
CS414-2017S-11 Memory Management 1

11-0: Memory

• Three places in memory that a program can store variables

• Call stack

• Heap

• Code segment

11-1: Memory

Code Segment

Stack

Heap

Executable
Code

Static
Storage

11-2: Memory

• Three places in memory that a program can store variables

• Call stack

• Local Variables

• Heap

• Dynamically allocated variables

• (Most of the variables in Java)

• Code segment

• Static variables

11-3: Static Storage

• If a variable is declared static, there is only one instance of the variable

• Variable is typically stored in the code segment, not the stack or the heap

• Why?

11-4: Static Storage

• If a variable is declared static, there is only one instance of the variable

CS414-2017S-11 Memory Management 2

• Variable is typically stored in the code segment, not the stack or the heap

• Stack storage is too transient

• Using the code segment guarantees a single instance of the variable

11-5: Static Storage

class StaticVars {

int x;

static int y;

}

void main() {

StaticVars SV1 = new StaticVars();

StaticVars SV2 = new StaticVars();

SV1.x = 1;

SV1.y = 2;

SV2.x = 3;

SV2.y = 4;

print(SV1.x);

print(SV1.y);

print(SV2.x);

print(SV2.y);

}

11-6: Static Storage

class StaticVars {

int x;

static int y;

}

void main() {

StaticVars SV1 = new StaticVars();

StaticVars SV2 = new StaticVars();

SV1.x = 1;

SV1.y = 2;

SV2.x = 3;

SV2.y = 4;

print(SV1.x);

print(SV1.y);

print(SV2.x);

print(SV2.y);

}

Output: 1 4 3 4 11-7: simpleJava Static Storage

• What do we need to do to implement static storage in simpleJava?

11-8: simpleJava Static Storage

• What do we need to do to implement static storage in simpleJava?

• Looking at each portion of the compiler in turn:

• Lexical Analysis – what needs to be done?

11-9: simpleJava Static Storage

• Lexical Analysis

• Add a new keyword “static” to the language

• – Add “static” token

11-10: simpleJava Static Storage

• Parsing & Building AST

11-11: simpleJava Static Storage

CS414-2017S-11 Memory Management 3

• Parsing & Building AST

• Add a “static” tag to the AST for variable declarations (for both statements, and class instance variables)

11-12: simpleJava Static Storage

• Semantic Analysis

11-13: simpleJava Static Storage

• Semantic Analysis

• No changes are necessary (apart form changes needed to implement building Abstract Assembly Tree)

11-14: simpleJava Static Storage

• Abstract Assembly Tree Generation

11-15: simpleJava Static Storage

• Abstract Assembly Tree Generation

• Add a new field to variable entries – “static” bit

• Generate code for static variables

• Need to access variables in the code segment

• Need to be able to access a “direct address”

11-16: simpleJava Static Storage

• Need to access a “direct address”

• Add an “AddressExp” node to our AAT

• Single child – assembly language label

• Represents the memory location at that address

11-17: simpleJava Static Storage

static int x;

Memory

AddressExp

Label("x001")

11-18: simpleJava Static Storage

class C1 {

static int y;

int x;

}

class C2 {

int a;

C1 class1;

}

...

C2 class2;

CS414-2017S-11 Memory Management 4

AAT for class2.class1.x?

11-19: simpleJava Static Storage

Memory

Operator(-)

Constant(x_offset)Memory

Operator(-)

Constant(class1_offset)Memory

Operator(-)

Constant(class2_offset)Register(FP)

11-20: simpleJava Static Storage

class C1 {

static int y;

int x;

}

class C2 {

int a;

C1 class1;

}

...

C2 class2;

AAT for class2.class1.y?

11-21: simpleJava Static Storage

Memory

AddressExp

Label("y001")

11-22: simpleJava Static Storage

• Code Generation

11-23: simpleJava Static Storage

• Code Generation

• Add space to code segment to store static variables

• Make sure the labels match!!

CS414-2017S-11 Memory Management 5

11-24: Heap-based storage

• There are 2 main memory-allocation dangers associated with heap-based storage

• Dangling References

• Memory leaks

11-25: Dangling References

int main() {

int *a;

int *b;

a = (int *) malloc(sizeof(int));

(*a) = 4;

b = a;

free b;

...

}

• What happens if we change (*a) [(*a) = ...]?

11-26: Memory Leaks

int main() {

int *intPtr;

intPtr = (int *) malloc(sizeof(int));

intPtr = NULL;

...

}

• Allocated memory that we can’t get to – garbage

• Eventually, use up heap memory

11-27: Managing the Heap

• Manage the heap to avoid memory leaks and dangling references

• Give all decisions to the programmer

• Automatic memory management

11-28: Programmer Controlled

• Advantages

• Memory management system is less complicated

• Lower run-time overhead for the memory manager

• Can manage the memory needs for a specific program more efficiently than a general-purpose memory

manager (at least in theory)

11-29: Free List

• List of all available blocks of memory

CS414-2017S-11 Memory Management 6

• When a request for a block of memory is made, it is removed from the free list

• Deallocated memory is returned to the free list

11-30: Free List

• Housekeeping

• When a block is requested, allocated slightly more memory than requested.

• Extra space is used to store header information (for now, just the size of the allocated block)

• Return a pointer to just after the header information

Pointer retuned to
program requesting
memory

Size of allocated block

11-31: Free List Example

class oneElem {

int x;

}

class twoElem {

int x;

int y;

}

oneElem A = new oneElem();

oneElem B = new oneElem();

twoElem C = new twoElem();

twoElem D = new twoElem();

11-32: Free List Example

Freelist

Size of block

Next block

1024

CS414-2017S-11 Memory Management 7

11-33: Free List Example

Freelist

Allocated
Memory

Size of block

Next block

984

11-34: Free List Example

class oneElem {

int x;

}

class twoElem {

int x;

int y;

}

oneElem A = new oneElem();

oneElem B = new oneElem();

twoElem C = new twoElem();

twoElem D = new twoElem();

delete A;

delete C;

11-35: Free List Example

CS414-2017S-11 Memory Management 8

Freelist

Size of block

Next block

Allocated
Memory

8

Size of block

Next block

12

Size of block

Next block

984

Allocated
Memory

11-36: Free List Example

class oneElem {

int x;

}

class twoElem {

int x;

int y;

}

oneElem A = new oneElem();

oneElem B = new oneElem();

twoElem C = new twoElem();

twoElem D = new twoElem();

delete A;

delete C;

delete D;

11-37: Free List Example

CS414-2017S-11 Memory Management 9

Freelist

Size of block

Next block

Allocated
Memory

8

Size of block

Next block

12

Size of block

Next block

984

Size of block

Next block

12

11-38: Free List Example

Freelist

Size of block

Next block

Allocated
Memory

8

Size of block

Next block

1008

11-39: First Fit

• When there are several blocks to choose from on the free list, which do we use to fulfill a memory request?

• First Fit

• Return the first block that is large enough

11-40: First Fit

class smallClass {

int x;

}

void main() {

int i;

smallClass A[] = new smallClass[3000];

smallClass B[] = new smallClass[3000];

for (i=0; i<3000; i++)

B[i] = new smallClass();

for (i=0; i<3000; i = i + 2)

CS414-2017S-11 Memory Management 10

delete B[i];

delete A;

/* Point A */

for (i=0; i<3000; i = i + 2)

B[i] = new smallClass();

/* Point B */

}

11-41: First Fit

• At Point A:

11-42: First Fit

• At Point B:

11-43: First Fit

• Plenty of space on the heap

• Divided into small blocks – can’t service a request for a large block of memory

• Memory fragmentation

CS414-2017S-11 Memory Management 11

11-44: Best Fit

• When there are several blocks to choose from on the free list, which do we use to fulfill a memory request?

• First Fit

• Return the first block that is large enough

• Best Fit

• Return the smallest block that is large enough

11-45: Best Fit

• At Point B (using Best Fit):

11-46: Best Fit

• Best Fit will usually lead to less memory fragmentation than first fit

• Don’t “waste” large memory blocks on small requests

• Large blocks should then be available when needed

• Will Best Fit always lead to less memory fragmentation?

11-47: Best Fit vs First Fit

for (i=0; i<100;i++)

A[i] = malloc(4);

for (i=0;i<100;i++)

B[i] = malloc(3);

for (i=0;i<100;i+=2)

free(A[i]);

for (i=0;i<100;i+=2)

free(B[i]);

for (i=0; i<100; i++)

C[i] = malloc(2);

CS414-2017S-11 Memory Management 12

11-48: Segregated Free List

• Fragmentation problems caused by differing block sizes

• Remove the problem by having all blocks be the same size (like lisp)

• Can’t make all blocks the same size

• Can use a limited # of standard block sizes

11-49: Segregated Free List

• Memory can only be allocated in set block sizes

• Typically powers of 2 – 2 words, 4 words, 8 words, etc

• Separate free list maintained for each bock size

• When a request is made, the smallest block that can service the request is returned.

11-50: Segregated Free List

Free List Array

11-51: Segregated Free List

• Initially, all heap memory is placed in the largest block list

• If a request is made for a block of memory of size 2k, and list k is empty:

• Split a block from list k + 1 into two blocks of size 2k

• Add these two blocks to list k

• List k is no longer empty – can service the request

11-52: Segregated Free List

Free List Array

2 word blocks

4 word blocks

8 word blocks

16 word blocks

32 word blocks

CS414-2017S-11 Memory Management 13

A request for a block of size 16 is made 11-53: Segregated Free List

Free List Array

2 word blocks

4 word blocks

8 word blocks

16 word blocks

32 word blocks

11-54: Segregated Free List

Free List Array

2 word blocks

4 word blocks

8 word blocks

16 word blocks

32 word blocks

A request for a block of size 2 is made 11-55: Segregated Free List

Free List Array

2 word blocks

4 word blocks

8 word blocks

16 word blocks

32 word blocks

11-56: Garbage Collection

• Giving the user control of deallocation has problems:

• Writing programs that properly deallocate memory is hard

• Often, there are many pointers to the same block of memory (much like your current project!)

• It can be difficult to determine when a block of memory should be freed

• We don’t want to be too aggressive in freeing memory (why not?)

11-57: Garbage Collection

• Giving the user control of deallocation has problems:

• Writing programs that properly deallocate memory is hard

• Often, there are many pointers to the same block of memory (much like your current project!)

• It can be difficult to determine when a block of memory should be freed

CS414-2017S-11 Memory Management 14

• We don’t want to be too aggressive in freeing memory (why not?)

• Solution – don’t let programmer control deallocation!

11-58: Garbage Collection

• Don’t allow programmer to deallocate any memory

• Garbage will collect

• Periodically collect the accumulated garbage, and return it to the free list

11-59: Mark & Sweep

• When Garbage Collection routine is invoked:

• Mark all heap memory that is reachable by the program

• Need to add a “mark” bit to each block of memory – can use the header

• Sweep through the entire block of memory, moving unmarked blocks to the free list

11-60: Mark Phase

for each pointer P on the stack

mark(P)

mark(P) {

if ((P is not null) and (mark bit of Mem[P] is not set))

set mark bit of Mem[P]

for each pointer Q in the block Mem[p]

mark(Q)

}

11-61: Mark & Sweep

class Class1 {

int x;

int y;

}

class Class2 {

Class1 C1

int x;

}

class Class3 {

Class1 C1;

Class2 C2;

}

Class3 C3 = new Class3();

C3.C1 = new Class1();

C3.C2 = new Class2();

C3.C2.C1 = new Class1();

11-62: Mark & Sweep

C3

Saved
Registers

Stack Heap

Header

Header

Header

Header

Freelist

SP

C1

C2

x

y

C1

x

x

y

CS414-2017S-11 Memory Management 15

11-63: Mark & Sweep

class Class1 {

int x;

int y;

}

class Class2 {

Class1 C1

int x;

}

class Class3 {

Class1 C1;

Class2 C2;

}

Class3 C3 = new Class3();

C3.C1 = new Class1();

C3.C2 = new Class2();

C3.C2.C1 = new Class1();

C3.C1 = new Class1();

11-64: Mark & Sweep

C3

Saved
Registers

Stack Heap

Header

Header

Header

Header

Freelist

SP

C1

C2

x

y

C1

x

x

y

Header

y

x

11-65: Mark & Sweep

C3

Saved
Registers

Stack Heap

Header

Header

Header

Header

Freelist

SP

C1

C2

x

y

C1

x

x

y

Header

y

x

11-66: Mark & Sweep

CS414-2017S-11 Memory Management 16

C3

Saved
Registers

Stack Heap

Header

Header

Header

Freelist

SP

C1

C2

C1

x

x

y

Header

y

x

Header

11-67: Whither Pointers?

• In order for the Mark phase to work correctly, we need to know which memory locations are pointers, and which

are not

• Tag pointers

• Assume that any value that might be a pointer is a pointer (Conservative garbage collection)

• Create tables that store memory locations of all pointers

11-68: Tagging Pointers

• If we wish to tag pointers themselves, we have two options:

• Tag the pointer itself (high order bits)

• Store tag in preceding word

11-69: Tagging Pointers

• Tag the pointer itself (high order bits)

• If the high order bits are 11, then the memory location represents a pointer

• If the high oder bits are 00, 01, or 10, then the memory location represents an integer or boolean value

• Using 32-bit words, only 30 bits will be available for pointer values

• Need to strip the tag before pointers can be dereferenced

• Using 32-bit words, slightly more than 31 bits are available for integer values (very large negative values pro-

hibited)

11-70: Tagging Pointers

• Store tag in preceding word

• Set aside a specific bit pattern as a sentinel value (something like -MAXINT)

• Every pointer requires 2 words of storage – word for the sentinel, and a word for the pointer itself

11-71: Tagging Pointers

CS414-2017S-11 Memory Management 17

class Class1 {

int x;

Class2 C2;

Class3 C3;

boolean y;

}

Header

x

C2

C3

y

Sentinel

Sentinel

11-72: Conservative GC

• Assume that every memory location that could be a pointer is a pointer

• The integer y will be considered a pointer if:

• Heap addresses are in the range LOW .. HIGH, and LOW ¡= y ¡= HIGH

• The memory location y is the beginning of an allocated block

11-73: Conservative GC

• Every memory block on the heap that is pointed to by something on the stack will be marked

• No dangling references

• Some memory blocks on the heap that are not pointed to by something on the stack may be marked

• May have some uncollected garbage

• Since no extra information (tagged pointers, etc.) is needed, Conservative Garbage Collectors can be run on

languages not designed with garbage collection in mind (i.e., C)

11-74: Pointer Tables

• Create a table for each function & class, which keeps track of where the pointers are in that function or class

• This can be done at compile time

• Each function & class will need a “kind” field, to store what kind of function or class it is (classes will need a

“kind” field anyway, if we want instanceof to work)

11-75: Pointer Tables

class ClassA {

int w;

int x;

}

class ClassB {

int y;

ClassA C1;

ClassA C2;

int z;

}

void main() {

int a;

CS414-2017S-11 Memory Management 18

ClassA C1;

int b;

ClassB C2;

C1 = new ClassA();

C2 = new ClassB();

C2.C1 = new ClassA();

C2.C2 = new ClassA();

/* Body of main */

}

11-76: Pointer Tables

Stack

Heap

Ptr Table

a

C1

b

C2 w

x

Ptr Table

2

8

16

Code
Segment

of pointers

0 # of pointers

of pointers2

main

ClassA

ClassB
8

12

Size

y

C1

Ptr Table

Size

16

C2

z

w

x

Ptr Table

Size 16

w

x

Ptr Table

Size 16

24

11-77: Reference Counts

• Each block of allocated memory contains a count of how many pointers point to it

• Each time a pointer appears on the LHS of an assignment:

• Count of what the pointer used to point to is decremented

• Count of what the pointer now points to is incremented

• When a count hits zero, add block back to free list

11-78: Reference Count Problems

From the Jargon File: (aka Hacker’s Dictionary)

One day a student came to Moon and said: “I understand how to make a better garbage collector. We must keep a

reference count of the pointers to each cons (block of memory).”

Moon patiently told the student the following story:

“One day a student came to Moon and said:

‘I understand how to make a better garbage

collector...’ ”

