:
 • Start with a an instance of a known undecidable problem (like the Halting Problem)
 • Create an instance of Problem B, such that the answer to the instance of Problem B gives the answer to the undecidable problem
 • If we could solve Problem B, we could solve the halting problem \ldots
 • \ldots thus Problem B must be undecidable

FR2-13: Reduction

• Professor Shadey has given a reduction from a problem \(P_\text{new}\) to the Halting Problem
Given any instance of P_{new}:
- Create an instance of the halting problem
- Use the solution to the halting problem to find a solution for P_{new}

What has Professor Shadey shown?

FR2-14: Reduction

- Professor Shadey has given a reduction from a problem P_{new} to the Halting Problem
 - Given any instance of P_{new}:
 - Create an instance of the halting problem
 - Use the solution to the halting problem to find a solution for P_{new}
 - What has Professor Shadey shown? NOTHING!

FR2-15: More Reductions ...

- Given two Turing Machines M_1, M_2, is $L[M_1] = L[M_2]$?

FR2-16: More Reductions ...

- Given two Turing Machines M_1, M_2, is $L[M_1] = L[M_2]$?
 - Start with an instance M, w of the halting problem
 - Create M_1, which accepts everything
 - Create M_2, which ignores its input, and runs M, w through the Universal Turing Machine. Accept if M halts on w.
 - If M halts on w, then $L[M_2] = \Sigma^*$, and $L[M_1] = L[M_2]$
 - If M does not halt on w, then $L[M_2] = \{\}$, and $L[M_1] \neq L[M_2]$

FR2-17: More Reductions ...

- Given two Turing Machines M_1, M_2, is $L[M_1] = L[M_2]$?

FR2-18: More Reductions ...

- If we had a machine M_{same} that took as input the encoding of two machines M_1 and M_2, and determined if $L[M_1] = L[M_2]$, we could solve the halting problem for any pair M, w:
 - Create a Machine that accepts everything (easy!). Encode this machine.
 - Create a Machine that first erases its input, then writes $e(M), e(w)$ on input, then runs Universal TM. Encode this machine.
• Feed encoded machines into M_{same}. If M_{same} says “yes”, then M halts on w, otherwise M does not halt on w

FR2-19: **Rice’s Theorem**

• Determining if the language accepted by a Turing machine has any non-trivial property is undecidable

• “Non-Trivial” property means:
 • At least one recursively enumerable language has the property
 • Not all recursively enumerable languages have the property

• Example: Is the language accepted by a Turing Machine M regular?

FR2-20: **Rice’s Theorem**

• Problem: Is the language defined by the Turing Machine M recursively enumerable?
 • Is this problem decidable?

FR2-21: **Rice’s Theorem**

• Problem: Is the language defined by the Turing Machine M recursively enumerable?
 • Is this problem decidable? YES!
 • All recursively enumerable languages are recursively enumerable.
 • The question is “trivial”

FR2-22: **Rice’s Theorem**

• Problem: Does the Turing Machine M accept the string w in k computational steps?
 • Is this problem decidable?

FR2-23: **Rice’s Theorem**

• Problem: Does the Turing Machine M accept the string w in k computational steps?
 • Is this problem decidable? YES!
 • Problem is not language related – we’re not asking a question about the language that is accepted, but about the language that is accepted within a certain number of steps

FR2-24: **Rice’s Theorem – Proof**

• We will prove Rice’s theorem by showing that, for any non-trivial property P, we can reduce the halting problem to the problem of determining if the language accepted by a Turing Machine has Property P.

• Given any Machine M, string w, and non-trivial property P, we will create a new machine M', such that either
 • $L[M']$ has property P if and only if M halts on w
 • $L[M']$ has property P if and only if M does not halt on w
Let P be some non-trivial property of a language.

Two cases:
- The empty language \emptyset has the property
- The empty language \emptyset does not have the property

FR2-26: Rice’s Theorem – Proof

- Properties that the empty language has:
 - Regular Languages
 - Languages that do not contain the string “aab”
 - Languages that are finite
- Properties that the empty language does not have:
 - Languages containing the string “aab”
 - Languages containing at least one string
 - Languages that are infinite

FR2-27: Rice’s Theorem – Proof

- Let M be any Turing Machine, w be any input string, and P be any non-trivial property of a language, such that \emptyset has property P.
- Let L_{NP} be some recursively enumerable language that does not have the property P, and let M_{NP} be a Turing Machine such that $L[M_{NP}] = L_{NP}$
- We will create a machine M' such that M' has property P if and only if M does not halt on w.

FR2-28: Rice’s Theorem – Proof

- M':
 - Save input
 - Erase input, simulate running M on w
 - Restore input
 - Simulates running M_{NP} on input

FR2-29: Rice’s Theorem – Proof

- M':
 - Save input
 - Erase input, simulate running M on w
 - Restore input
 - Simulates running M_{NP} on input
- If M halts on w, $L[M'] = L_{NP}$, and $L[M']$ does not have property P
- If M does not halt on w, $L[M'] = \emptyset$, and $L[M']$ does have property P
FR2-30: Rice’s Theorem – Proof

- Let M be any Turing Machine, w be any input string, and P be any non-trivial property of a language, such that \{\} does not have property P.
- Let L_{NP} be some recursively enumerable language that does have the property P, and let M_P be a Turing Machine such that $L[M_P] = L_P$.
- We will create a machine M' such that M' has property P if and only if M does halt on w.

FR2-31: Rice’s Theorem – Proof

- M':
 - Save input
 - Erase input, simulate running M on w
 - Restore input
 - Simulates running M_P on input

FR2-32: Rice’s Theorem – Proof

- M':
 - Save input
 - Erase input, simulate running M on w
 - Restore input
 - Simulates running M_P on input
 - If M halts on w, $L[M'] = L_P$, and $L[M']$ does have property P
 - If M does not halt on w, $L[M'] = \{\}$, and $L[M']$ does not have property P

FR2-33: Language Class P

- A language L is polynomially decidable if there exists a polynomially bound Turing machine that decides it.
- A Turing Machine M is polynomially bound if:
 - There exists some polynomial function $p(n)$
 - For any input string w, M always halts within $p(|w|)$ steps
 - The set of languages that are polynomially decidable is P

FR2-34: Language Class NP

- A language L is non-deterministically polynomially decidable if there exists a polynomially bound non-deterministic Turing machine that decides it.
- A Non-Deterministic Turing Machine M is polynomially bound if:
 - There exists some polynomial function $p(n)$
 - For any input string w, M always halts within $p(|w|)$ steps, for all computational paths
 - The set of languages that are non-deterministically polynomially decidable is NP
FR2-35: Language Class NP

- If a Language \(L \) is in NP:
 - There exists a non-deterministic Turing machine \(M \)
 - \(M \) halts within \(p(|w|) \) steps for all inputs \(w \), in all computational paths
 - If \(w \in L \), then there is at least one computational path for \(w \) that accepts (and potentially several that reject)
 - If \(w \notin L \), then all computational paths for \(w \) reject

FR2-36: NP vs P

- A problem is in P if we can generate a solution quickly (that is, in polynomial time
- A problem is in NP if we can check to see if a potential solution is correct quickly
 - Non-deterministically create (guess) a potential solution
 - Check to see that the solution is correct

FR2-37: NP vs P

- All problems in P are also in NP
 - That is, \(P \subseteq NP \)
 - If you can generate correct solutions, you can check if a guessed solution is correct

FR2-38: Reduction Redux

- Given a problem instance \(P \), if we can
 - Create an instance of a different problem \(P' \), in polynomial time, such that the solution to \(P' \) is the same as the solution to \(P \)
 - Solve the instance \(P' \) in polynomial time
- Then we can solve \(P \) in polynomial time

FR2-39: NP-Complete

- A language \(L \) is NP-Complete if:
 - \(L \) is in NP
 - If we could decide \(L \) in polynomial time, then all NP languages could be decided in polynomial time
 - That is, we could reduce any NP problem to \(L \) in polynomial time

FR2-40: NP-Complete

- How do you show a problem is NP-Complete?
 - Given any polynomially-bound non-deterministic Turing machine \(M \) and string \(w \):
 - Create an instance of the problem that has a solution if and only if \(M \) accepts \(w \)

FR2-41: NP-Complete
First NP-Complete Problem: Satisfiability (SAT)
- Given any (possibly non-deterministic) Turing Machine \(M\), string \(w\), and polynomial bound \(p(n)\)
- Create a boolean formula \(f\), such that \(f\) is satisfiable if and only of \(M\) accepts \(w\)

FR2-42: More NP-Complete Problems
- So, if we could solve Satisfiability in Polynomial Time, we could solve any NP problem in polynomial time
 - Including factoring large numbers ...
- Satisfiability is NP-Complete
- There are many NP-Complete problems
 - Prove NP-Completeness using a reduction

FR2-43: Proving NP-Complete
- To prove that a problem \(P_{\text{new}}\) is NP-Complete
 - Start with an instance of a known NP-Complete problem \(NP\)
 - Use this instance of \(NP\) to create an instance of \(P_{\text{new}}\), such that the solution of \(P_{\text{new}}\) gives us a solution to the instance of \(NP\)
 - If we could solve \(P_{\text{new}}\) in polynomial time, we could solve \(NP\) in polynomial time, hence \(P_{\text{new}}\) is NP-Complete

FR2-44: Proving NP-Complete
- What does it mean if I could reduce a new problem to a known NP-Complete problem?

FR2-45: Proving NP-Complete
- What does it mean if I could reduce a new problem to a known NP-Complete problem?
 - If I could solve the NP-Complete problem quickly, I could solve the new problem quickly

FR2-46: Proving NP-Complete
- What does it mean if I could reduce a new problem to a known NP-Complete problem?
 - If I could solve the NP-Complete problem quickly, I could solve the new problem quickly
 - But if I could solve the NP-Complete problem quickly, then I could solve any problem quickly

FR2-47: Proving NP-Complete
- What does it mean if I could reduce a new problem to a known NP-Complete problem?
 - If I could solve the NP-Complete problem quickly, I could solve the new problem quickly
 - But if I could solve the NP-Complete problem quickly, then I could solve any problem quickly
 - Haven’t learned anything

FR2-48: Proving NP-Complete
- To prove \(P_{\text{new}}\) is NP-Complete:
• Need to reduce a known NP-Complete problem to P_{new}
• Not the other way around
• Can be confusion the first (or second) time you see it

FR2-49: NP-Complete Problems
• Undirected Hamilton Cycle is NP-Complete
• How would we show this?

FR2-50: NP-Complete Problems
• Undirected Hamilton Cycle is NP-Complete
 • Start with a known NP-Complete problem
 • Reduce the NP-Complete problem to Undirected Hamilton Cycle
 • What would be a good choice, given what we've already proven NP-Complete in this class?

FR2-51: NP-Complete Problems
• Undirected Hamilton Cycle is NP-Complete
 • Reduction from Directed Hamilton Cycle
 • Given any instance of Directed Hamilton Cycle:
 • Create an instance of Undirected Hamilton Cycle
 • Show that the solution to Undirected Hamilton Cycle gives solution to Directed Hamilton Cycle

FR2-52: Undir. Ham. Cycle

FR2-53: Undir. Ham. Cycle