CS414-2017S-01 Compiler Basics & Lexical Analysis 1

01-0: Syllabus

e Office Hours

Course Text

Prerequisites

Test Dates & Testing Policies

Projects

e Teams of up to 2

Grading Policies
e Questions?

01-1: Notes on the Class

e Don’t be afraid to ask me to slow down!

e We will cover some pretty complex stuff here, which can be difficult to get the first (or even the second) time.
ASK QUESTIONS

e While specific questions are always preferred, “I don’t get it” is always an acceptable question. I am always
happy to stop, re-explain a topic in a different way.

e If you are confused, I can guarantee that at least one other person in the class would benefit from more
explanation

01-2: Notes on the Class

e Projects are non-trivial

e Using new tools (JavaCC)
e Managing a large scale project

e Lots of complex classes & advanced programming techniques.
01-3: Notes on the Class
e Projects are non-trivial

e Using new tools (JavaCC)
e Managing a large scale project

e Lots of complex classes & advanced programming techniques.
e START EARLY!
e Projects will take longer than you think (especially starting with the semantic analyzer project)

o ASK QUESTIONS!

CS414-2017S-01 Compiler Basics & Lexical Analysis

01-4: What is a compiler?

Source Program —— Conpil er |——» Machi ne code

Simplified View
01-5: What is a compiler?
Sour ce : Token Abst ract
File —>|LeX| cal Analyzer St ream Syntax Tree

Abstract -
Assenbl y <—|Code Gener at or |<— Assenbl y ‘—|59”a”“ ¢ Anal yzer

Tree

Assenbly Tree
Cener at or

Rel ocat abl e
& e Mechine code

Code

Li braries

More Accurate View
01-6: What is a compiler?

File Lexi cal Anal yzer Stream Syntax Tree

Front end

Abstract -
Assenbly Code Gener at or Assenbl y <—|Semant ic Analyzer Back End
ack En

Tree

Assenbly Tree
Gener at or

Rel ocat abl e
ges et e code

Code

Libraries

01-7: What is a compiler?

CS414-2017S-01 Compiler Basics & Lexical Analysis

File Lexical Analyzer St ream Syntax Tree

Covered in
this course

Abst ract -
Assenbl y Assenbl y 4—{Sermm ic Analyzer

Tree

Assenmbly Tree
Gener at or

Rel ocat abl e
Assenbl er f—»mi ect Machi ne code
Code

Libraries

01-8: Why Use Decomposition?
01-9: Why Use Decomposition?
Software Engineering!

e Smaller units are easier to write, test and debug
e Code Reuse

e Writing a suite of compilers (C, Fortran, C++, etc) for a new architecture

e Create a new language — want compilers available for several platforms
01-10: Lexical Analysis
e Converting input file to stream of tokens

void main () {
print (4);
}

01-11: Lexical Analysis

e Converting input file to stream of tokens

void main () { IDENTIFIER (void)
print (4); IDENTIFIER (main)
} LEFT-PARENTHESIS

RIGHT-PARENTHESIS
LEFT-BRACE
IDENTIFIER (print)
LEFT-PARENTHESIS
INTEGER-LITERAL (4)
RIGHT-PARENTHESIS
SEMICOLON
RIGHT-BRACE

01-12: Lexical Analysis
Brute-Force Approach

e Lots of nested if statements

CS414-2017S-01 Compiler Basics & Lexical Analysis

if (c = nextchar() == 'P’) {
if (c = nextchar() == 'R’) {
if (c = nextchar() == '0") {
if (c = nextchar() == /G’) {

/+ Code to handle the rest of either
PROGRAM or any identifier that starts
with PROG

*/

} else if (c == ’C’) {

/* Code to handle the rest of either
PROCEDURE or any identifier that starts
with PROC

/

01-13: Lexical Analysis
Brute-Force Approach

e Break the input file into words, separated by spaces or tabs
e This can be tricky — not all tokens are separated by whitespace
e Use string comparison to determine tokens

01-14: Deterministic Finite Automata

e Set of states

o Initial State

e Final State(s)

e Transitions

DFA for else, end, identifiers
Combine DFA 01-15: DFAs and Lexical Analyzers

e Given a DFA, it is easy to create C code to implement it
e DFAs are easier to understand than C code
e Visual — almost like structure charts

e ... However, creating a DFA for a complete lexical analyzer is still complex

01-16: Automatic Creation of DFAs
We’d like a tool:

e Describe the tokens in the language
e Automatically create DFA for tokens

e Then, automatically create C code that implements the DFA

We need a method for describing tokens
01-17: Formal Languages

e Alphabet 3: Set of all possible symbols (characters) in the input file
e Think of X as the set of symbols on the keyboard

e String w: Sequence of symbols from an alphabet

CS414-2017S-01 Compiler Basics & Lexical Analysis 5

e String length |w| Number of characters in a string: |car| = 3, |abba| =
e Empty String ¢: String of length 0: |¢| = 0
e Formal Language: Set of strings over an alphabet

Formal Language # Programming language — Formal Language is only a set of strings.
01-18: Formal Languages
Example formal languages:

e Integers {0, 23,44, ...}
e Floating Point Numbers {3.4,5.97,...}

e Identifiers {foo, bar, ...}
01-19: Language Concatenation

e Language Concatenation Given two formal languages L, and Lo, the concatenation of Ly and Lo, L1 Ly =
{zylz € L1,y € L2}

For example:

{fire, truck, car} {car, dog} =

{firecar, firedog, truckcar, truckdog, carcar, cardog }
01-20: Kleene Closure Given a formal language L:

LY = A{e}

L' =

2 = LL

¥ = LLL
L* = LLLL

r=rJrryry...yry. .-
01-21: Regular Expressions

Regular expressions are use to describe formal languages over an alphabet >:

Regular Expression Language

€ Ll ={e}
ae¥ [Lla]={a}
(MR) LIMR] = LIM]L[R]
(M|R) L[(M|R)] = L[M]{J L[R]
(Mx) L[(Mx)] = L[M]+

01-22: r.e. Precedence
From highest to Lowest:

Kleene Closure *
Concatenation
Alternation |

ab*cle = (a(b*)c) | e
01-23: Regular Expression Examples

CS414-2017S-01 Compiler Basics & Lexical Analysis

all strings over {a,b}
binary integers (with leading zeroes)
all strings over {a,b} that
begin and end with a
all strings over {a,b} that
contain aa
all strings over {a,b} that
do not contain aa
01-24: Regular Expression Examples

all strings over {a,b} (a|b)*

binary integers (with leading zeroes) (0|1)(0|1)*

all strings over {a,b} that a(ab)*a
begin and end with a

all strings over {a,b} that (a|b)*aa(a|b)*
contain aa

all strings over {a,b} that b*(abb*)*(ale)

do not contain aa
01-25: Reg. Exp. Shorthand

[a,b,c.d] = (alblc|d)
[d'g] = [d’e’f’g] = (b|e|f|g)
[d-fM-O] = [d,e,fM,N,O]

= (d[e[f[M|N|O)
(a)? = Optionally « (i.e., (« | €))
(a)+ = a(w)*

01-26: Regular Expressions & Unix

e Many unix tools use regular expressions
e Example: grep <reg exp>’ filename

e Prints all lines that contain a match to the regular expression
e Special characters:

e ~ beginning of line

e $end of line

e (grep examples on other screen)
01-27: JavaCC Regular Expressions

e All characters & strings must be in quotation marks

Y "else"
° "+"
Y ("a"‘"b")

e All regular expressions involving * must be parenthesized
Y ("a")*’not "a"*

01-28: JavaCC Shorthand

CS414-2017S-01 Compiler Basics & Lexical Analysis

[”a”,”b”,”c”,"d”] - (”a”|”b”|”C”|”d”)
[nd”_ng”] [”d”,”e”,”f’,’,g”] - (”bn | nen | ”f’ | ”gn)
[”dn_”f’,nM”_nO”] ["d”,”e”,”f",”M”,”N”,”O”]
(”d”|”e”|”f”|”M”|”N”|”O”)

(w)? = Optionally « (i.e., (v | €)) 01-29: r.e. Shorthand Examples
(+ = a(w)*
("[7a”,’b”]) = Any character except “a” or “b”.

Can only be used with [] notation
“(a(a—Db)*Db) is not legal

Regular Expression | Langauge

{if}

Set of legal identifiers

Set of integer literals

(leading zeroes allowed)

Set of real literals

01-30: r.e. Shorthand Examples
Regular Expression | Langauge
7if” | {if}
[a”-"z”]([°07-797,7a”-"z"])* | Set of legal identifiers
[70”-79] | Set of integer literals

(leading zeroes allowed)

([707-7971+72([707-971%))| | Set of real literals

([P07-79"*"7[707-"97]+)
01-31: Lexical Analyzer Generator

JavaCC is a Lexical Analyzer Generator and a Parser Generator

o Input: Set of regular expressions (each of which describes a type of token in the language)
e Output: A lexical analyzer, which reads an input file and separates it into tokens

01-32: Structure of a JavaCC file

options{
/* Code to set various options flags «/
}
PARSER_BEGIN (£00)
public class foo {
/* This segment is often empty %/
}
PARSER_END (£00)
TOKEN_MGR_DECLS :
{
/+ Declarations used by lexical analyzer «/

}

/* Token Rules & Actions #/
01-33: Token Rules in JavaCC

e Tokens are described by rules with the following syntax:

TOKEN :

{
<TOKEN_NAME: RegularExpression>

}

e TOKEN_NAME is the name of the token being described

CS414-2017S-01 Compiler Basics & Lexical Analysis 8

e RegularExpression is a regular expression that describes the token
01-34: Token Rules in JavaCC
e Token rule examples:

TOKEN

{
<ELSE: "else">

<INTEGER_LITERAL: (["0"="9"])+>
}

01-35: Token Rules in JavaCC

e Several different tokens can be described in the same TOKEN block, with token descriptions separated by |.

TOKEN

{

<ELSE: "else">
<INTEGER_LITERAL: (["QO"-=-"9"])+>
<SEMICOLON: ";">

01-36: getNextToken

e When we run javacc on the input file foo. J 73, it creates the class fooTokenManager
e The class fooTokenManager contains the static method getNext Token ()
e Every call to getNextToken () returns the next token in the input stream.

01-37: getNextToken

e When getNextToken is called, a regular expression is found that matches the next characters in the input
stream.

e What if more than one regular expression matches?

TOKEN

{
<ELSE: "else">
| <IDENTIFIER: (["a"-"z"])+>

01-38: getNextToken

e When more than one regular expression matches the input stream:

e Use the longest match
e “elsed” should match to IDENTIFIER, not to ELSE followed by the identifier “d”

CS414-2017S-01 Compiler Basics & Lexical Analysis

o If two matches have the same length, use the rule that appears first in the . j j file
e “else” should match to ELSE, not IDENTIFIER

01-39: JavaCC Example

PARSER_BEGIN (simple)
public class simple {

}
PARSER_END (simple)

<ELSE: "else">
| <SEMICOLON: ";">

| <FOR: "for">

| <INTEGER_LITERAL: (["0"-"9"])+>

| <IDENTIFIER: ["a"-"z"](["a"-"z","0"-"9"])«>
}

else;ford for 01-40: SKIP Rules

e Tell JavaCC what to ignore (typically whitespace) using SKIP rules
e SKIP rule is just like a TOKEN rule, except that no TOKEN is returned.

SKIP:

{

< regularexpressionl >
< regularexpression2 >

\
\ ce
\ < regularexpressionn >
}

01-41: Example SKIP Rules

PARSER_BEGIN (simple2)
public class simple2 {
}

PARSER_END (simple2)

SKIP :
{

I < "\n" >
I < e >

<ELSE: "else">
<SEMICOLON: ";">
<FOR: "for">
<INTEGER_LITERAL: (

[non_mgn]) 4s
<IDENTIFIER: ["A"-"2"] (["

(["Am—ngzm, mOn_ngn]) >

01-42: JavaCC States

o Comments can be dealt with using SKIP rules

e How could we skip over 1-line C++ Style comments?
// This is a comment

01-43: JavaCC States

e Comments can be dealt with using SKIP rules

e How we could skip over 1-line C++ Style comments:

CS414-2017S-01 Compiler Basics & Lexical Analysis 10

// This is a comment

e Using a SKIP rule

SKIP

{
< "//" ("'["\n"])* "\n" >
}

01-44: JavaCC States

e Writing a regular expression to match multi-line comments (using /* and */) is much more difficult
e Writing a regular expression to match nested comments is impossible (take Automata Theory for a proof':))
e What can we do?

e Use JavaCC States
01-45: JavaCC States

e We can label each TOKEN and SKIP rule with a “state”

e Unlabeled TOKEN and SKIP rules are assumed to be in the default state (named DEFAULT, unsurprisingly
enough)

e Can switch to a new state after matching a TOKEN or SKIP rule using the : NEWSTATE notation
01-46: JavaCC States

SKIP :

| < "\n" >
| < "\t" o>

< "/Em o> : IN_COMMENT

<IN_COMMENT>
SKIP :

< "x/" > : DEFAULT

<ELSE: "else">
| ... (etc)

01-47: Actions in TOKEN & SKIP

e We can add Java code to any SKIP or TOKEN rule
e That code will be executed when the SKIP or TOKEN rule is matched.
e Any methods / variables defined in the TOKEN_MGR_DECLS section can be used by these actions

01-48: Actions in TOKEN & SKIP

CS414-2017S-01 Compiler Basics & Lexical Analysis 11

PARSER_BEGIN (remComments)
public class remComments { }
PARSER_END (remComments)

TOKEN_MGR_DECLS :
{

public static int numcomments = 0;
}
SKIP :
{
< "/+" > : IN_COMMENT
}
SKIP
{
< "//™ (“["\n"1)* "\n" > { numcomments++; }

01-49: Actions in TOKEN & SKIP

<IN_COMMENT>
SKIP :
{
< "x/" > { numcomments++; SwitchTo (DEFAULT);}

}

<IN_COMMENT>
SKIP :
{
<[] >
}

TOKEN :
{

<ANY: "[]>
}

01-50: Tokens

Each call to getNextToken returns a “Token” object

Token class is automatically created by javaCC.

Variables of type Token contain the following public variables:

e public int kind; The type of token. When javacc is run on the file foo.jj, a file fooConstants.java
is created, which contains the symbolic names for each constant

public interface simplejavaConstants {
int EOF = 0;
int CLASSS = 8;
int DO = 9;
int ELSE = 10;

01-51: Tokens

Each call to getNextToken returns a “Token” object

Token class is automatically created by javaCC.

Variables of type Token contain the following public variables:

e public int beginLine, beginColumn, endLine, endColumn; The location of the to-
ken in the input file

01-52: Tokens
e Each call to getNextToken returns a “Token” object

o Token class is automatically created by javaCC.

e Variables of type Token contain the following public variables:

CS414-2017S-01 Compiler Basics & Lexical Analysis 12

e public String image; The text that was matched to create the token.

01-53: Generated TokenManager

class TokenTest {
public static void main(String args([]) {
Token t;
Java.io.InputStream infile;
pascalTokenManager tm;
boolean loop = true;

if (args.length < 1) {
System.out.print ("Enter filename as command line argument");
return;
}
try |
infile = new Java.io.FileInputStream(args([0]);
} catch (Java.io.FileNotFoundException e) {
System.out.println("File " + args[0] + " not found.");
return;

o —

m = new sjavaTokenManager (new SimpleCharStream(infile));

01-54: Generated TokenManager

t = tm.getNextToken();

while(t.kind != sjavaConstants.EOF) {
System.out.println("Token : "+ € + " : ");
System.out.println(pascalConstants.tokenImage[t.kind]);

01-55: Lexer Project

e Write a .jj file for simpleJava tokens
e Need to handle all whitespace (tabs, spaces, end-of-line)

e Need to handle nested comments (to an arbitrary nesting level)

01-56: Project Details

e JavaCC is available at https://javacc.dev.java.net/

e To compile your project

avacc simplejava.jj

J
javac *.Jjava

o° oo

e To test your project
% java TokenTest <test filename>

e To submit your program: Create a branch:

https://www.cs.usfca.edu/svn/<username>/cs4 14/lexer/

