Game Engineering
CS420-2011F-12

Artificial Intelligence

David Galles

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

12-0: Artifical Intelligence

® Al in games is a huge field

e Creating a believable world
- Characters with their own appearnt goals and
desires, especially in RPGs and open world
games
« Opponents that seem to think and plan

e Simulating human players
- Chess players, FPS “bots”, strategy game
opponents, etc

12-1: Most Al Is Faked ...

® .. which in unsurprising, since most everything Is
faked, if possible

® Don’t need to have intelligent enemies, just need to
appear intelligent

® Surprisingly large quantity is done with Finite State
Machines

12-2: FInite state machines

® Each entity has a number of states, that represent
behaviors

e Patrolling, advancing to a position, searching,
running away, finding cover, etc

® Each behavior can be relatively simple

® Transitions between behaviors can be triggered by
timers, scripting, “sensing” by entities, etc

12-3: Case Study: Stealth shooter

® Creating a stealth-based action game (Thief,
Splinter Cell, Metal Gear Solid, etc)

e Patrol state (traversing between waypoints)
* Alerted state (simple search pattern)
e Attacking state (advance towards player, attack)

® Each behavior is relatively simple, well-managed
transitions between them (especially scripted
transitions) can lead to very intelligent-seeming
enemies. Add in some random audio cues, and the

enemies can seem quite smairt ...

12-4: Pathfinding

® One aspect of tradional Al that iIs commonly used
INn games Is pathfinding

 RTS units getting from home base to place they
are attacking

* Enemies attacking player in a maze-style game

* Bots finding shortest route to powerups / other
players / etc In FPSs

® First step: Simplifiying the problem

12-5: Pathfinding

® Navigating a real-life (or even complex simulated)
enviornment Is tricky

® Vastly simplify the search space, make it a
standard CS-style graph
* Waypoint System
* Navigation Mesh
® 2D games (RTS, etc), can be easier — just use a
grid

12-6: Pathfinding

® OK, so we've simplified the problem to searching
for a path in a (potentially very complicated) graph

e Verticies (places Al can go)
* Edges (links between verticies, cost — often just
a distance, can be mor complicated)

® How do we efficiently search the graph?

12-72 Breadth-First Search

® Examine all nodes that are 1 unit away
® Examine all nodes that are 2 units away

® Examine all nodes that are n units away

(Examples)

12-8: Breadth-First Search

® A few more wrinkes:

e Searching a graph instead of a tree
e Get to the same node In more than one way

* Once we’ve found shortest path to a path to a
node, don’t need to consider any other paths

12-0: Breadth-First Search

® Maintain two data structures
e “Open List” — search horizon

e “Closed list” — nodes we've already found the
shortest path to, don’t need to examine again

12-10: Breadth-First Search

void BFS(Graph G, Vertex v) {

Queue Q = new Queue();
Closed = new ClosedList();

Q.enquque(v) ;
while (!'Q.empty()) {
nextV = Q.dequeue()
if (v not in Closed)
{
Closed.Add(v);
forach (Vertex neighbor adjacent to v in G)

Q.enqueue (neighbor) ;

12-11: Breadth-First Search

® Problem #1 with BFS:
 Assumes uniform edge cost

e Not actually true with most graphs we will be
searching

® Solution?

12-12: Best-first Search

® Uniform-cost search
e Store node and cost to get to node Iin queue

e Use a priority gueue instead of a standard
gueue

e Always choose the cheapeast node to expand
- “Expand” means examine children of node

12-13: Uniform-Cost Search

® Uniform-Cost Pseudocode

enqueue(initialState)
do
node = prioroty-dequeue()
if (node not in closed list)
add node to closed list
if goalTest(node)
return node (potenially path as well)
else
children = successors(node)

for child in children
prioroty-enqueue(child, dist(child))

® dist iIs the cost of the path from the initial state to
the child node

(EXAMPLES!)

12-14: Uniform-Cost Search

® Problem with Uniform cost search

* To find a goal that is 100 units away from the
start, we examine all nodes that are 100 units
away from the start

e RTS example on board

® Make a minor change to Uniform cost serach,
make it much more general

12-15: Best-First Search

enqueue(initialState)
do
node = prioroty-dequeue()
if (node not in closed 1list)
add node to closed 1list
if goalTest(node)
return node (potenially path as well)
else
children = successors(node)

for child in children
prioroty-enqueue(child, f(child))

® f(n)is a function that describes how “good” a
node Is

12-16: Best-first Search

® (Almost) all searches are instances of best-first,
with different evaluation functions f

® \What functions { would yield the following
searches:
e Depth-First Search
 Breadth-First Search
e Uniform Cost Search

12-17: Best-first Search

® (Almost) all searches are instances of best-first,
with different evaluation functions f

® \What functions { would yield the following
searches:

e Breadth-First Search f(n) = depth(n)
e Depth-First Search f(n) = -depth(n)

e Uniform Cost Search f(n) = g(n) (actual cost
to get to n)

12-18: Heuristic Function

® A Heuristic Function h(n) is an estimate of how

much it would cost to get to the solution from node
n

® /(n) is not perfect
 What could we do if A was perfect?

® Example heuristic: Route planning: straight-line
distance to the goa

® How could we use a heuristic function as part of
best-first search to find a goal quickly?

12-19: Greedy Search

® Best-First search with f(n) = h(n)

® Route-planning example: Always travel to the city
that looks like It Is closest to out destination

12-20. Greedy Search Example

12-21: Greedy Search Example

(A, 336)

(S,253), (T,329), (2,374)

(F.176), (RV,193), (T,329), (A,336), (2,374), (0,380)

(B,0), (RV,193), (S,253), (T,329), (A,336), (2,374), (0,380)

Solution:A—S —-F —B

Optimal A—S —-RV —-P — B

12-22: Greedy Search Problems

® Optimal solution can involve moving 'away’ from
goal

e Sliding tile puzzle: “undo” a partial solution

* Rubic’s cube: “Mess up” part of cube to solve

® Not really moving away from goal — as a measure
of the number of moves to a solution, you are

actually getting closer to the goal. Only relative to
your heuristic function are you going backwards

e Perfect h == no need to search

12-23: Greedy Search Problems

® Greedy search has similar strengths / weaknesses
to DFS

 Expands a linear number of nodes
* Not optimal

 May not even necessarily find goal (depending
upon the heuristic function)

® \What are the flaws of greedy search?
® How could we fix them?

12-24: A* search

® A* search Is a combination of uniform cost search
and greedy search.

* f(n) =g(n) + h(n)
* g(n) = current path cost
e h(n) = heuristic estimate of distance to goal.
® Favors nodes with best estimated total cost to goal

® |f h(n) satisfies certain conditions, A* is both

complete (always finds a solution) and optimal
(always finds the best solution).

Arad
Buchar est

Giurgiu
Hirsova
lasi

L ugoj

M ehadia
Neamt

Rimnicu Vilcea
Sibiu
Timisoara

Ur ziceni

Vadui

Zerind

12-26: A* Search Example

®

® (dequeue A: g =0) : :

® (dequeue S: g = 140) : ,T=118+329 =
447, Z = 374 + 75 = 449, : :

® (dequeue RV: g = 220) F = 239 + 176 = 415, , T=118 + 329 =
447, Z =374 + 75 = 449, : , A =280 + 336 =

616, O =291 + 380 =671

® (dequeue F: g=239) P =317 + 100 = 417, T = 118 + 329 = 447, Z = 374 + 75 = 449,
C =366 + 160 = 526, .S =300 + 253 = 553, A
=280 + 336 = 616, O = 291 + 380 = 671

12-27. A* Search Example

® (dequeue P: g=317) T=118 + 329 =447, Z = 374 + 75 = 449, , C
=366 + 160 = 526, B =550 + 0 =550, S = 300 + 253 = 553, S = 338 + 253 = 591,
: ,A=280+ 336 =616, 0 =291 +380=671

® (dequeue T: g =118) Z = 374 + 75 = 449, 'B=518+0=518,C =
366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, 'S =
338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A = 280 + 336 = 616, O
= 291 + 380 = 671

® (dequeue Z: g = 75) L = 229 + 244 = 473, 'B=518+0=518,
,C =366+ 160=526,B=550+0 =550, S =300 + 253 = 553, A =
236 + 336 = 572, S = 338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A
= 280 + 336 = 616, O = 291 + 380 = 671

12-28: A* Search Example

(dequeue L: g =229) A =150 + 336 = 486, B =518 + 0 =518, O = 146 + 380 = 526, C

= 366 + 160 = 526, , B=550+0=550, S =300+ 253 =553, A=
236 + 336 =572, S =338+ 253 =591, RV =414 + 193 =607, C =455 + 160 = 615, A
=280 + 336 = 616, ,0=291+380=671

(dequeue A: g =150) B =518 + 0 =518, O = 146 + 380 = 526, C = 366 + 160 = 526,
M =299 + 241 = 540, , B=550+0=550,S =300 + 253 =553, A

=236 + 336 =572, S =338 + 253 = 591, ,
RV =414 + 193 =607, C =455 + 160 = 615, A =280 + 336 = 616 T =340+ 329 =
669, O =291 + 380 = 671

(dequeue B: g =518) solution. A->S->RV->P ->B

12-29: A* Example |

12-30: A* Example |

12-31: A* Example |

5 4 3 2
A—— B C G
D E =
3 2 1

B, X — G

12-32. A* Example lI

St art

L* A B C D
G H | J
M N O

A

Goal

4
b — 1 —x — X
e e <
. A) a— >
© B f
O L
= f -
_._vm . - p -
£ i i i
N <— _ O— =
3 4
N mL
7))

12.32: A* Example Il

St art

Goal

— (Q\ ™
B vy <

. |
W 2 <

|
N QO) Aa— >
.
e O ____ D o
<m ;I ©<Z T
n<—O0O—=— 0o

12-35: A* Example IV

11 Start

h() values in yell ow Node expsnsion order for
edge costs in white BFS, Uniform Cost, Geedy, A

12-36: A* Example IV

® BFS:
e AGBJHCEKDIML (goal found)
e (Other orderings are possible)

12-37: A* Example IV

® Uniform Cost Search:
e ABCGEJDHFIMKL
e (Other orderings are possible)

12-38: A* Example IV

® Greedy
e AJKL
e (Other orderings are possible)

12-39: A* Example IV

® A%
e ABCFIEMJL
e (Other orderings are possible)

12-40. Optimality of A*

® A*|s optimal (finds the shortest solution) as long
as our h function is admissible.

 Admissible: always underestimates the cost to
the goal.

® Proof: When we dequeue a goal state, we see
g(n), the actual cost to reach the goal. If h
underestimates, then a more optimal solution
would have had a smaller g + h than the current
goal, and thus have already been dequeued.

® Or: If h overestimates the cost to the goal, it’s
possible for a good solution to “look bad” and get
buried further back in the queue.

12-41: Optimality of A*

® Notice that we can'’t discard repeated states.
* We could always keep the version of the state
with the lowest g

® More simply, we can also ensure that we always
traverse the best path to a node first.

® a monotonic heuristic guarantees this.

® A heuristic iIs monotonic if, for every node n and
each of its successors (n'), h(n) is less than or

equal to stepCost(n,n’') + h(n').
* |n geometry, this is called the triangle inequality.

12-a2:. Optimality of A*

® SLD is monotonic. (In general, it's hard to find
realistic heuristics that are admissible but not
monotonic).

® Corollary: If A is monotonic, then f is
nondecreasing as we expand the search tree.

® Alternative proof of optimality.
® Notice also that UCS is A* with h(n) = 0

® A* s also optimally efficient

* No other complete and optimal algorithm is
guaranteed to expand fewer nodes.

12-43. A* Example |

(20) (8) (0)

5 13 /,E\\ Goal
8 _/
(17) 5
Start 7 5
8
(15)(:>_< D)
(8) 6

(x) h value
y edge cost (4)

® |s h() admissible?
® |s h() monotonic?

12-44: A* Example |

) © (0)

5 13 /,E\\ Goal
3 _/
(17) 5
Start / S
8
ua(:> (D)
(8) 6

(x) h value
y edge cost

Node: Queue :
== [(A £ =17, g =0, h = 17)]

12-45. A* Example |

(20) (8) (0)

5 13 /E\ Goall
8 \/
(17) .
St art U S
8
(15)(: >_< .)
(8) 6
(x) h value
y edge cost (4)

Node: Queue :
A [(Cf =22, g=7, h=15), (B f =28, g=8, h =20)]

12-46: A* Example |

(20) (8) (0)

5 13 /E\ Goal
8 ./
(17) .
Start / S
8
(15)(: >_< .)
(8) 6
(x) h value
y edge cost (4)

Node: Queue :
C [(D f =23, g=15, h=8), (Bf =28, g=8, h =20)]

12-47. A* Example |

(20) (8) (0)

5 13 /E\ Goal
8 ./
(17) .
Start / S
8
(15)(: >_< .)
(8) 6
(x) h value
y edge cost (4)

Node: Queue :
D [(I f 26, g = 20, h =6), (F £ 27, g =21, h = 6),
(Bf=28, g=8, h=20), (Ef =28, g=20, h =38)]

12-48. A* Example |

(20) (8) (0)

5 13 /E\ Goal
8 ./
(17) .
Start / S
8
(15)(: >_< .)
(8) 6
(x) h value
y edge cost (4)

Node: Queue :
I [(F f 27, g =21, h
(Ef =28, g=20, h

6), (Bf =28, g=28, h=20),
8), (Gf =30 g=26, h=24)]

12-49: A* Example |

(20) (8) (0)

- 13 /E\ Goal
8 ./
(17) =
Start / S
8
(15)(: >_< .)
(8) 6
(x) h value
y edge cost (4)

Node: Queue :
F [(B f 28, g =8, h=20), (Ef =28, g=20, h =38),
(Gf=30 g=26, h=4),(Gf =230 g-=26 h = 4)]

12-50. A* Example |

(20) (8) (0)

- 13 /E\ Goal
8 _/
(17) .
St art 7 5
8
(15)<:>_<D)
(8) 6
(x) h value
y edge cost (4)
Node: Queue :
B [(Ef =28, g=20, h=8), (Ef =29, g=21, h = 8),
(G f =230, g=26, h=14),(Gf =230, g=26, h =4)]

12-51. A* Example |

(20) (8) (0)

5 13 /,E\\ Goal
8 _/
(17) 5
Start 7 5
8
(15)(:>_< D)
(8) 6

(x) h value
y edge cost

Node: Queue :
E [(Ef =29, g=21, h=8), (Gf =30 g=26, h=4),
(Gf =30 g= 26 h=4, (Hf =31, g=231, h = 0)]

(next E can be discarded)

12-52. A* Example |

(20) (8) (0)

5 13 /E\ Goal
8 ./
(17) .
Start / S
8
(15)(: >_< .)
(8) 6
(x) h value
y edge cost (4)

Node: Queue :
¢ [(Gf =30 g= 26 h=4, (Hf =30, g=30, h=0),
(Hf =31, g=31, h = 0)]

(next G can be discarded)

12-53: A* Example |

(20) (8) (0)

5 13 /E\ Goal
8 _/
(17) .
Start 7 5
8
(15)(: >7 (D)
(8) 6
(x) h value
y edge cost (4)
Node: Queue :
H. Goal. [(Hf =31, g=31, h = 0)]

Solution: A,C,D,I,G,H (or A,C,D,F,G,H)

12-54: Pruning and Contours

® Topologically, we can imagine A* creating a set of
contours corresponding to f values over the search
space.

® A* will search all nodes within a contour before
expanding.
® This allows us to prune the search space.

* We can chop off the portion of the search tree
corresponding to Zerind without searching it.

12-55: |DA*

® A* has one big weakness - Like BFS, it potentially
keeps an exponential number of nodes in memory

at once.

® |terative deepening A* Is a workaround
* |IDS was depth-limited search — IDA* is f-limited

search
e Each iteration, increase bound to smallest
value that allows search to continue

12-56: Iterative Deepening A* (IDA*)

f-limited-DFS(node, limit)
if g(n) + h(n) > limit
return fail, g(node) + h(node)
if goalTest(node)
return node, g(node)
children = successor(node)
smallestFail = MAX_VALUE
for child in children
sol, cost = depth-limited-DFS(child, limit)
if sol != fail
return sol, cost
smallestFail = min(cost, smallestFail)

return smalestFail, fail

12-57: Iterative Deepening A* (IDA*)

ida-star (node)
limit = h(node)
while true
sol, limit = f-limited-DFS(node, limit)
if (sol != fail)
return sol

12-58: IDA* Example

(5) &) (0)

5 il /1;\\ S Goal
1 /
(3) 1
Start 1 f 1
1
(2) @ \[D/
(2) 1

(x) h value
y edge cost (1)

12-59: |[DA*

® \Works well in works with discrete-valued step costs
* Prefereably with steps having the same cost

® Each iteration brings in a large section of nodes
® \What is the worst case performance for IDA*?
® \When does the worst case occur?

12-60: SMA*

® Run regular A*, with a fixed memory limit
® \When limit is reached, discard node with highest f

® Value of discarded node Is assigned to the parent

e Use the discarded node to get a better f value
for parent

* remember’ the value of that branch
* |f all other branches get higher f value,
regenerate
® SMA* Is complete and optimal

® \ery hard problems can case SMA* to thrash,
repeatedly regenerating branches

12-61: DFB&B

® Depth-First Branch and Bound
 Run f-limited DFS, with limit set to Infinity

* When a goal is found, don’t stop — record it, and
set limit to the goal depth

e Keep going until all branches are searched or
pruned.

® \We will use something similar in 2-player games
® (DFB&B not In the text)

12-622. DFB&B

) (3)

@ U@ @ “’)
@ @ @ @ e (Yz

@@@@@@@@@@@@@@@@

12-63. DFB&B

) (3)

(8) (5)
8 7 5 7

2,/ \1 2,/ \3
(3L (X (2) (3) (L) (2) (1)

3 15 1/ \2
DD 8)©

12-64: DFB&B

® \What kinds of problems might Depth-First Branch
and Bound work well for?

® |s DFB&B Complete? Optimal?
® How could we improve performance?

12-65: DFB&B

® \What kinds of problems might Depth-First Branch
and Bound work well for?

e Optimization: Finding a solution Is easy, finding
the best is hard (TSP)
® |s DFB&B Complete? Optimal?
* |f we can find a solution easily, It iIs complete
and optimal
® How could we improve performance?
e Examine children in increasing g() value

12-66: DFB&B

® Some nice features:
e Quickly find a solution
e Best solution so far gradually gets better

* Run DFB&B until it finishes (we have an optimal
solution), or we run out of time (use the best so
t=19)

12-67: Bullding Effective Heuristics

® While A* is optimally efficient, actual performance
depends on developing accurate heuristics.

® |deally, h is as close to the actual cost to the goal
(h*) as possible while remaining admissible.

® Developing an effective heuristic requires some
understanding of the problem domain.

12-68: Effective Heuristics - 8-puzzle

® h, - number of misplaced tiles.
* This Is clearly admissible, since each tile will
have to be moved at least once.
® /, - Manhattan distance between each tile’s
current position and goal position.
e Also admissible - best case, we’ll move each
tile directly to where it should go.

® \\Which heuristic Is better?

12-69: Effective Heuristics - 8-puzzle

® h, IS better.
* We want h to be as close to h* as possible.

® If ho(n) > hyi(n) for all n, we say that h, dominates
hy.

® \We would prefer a heuristic that dominates other
known heuristics.

12-70. FINnding a heuristic

® So how do we find a good heuristic?

® Solve a relaxed version of the problem.
e 8-puzzle:

- Tile can be moved from A to B If:
e Als adjacentto B
e B is blank

- Remove restriction that A is adjacent to B
e Misplaced tiles

- Remove restriction that B Is blank
e Manhattan distance

12-71: FInding a heuristic

® So how do we find a good heuristic?

® Solve a relaxed version of the problem.
* Romania path-finding
- Add an extra road from each city directly to
goal
+ (Decreases restrictions on where you can
move)

e Straight-line distance heuristic

12-72: FInding a heuristic

® So how do we find a good heuristic?

® Solve a relaxed version of the problem.

* Traveling Salesman
- Connected graph
- Each node has 2 neighbors

 Minimum Cost Spanning Tree Heuristic

12-73: FInding a heuristic

® Solve subproblems
e Cost of getting a subset of the tiles in place
(ignoring the cost of moving other tiles)

® Save these subproblems in a database (could get
large, depending upon the problem)

12-74: FInding a heuristic

® Using subproblems

oo NED
ONO Bon
OaE Do

12-75. FInding a heuristic

® Number of heurisitcs hq, hs, . .. hy

® No one heuristic dominates any other

e Different heuristics have different performances
with different states

® \What can you do?

12-76: FINnding a heuristic

® Number of heurisitcs hq, hs, . .. hy

® No one heuristic dominates any other

e Different heuristics have different performances
with different states

® \What can you do?
e h(n) =max(hi(n), hs(n),...hp(n))

12-77: Summary

® Problem-specific heuristics can improve search.
® Greedy search

® A*

® Memory limited search (IDA*, SMA¥*)

® Developing heuristics
e Admissibility, monotonicity, dominance

	{small lecturenumber -	heblocknumber :} Artifical Intelligenceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Most AI is Faked ... addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finite state machinesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Case Study: Stealth shooteraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Pathfindingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Pathfindingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Pathfindingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Breadth-First Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Breadth-First Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Breadth-First Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Breadth-First Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Breadth-First Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Best-first Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Uniform-Cost Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Uniform-Cost Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Best-First Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Best-first Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Best-first Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heuristic Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Greedy Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Greedy Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Greedy Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Greedy Search Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Greedy Search Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IVaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IVaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IVaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IVaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IVaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Optimality of A*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Optimality of A*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Optimality of A*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Pruning and Contoursaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} IDA*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Iterative Deepening A* (IDA*)addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Iterative Deepening A* (IDA*)addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} IDA* Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} IDA*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} SMA*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building Effective Heuristicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Effective Heuristics - 8-puzzleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Effective Heuristics - 8-puzzleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Summaryaddtocounter {blocknumber}{1}

