
Game Engineering
CS420-2011F-12

Artificial Intelligence
David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

12-0: Artifical Intelligence

AI in games is a huge field
Creating a believable world

Characters with their own appearnt goals and
desires, especially in RPGs and open world
games
Opponents that seem to think and plan

Simulating human players
Chess players, FPS “bots”, strategy game
opponents, etc

12-1: Most AI is Faked ...

... which in unsurprising, since most everything is
faked, if possible

Don’t need to have intelligent enemies, just need to
appear intelligent

Surprisingly large quantity is done with Finite State
Machines

12-2: Finite state machines

Each entity has a number of states, that represent
behaviors

Patrolling, advancing to a position, searching,
running away, finding cover, etc

Each behavior can be relatively simple

Transitions between behaviors can be triggered by
timers, scripting, “sensing” by entities, etc

12-3: Case Study: Stealth shooter

Creating a stealth-based action game (Thief,
Splinter Cell, Metal Gear Solid, etc)

Patrol state (traversing between waypoints)
Alerted state (simple search pattern)
Attacking state (advance towards player, attack)

Each behavior is relatively simple, well-managed
transitions between them (especially scripted
transitions) can lead to very intelligent-seeming
enemies. Add in some random audio cues, and the
enemies can seem quite smart ...

12-4: Pathfinding

One aspect of tradional AI that is commonly used
in games is pathfinding

RTS units getting from home base to place they
are attacking
Enemies attacking player in a maze-style game
Bots finding shortest route to powerups / other
players / etc in FPSs

First step: Simplifiying the problem

12-5: Pathfinding

Navigating a real-life (or even complex simulated)
enviornment is tricky

Vastly simplify the search space, make it a
standard CS-style graph

Waypoint System
Navigation Mesh

2D games (RTS, etc), can be easier – just use a
grid

12-6: Pathfinding

OK, so we’ve simplified the problem to searching
for a path in a (potentially very complicated) graph

Verticies (places AI can go)
Edges (links between verticies, cost – often just
a distance, can be mor complicated)

How do we efficiently search the graph?

12-7: Breadth-First Search

Examine all nodes that are 1 unit away

Examine all nodes that are 2 units away

. . .

Examine all nodes that are n units away

(Examples)

12-8: Breadth-First Search

A few more wrinkes:

Searching a graph instead of a tree
Get to the same node in more than one way
Once we’ve found shortest path to a path to a
node, don’t need to consider any other paths

12-9: Breadth-First Search

Maintain two data structures
“Open List” – search horizon
“Closed list” – nodes we’ve already found the
shortest path to, don’t need to examine again

12-10: Breadth-First Search
void BFS(Graph G, Vertex v) {

Queue Q = new Queue();

Closed = new ClosedList();

Q.enquque(v);

while (!Q.empty()) {

nextV = Q.dequeue()

if (v not in Closed)

{

Closed.Add(v);

forach (Vertex neighbor adjacent to v in G)

Q.enqueue(neighbor);

}

}

}

}

12-11: Breadth-First Search

Problem #1 with BFS:
Assumes uniform edge cost
Not actually true with most graphs we will be
searching

Solution?

12-12: Best-first Search

Uniform-cost search
Store node and cost to get to node in queue
Use a priority queue instead of a standard
queue
Always choose the cheapeast node to expand

“Expand” means examine children of node

12-13: Uniform-Cost Search

Uniform-Cost Pseudocode
enqueue(initialState)

do

node = prioroty-dequeue()

if (node not in closed list)

add node to closed list

if goalTest(node)

return node (potenially path as well)

else

children = successors(node)

for child in children

prioroty-enqueue(child, dist(child))

dist is the cost of the path from the initial state to
the child node

(EXAMPLES!)

12-14: Uniform-Cost Search

Problem with Uniform cost search
To find a goal that is 100 units away from the
start, we examine all nodes that are 100 units
away from the start
RTS example on board

Make a minor change to Uniform cost serach,
make it much more general

12-15: Best-First Search

enqueue(initialState)
do

node = prioroty-dequeue()
if (node not in closed list)

add node to closed list
if goalTest(node)

return node (potenially path as well)
else

children = successors(node)
for child in children

prioroty-enqueue(child, f(child))

f(n) is a function that describes how “good” a
node is

12-16: Best-first Search

(Almost) all searches are instances of best-first,
with different evaluation functions f

What functions f would yield the following
searches:

Depth-First Search
Breadth-First Search
Uniform Cost Search

12-17: Best-first Search

(Almost) all searches are instances of best-first,
with different evaluation functions f

What functions f would yield the following
searches:

Breadth-First Search f(n) = depth(n)

Depth-First Search f(n) = -depth(n)

Uniform Cost Search f(n) = g(n) (actual cost
to get to n)

12-18: Heuristic Function

A Heuristic Function h(n) is an estimate of how
much it would cost to get to the solution from node
n

h(n) is not perfect
What could we do if h was perfect?

Example heuristic: Route planning: straight-line
distance to the goal

How could we use a heuristic function as part of
best-first search to find a goal quickly?

12-19: Greedy Search

Best-First search with f(n) = h(n)

Route-planning example: Always travel to the city
that looks like it is closest to out destination

12-20: Greedy Search Example

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Dobreta
Craiova

Fagaras

Iasi

 0
160
242
161

77
151

366

244
226

176

241

253
329
80

199

380
234

374

100
193

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

12-21: Greedy Search Example

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Dobreta
Craiova

Fagaras

Iasi

 0
160
242
161

77
151

366

244
226

176

241

253
329
80

199

380
234

374

100
193

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

(A, 336)
(S,253), (T,329), (Z,374)
(F,176), (RV,193), (T,329), (A,336), (Z,374), (O,380)
(B,0), (RV,193), (S,253), (T,329), (A,336), (Z,374), (O,380)

Solution: A→ S→ F→ B

Optimal: A→ S→ RV→ P→ B

12-22: Greedy Search Problems

Optimal solution can involve moving ’away’ from
goal

Sliding tile puzzle: “undo” a partial solution
Rubic’s cube: “Mess up” part of cube to solve

Not really moving away from goal – as a measure
of the number of moves to a solution, you are
actually getting closer to the goal. Only relative to
your heuristic function are you going backwards

Perfect h == no need to search

12-23: Greedy Search Problems

Greedy search has similar strengths / weaknesses
to DFS

Expands a linear number of nodes
Not optimal
May not even necessarily find goal (depending
upon the heuristic function)

What are the flaws of greedy search?

How could we fix them?

12-24: A* search

A* search is a combination of uniform cost search
and greedy search.

f(n) = g(n) + h(n)

g(n) = current path cost

h(n) = heuristic estimate of distance to goal.

Favors nodes with best estimated total cost to goal

If h(n) satisfies certain conditions, A* is both
complete (always finds a solution) and optimal
(always finds the best solution).

12-25: A* Search Example

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Dobreta
Craiova

Fagaras

Iasi

 0
160
242
161

77
151

366

244
226

176

241

253
329
80

199

380
234

374

100
193

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

12-26: A* Search Example

Arad = 0 + 366 = 366

(dequeue A: g = 0) S = 140 + 253 = 393, T = 118 + 329 = 447, Z = 75 + 374 = 449

(dequeue S: g = 140) RV = 220 + 193 = 413, F = 239 + 176 = 415, T = 118 + 329 =
447, Z = 374 + 75 = 449, A = 280 + 336 = 616, O = 291 + 380 = 671,

(dequeue RV: g = 220) F = 239 + 176 = 415, P = 317 + 100 = 417, T = 118 + 329 =
447, Z = 374 + 75 = 449, C = 366 + 160 = 526, S = 300 + 253 = 553, A = 280 + 336 =
616, O = 291 + 380 = 671

(dequeue F: g = 239) P = 317 + 100 = 417, T = 118 + 329 = 447, Z = 374 + 75 = 449,
C = 366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, S = 338 + 253 = 591,A
= 280 + 336 = 616, O = 291 + 380 = 671

12-27: A* Search Example

(dequeue P: g = 317) T = 118 + 329 = 447, Z = 374 + 75 = 449, B = 518 + 0 = 518, C
= 366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, S = 338 + 253 = 591, RV
= 414 + 193 = 607, C = 455 + 160 = 615, A = 280 + 336 = 616, O = 291 + 380 = 671

(dequeue T: g = 118) Z = 374 + 75 = 449, L = 229 + 244 = 473, B = 518 + 0 = 518, C =
366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, A = 236 + 336 = 572, S =
338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A = 280 + 336 = 616, O
= 291 + 380 = 671

(dequeue Z: g = 75) L = 229 + 244 = 473, A = 150 + 336 = 486, B = 518 + 0 = 518, O
= 146 + 380 = 526, C = 366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, A =
236 + 336 = 572, S = 338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A
= 280 + 336 = 616, O = 291 + 380 = 671

12-28: A* Search Example

(dequeue L: g = 229) A = 150 + 336 = 486, B = 518 + 0 = 518, O = 146 + 380 = 526, C
= 366 + 160 = 526, M = 299 + 241 = 540, B = 550 + 0 = 550, S = 300 + 253 = 553, A =
236 + 336 = 572, S = 338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A
= 280 + 336 = 616, T = 340 + 329 = 669, O = 291 + 380 = 671

(dequeue A: g = 150) B = 518 + 0 = 518, O = 146 + 380 = 526, C = 366 + 160 = 526,
M = 299 + 241 = 540, S = 290 + 253 = 543, B = 550 + 0 = 550, S = 300 + 253 = 553, A
= 236 + 336 = 572, S = 338 + 253 = 591, T = 268 + 329 = 597, Z = 225 + 374 = 599,
RV = 414 + 193 = 607, C = 455 + 160 = 615, A = 280 + 336 = 616, T = 340 + 329 =
669, O = 291 + 380 = 671

(dequeue B: g = 518) solution. A -> S -> RV -> P -> B

12-29: A* Example II

A

B C

D E F

G

HI J

K

L

12-30: A* Example II

A

B C

D E F

G

HI J

K

L

A B

D E F

C G H

I

J

K L

5 4

3

3 2

12

3

4

2

1 0

12-31: A* Example II

5 4

3

3 2

12

3

4

2

1 0

A B

D E F

C G H

I

J

K L

12-32: A* Example III

A

G H

M N O

I

CB D

J

P

E F

K L

Q R

S T U V W X

Goal

Start

12-33: A* Example III

A

G H

M N O

I

CB D

J

P

E F

K L

Q R

S T U V W X

Goal

Start

12-34: A* Example III

A

G H

M N O

I

CB D

J

P

E F

K L

Q R

S T U V W X

Goal

Start

1

1 0

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

7

7

8

12-35: A* Example IV

B

D

E

I

H

C

A J

K

L

M

F

G

1

1

2

3

1

4
5

1

2

2

3

3

2

3

2
3

Start

Goal

edge costs in white

Node expsnsion order for
 BFS, Uniform Cost, Greedy, A*

h() values in yellow

0

1

2

2

3
4

57

69

11

4

8

12-36: A* Example IV

BFS:
AGBJHCEKDIML (goal found)
(Other orderings are possible)

12-37: A* Example IV

Uniform Cost Search:
ABCGEJDHFIMKL
(Other orderings are possible)

12-38: A* Example IV

Greedy
AJKL
(Other orderings are possible)

12-39: A* Example IV

A*
ABCFIEMJL
(Other orderings are possible)

12-40: Optimality of A*

A* is optimal (finds the shortest solution) as long
as our h function is admissible.

Admissible: always underestimates the cost to
the goal.

Proof: When we dequeue a goal state, we see
g(n), the actual cost to reach the goal. If h
underestimates, then a more optimal solution
would have had a smaller g + h than the current
goal, and thus have already been dequeued.

Or: If h overestimates the cost to the goal, it’s
possible for a good solution to “look bad” and get
buried further back in the queue.

12-41: Optimality of A*

Notice that we can’t discard repeated states.
We could always keep the version of the state
with the lowest g

More simply, we can also ensure that we always
traverse the best path to a node first.

a monotonic heuristic guarantees this.

A heuristic is monotonic if, for every node n and
each of its successors (n′), h(n) is less than or
equal to stepCost(n, n′) + h(n′).

In geometry, this is called the triangle inequality.

12-42: Optimality of A*

SLD is monotonic. (In general, it’s hard to find
realistic heuristics that are admissible but not
monotonic).

Corollary: If h is monotonic, then f is
nondecreasing as we expand the search tree.

Alternative proof of optimality.

Notice also that UCS is A* with h(n) = 0

A* is also optimally efficient
No other complete and optimal algorithm is
guaranteed to expand fewer nodes.

12-43: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Is h() admissible?

Is h() monotonic?

12-44: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

-- [(A f = 17, g = 0, h = 17)]

12-45: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

A [(C f = 22, g = 7, h = 15), (B f = 28, g = 8, h = 20)]

12-46: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

C [(D f = 23, g = 15, h = 8), (B f = 28, g = 8, h = 20)]

12-47: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

D [(I f = 26, g = 20, h = 6), (F f = 27, g = 21, h = 6),

(B f = 28, g = 8, h = 20), (E f = 28, g = 20, h = 8)]

12-48: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

I [(F f = 27, g = 21, h = 6), (B f = 28, g = 8, h = 20),

(E f = 28, g = 20, h = 8), (G f = 30 g = 26, h = 4)]

12-49: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

F [(B f = 28, g = 8, h = 20), (E f = 28, g = 20, h = 8),

(G f = 30 g = 26, h = 4),(G f = 30 g = 26 h = 4)]

12-50: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

B [(E f = 28, g = 20, h = 8), (E f = 29, g = 21, h = 8),

(G f = 30, g = 26, h = 4),(G f = 30, g = 26, h = 4)]

12-51: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

E [(E f = 29, g = 21, h = 8), (G f = 30 g = 26, h = 4),

(G f = 30 g = 26 h = 4), (H f = 31, g = 31, h = 0)]

(next E can be discarded)

12-52: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

G [(G f = 30 g = 26 h = 4), (H f = 30, g = 30, h = 0),

(H f = 31, g = 31, h = 0)]

(next G can be discarded)

12-53: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

H. Goal. [(H f = 31, g = 31, h = 0)]

Solution: A,C,D,I,G,H (or A,C,D,F,G,H)

12-54: Pruning and Contours

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Topologically, we can imagine A* creating a set of
contours corresponding to f values over the search
space.

A* will search all nodes within a contour before
expanding.

This allows us to prune the search space.

We can chop off the portion of the search tree
corresponding to Zerind without searching it.

12-55: IDA*

A* has one big weakness - Like BFS, it potentially
keeps an exponential number of nodes in memory
at once.

Iterative deepening A* is a workaround
IDS was depth-limited search – IDA* is f-limited
search
Each iteration, increase bound to smallest
value that allows search to continue

12-56: Iterative Deepening A* (IDA*)

f-limited-DFS(node, limit)

if g(n) + h(n) > limit

return fail, g(node) + h(node)

if goalTest(node)

return node, g(node)

children = successor(node)

smallestFail = MAX_VALUE

for child in children

sol, cost = depth-limited-DFS(child, limit)

if sol != fail

return sol, cost

smallestFail = min(cost, smallestFail)

return smalestFail, fail

12-57: Iterative Deepening A* (IDA*)

ida-star(node)
limit = h(node)
while true

sol, limit = f-limited-DFS(node, limit)
if (sol != fail)

return sol

12-58: IDA* Example

A

B

C

E

D

H

I

F

G

1

1

1

1

5

1

1

1

1

1

(3)

(5)

(2)

(8)

(2)

(1)

(1)
(1)

(0)

Goal

Start

1

(x) h value
 y edge cost

12-59: IDA*

Works well in works with discrete-valued step costs
Prefereably with steps having the same cost

Each iteration brings in a large section of nodes

What is the worst case performance for IDA*?

When does the worst case occur?

12-60: SMA*

Run regular A*, with a fixed memory limit

When limit is reached, discard node with highest f

Value of discarded node is assigned to the parent
Use the discarded node to get a better f value
for parent
’remember’ the value of that branch
If all other branches get higher f value,
regenerate

SMA* is complete and optimal

Very hard problems can case SMA* to thrash,
repeatedly regenerating branches

12-61: DFB&B

Depth-First Branch and Bound
Run f-limited DFS, with limit set to infinity
When a goal is found, don’t stop – record it, and
set limit to the goal depth
Keep going until all branches are searched or
pruned.

We will use something similar in 2-player games

(DFB&B not in the text)

12-62: DFB&B

3 4 1 5

910

13 14 10 14 16 17 17 18

4 5 4 5

1312

1 2 5 6

87

8 9 13 14 13 15 14 15

2 4 2 3

1211

2 1

8
5 6

7
2 3

5
4 5

7

5 4
3

3 5
2

3 20

(3) (1)

(4)

(2) (3) (1) (5) (2) (1)

(8) (3) (5)

(8) (6)

(7)

12-63: DFB&B

3 4 1 5

910

13 14 10 14 16 17 17 18

4 5 4 5

1312

1 2 5 6

87

8 9 13 14 13 15 14 15

2 4 2 3

1211

2 1

8
5 6

7
2 3

5
4 5

7

5 4
3

3 5
2

3 20

(3) (1)

(4)

(2) (3) (1) (5) (2) (1)

(8) (3) (5)

(8) (6)

(7)

12-64: DFB&B

What kinds of problems might Depth-First Branch
and Bound work well for?

Is DFB&B Complete? Optimal?

How could we improve performance?

12-65: DFB&B

What kinds of problems might Depth-First Branch
and Bound work well for?

Optimization: Finding a solution is easy, finding
the best is hard (TSP)

Is DFB&B Complete? Optimal?
If we can find a solution easily, it is complete
and optimal

How could we improve performance?
Examine children in increasing g() value

12-66: DFB&B

Some nice features:
Quickly find a solution
Best solution so far gradually gets better
Run DFB&B until it finishes (we have an optimal
solution), or we run out of time (use the best so
far)

12-67: Building Effective Heuristics

While A* is optimally efficient, actual performance
depends on developing accurate heuristics.

Ideally, h is as close to the actual cost to the goal
(h∗) as possible while remaining admissible.

Developing an effective heuristic requires some
understanding of the problem domain.

12-68: Effective Heuristics - 8-puzzle

h1 - number of misplaced tiles.
This is clearly admissible, since each tile will
have to be moved at least once.

h2 - Manhattan distance between each tile’s
current position and goal position.

Also admissible - best case, we’ll move each
tile directly to where it should go.

Which heuristic is better?

12-69: Effective Heuristics - 8-puzzle

h2 is better.
We want h to be as close to h∗ as possible.

If h2(n) > h1(n) for all n, we say that h2 dominates
h1.

We would prefer a heuristic that dominates other
known heuristics.

12-70: Finding a heuristic

So how do we find a good heuristic?

Solve a relaxed version of the problem.
8-puzzle:

Tile can be moved from A to B if:
• A is adjacent to B
• B is blank
Remove restriction that A is adjacent to B
• Misplaced tiles
Remove restriction that B is blank
• Manhattan distance

12-71: Finding a heuristic

So how do we find a good heuristic?

Solve a relaxed version of the problem.
Romania path-finding

Add an extra road from each city directly to
goal
(Decreases restrictions on where you can
move)

Straight-line distance heuristic

12-72: Finding a heuristic

So how do we find a good heuristic?

Solve a relaxed version of the problem.
Traveling Salesman

Connected graph
Each node has 2 neighbors

Minimum Cost Spanning Tree Heuristic

12-73: Finding a heuristic

Solve subproblems
Cost of getting a subset of the tiles in place
(ignoring the cost of moving other tiles)

Save these subproblems in a database (could get
large, depending upon the problem)

12-74: Finding a heuristic

Using subproblems

Start State Goal State

1

2

3

4

6

8

5

21

3 6

7 8

54

12-75: Finding a heuristic

Number of heurisitcs h1, h2, . . . hk

No one heuristic dominates any other
Different heuristics have different performances
with different states

What can you do?

12-76: Finding a heuristic

Number of heurisitcs h1, h2, . . . hk

No one heuristic dominates any other
Different heuristics have different performances
with different states

What can you do?
h(n) = max(h1(n), h2(n), . . . hk(n))

12-77: Summary

Problem-specific heuristics can improve search.

Greedy search

A*

Memory limited search (IDA*, SMA*)

Developing heuristics
Admissibility, monotonicity, dominance

	{small lecturenumber -	heblocknumber :} Artifical Intelligenceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Most AI is Faked ... addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finite state machinesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Case Study: Stealth shooteraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Pathfindingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Pathfindingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Pathfindingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Breadth-First Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Breadth-First Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Breadth-First Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Breadth-First Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Breadth-First Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Best-first Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Uniform-Cost Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Uniform-Cost Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Best-First Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Best-first Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Best-first Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heuristic Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Greedy Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Greedy Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Greedy Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Greedy Search Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Greedy Search Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IVaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IVaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IVaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IVaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IVaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Optimality of A*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Optimality of A*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Optimality of A*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Pruning and Contoursaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} IDA*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Iterative Deepening A* (IDA*)addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Iterative Deepening A* (IDA*)addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} IDA* Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} IDA*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} SMA*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building Effective Heuristicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Effective Heuristics - 8-puzzleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Effective Heuristics - 8-puzzleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Summaryaddtocounter {blocknumber}{1}

