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o7-0: Matrices and Translations

® Matrices are great for rotations, reflections, scale

® Can’t do translations
e Matrices can only do linear transformations
e Translations aren’t linear

® | ike to do everything with matrices
® Solution: Add a dimension




o7-1: 4D Homogenous Space

® Extend 3D coordinates (x,y, z) to 4D homogenous
coordinates (z, y, z, w)

e 4th dimension is not time

e Start with extending 2D coordinates (x, y) to 3D
homogenous coordinates (x, y, w)




07-2: 3D Homogenous Space

® To convert a point (z, y, w) in 3D Homogenous
space into 2D (x,y) space:

 Place a plane at w =1

e (x,y,w) maps to the (x,y) position on the
plane where the ray (x,y, w) intersects the
plane




07-3: 3D Homogenous Space
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o7-2: 3D Homogenous Space
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07-5: 3D Homogenous Space

® Converting from a point in 3D homogenous space
to 2D space is easy

e Divide the x and y coordinates by w
 What happens when w = 07?




07-6: 3D Homogenous Space

® Converting from a point in 3D homogenous space
to 2D space is easy

e Divide the x and y coordinates by w

 What happens when w = 07?
+ “Point at infinity”
- Direction, but not a magnitude




o7-7: 3D Homogenous Space

® For a given (z,y,w) point in 3D Homogenous
space, there is a single corresponding point in
“standard” 2D space

 Though when w = 0, we are in a bit of a special
case

® For a single point in “standard” 2D space, there are
an infinite number of corresponding points in 3D
Homogenous space




o7-8: 4D Homogenous Space

® We can now extend to 3 (4!) dimensions

® A point in 4D Homogeous space (z, ¥, z, w)
transforms to a point in 3D space by dividing z, y
and z by w

® That is, where the line defined by points (0,0,0,0)
and (x,y, z, w) intersects the hyperplane at w = 1




o7-9: 4x4 Transfromation matrices

® |n the 3x3 case, a matrix is a transformation of a
3D vector

® |n the 4x4 case, a matrix is a transformation of a
4D vector (which we wil then project back into 3D

space)

® | et’'s look at what happens when we restrict w to
be 1:




o7-10: 4X4 Transfromation matrices

® Given any 3x3 transformation marix, we can
convert it to 4D as follows:

mi1  Mmi2  M13
mi1  Mmi2  M13
mo1  M22  M23
mo1 122 123 =

ma3i m32 133

m31  Mm32 M33
; - 0 0 0

= O O O
| |




o7-11: 4X4 Transfromation matrices

* Now, take any 3D vector v = |z, y, z|, and matrix
M

e Convert v to 4D vector with w =1

e Convert M to 4D matrix as above

* Transform vector using the new matrix
* Transform back to 3D space

* (Get the same vector as if we had not gone into
4D homogenous space at all




07-12: 4X4 Transfromation matrices

mii mi2 mi3

[%yaz] m21  M22 M23

m31  M32 M33

= [xm11 + yma1 + zm31, xmi2 + ymag + zm32, rmi3 + ymas + zms3s|

mi1  mi2  Mmi3
m21  Mm22  Mm23
[x7 y? Z? 1]
ms31  m32 mMma33

0 0 0

= O O O
L ]

= [xm11 + ymo1 + zms1, Tmis + ymeoo + 2mse, Tm13 + ymas + z2mss, 1]




07-13: 4X4 Transfromation matrices

® As long as the w component is 1 going in, it will be
1 coming out

 Easy to go back and forth between 3D
coordinates and homogenous 4D coordinates
® We've transformed 3D problem into an equivant 4D
problem
e Why?




07-14: Translation

® Consider the matrix:

1 0 0 0
0O 1 0 O
0 0 1 O

Axr Ay Az 1

® What happens when we put a vector |z, y, z, 1]
through this matrix?




07-15: Translation

1 0 0 0
0 1 0 0
[z, y, z,1] =[x+ Az, y + Ay, z + Az, 1]
0 0 1 0
A Ax Ay Az 1

® \We can now use matrices to do translations!




o7-16: Translation

® But ...
e We're still just doing matrix multiplication
e Matrix multiplication does linear transforms
e Translation is not linear

® What's going on?




07-17: Translation

® We are still doing a linear trasformation of the 4D
vector

® We are shearing the 4D space

® The resulting projection back to 3D is seen as a
translation




07-18: Translation

2D Shape Transform to 3D Homogenous Space
W
y
I y
X X

Shear operation in 3D space Back to 2D

wW




07-19: Translation

® Recall our matricies for shearing in 3D:

100
010
S t 1_
® This is precisely what we are doing when
translating!
1 0 0 0
0O 1 0 0
0O 0 1 0
Axr Ay Az 1




07-20: Combining Transforms

® Since matrix multiplication is associative, we can
combine translation and rotation into a single
matrix
® First do a rotation, and then a translation
e Order is important!
e Why?




o7-21: Combining Transforms

y

Rotate

Trand ate>

y

Trandate

N

Rotatg

y

AN
N

s




07-22. Combining Transforms

® [irst rotate, and then translate
® (VMR)MT = V(MTMT)
® Whatis M, M ?

= o O O
1 1

ri11 7Ti2 r13 O 17 1 0 0
r r r 0 0 1 0
MR _ 21 22 23
r3y 132 133 O 0 0 1
| 0 0 0 1 Az Ay Az




07-23: Combining Transforms

® [irst rotate, and then translate
® (VMR)MT = V(MTMT)
® Whatis M, M ?

r11 T2 113 O 1 0 0 O r11  Ti2 T13
ro1 T22 T23 O 0 1 0 O T21 T22 T23
MR — —
r31 132 133 O 0 0 1 0 Y31 T32 T33
0 0 0 1 Axr Ay Az 1 Ax Ay Az

= O O O
L |




07-2a: Combining Transforms

® Any 4x4 Homogenous matrix can be split into a
rotational component and a translation component

* Upper 3x3 matrix is rotation (which is done first)
e Bottom row is translation (done second)

® But wait — rotation is not always done first!

* True, but any series of rotations and
translations is equivalent to a single rotation
followed by a single translation




07-25: Combining Transforms

® | et's look at an example

e First rotate by 7/2 (90 degrees)

counterclockwise
* Then translate x by +1

Rotate 172

Trandate
+1 X




o7-26: Combining Transforms

cos® sin® 0 11 1 0 O ] cos® sin® 0 ]
—sin® cos® 0 O 1 0 = —sin® cos® 0 =
0 O 1 |[1 0 1 1 0 1 |




o7-27: Combining Transforms

® Another example
e First translate x by +1

e Then rotate by 7/2 (90 degrees)

counterclockwise

Trandate
+1 X

Rotate 17/2




07-28: Combining Transforms

1 0 O cos® sin® 0 ] [ cos® sin® 0 ]
0O 1 O —sin® cos® 0 = —sin® cos® 0 =
1 0 1 0 0O 1 J | cos ©® sin® 1 |

® Same as rotating, and then moving up +vy




07-29: Combining Transforms
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07-30: Combining Transforms

® Rotating by 7 /4, then translating 1 unit +x

—sin® cos® 0

cos® sin® O_ |

0 0 1|

—_ O

o = O

= o O
L |

cos® sin® O_
—sin® cos® 0

1 0 1 |

1/vV/2 1/vV/2 0 |
—1/vV2 1/v/2 0
1 0 1 |




07-31: Combining Transforms

® Translating 1 unit +x, then rotating by 7 /4

I 1
= O K

o = O

= O O
L I

cos® sin® O_
—sin® cos® 0

0 0 1

cos® sin©® O_
—sin® cos® 0

cos® sin® 1_

1/v/2 1/v/2 0 |
—1/vV2 1/v/2 0
1/v2 1/vV2 1 |

® Same as rotating 7 /4 counterclockwise, and then
translating over (+x) 1/v/2 and up (+y) 1/v/2




07-32: Non-Standard Axes

® We want to rotate around an axis that does not go
through the origin

® 2D Case: Rotate around point at 1,0
® Create the approprate 3x3 vector




07-33: Non-Standard Axes

Rotate 174 around (1,0)




07-33: Non-Standard Axes

® First, translate to the origin
® Then, do the rotation
® Finally, translate back




07-35: Non-Standard Axes

® First, translate to the origin

1
0
—1

-l
= CORN

® Then, do the rotation
® Finally, translate back




07-36: Non-Standard Axes

® First, translate to the origin

® Then, do the rotation

cos® sin® 0
—sin® cos® 0

0 01

® Finally, translate back

1/v2 1/v/2 0
—1/v/2 1/v/2 0
0 01




07-37: Non-Standard Axes

® First, translate to the origin
® Then, do the rotation
® Finally, translate back




07-38: Non-Standard Axes

® Final matrix:

1 00 1/vV2 1/v/2 0
010]||—-1/vV2 1/vV2 0
-1 0 1 0 0 1
V2 1/v/2 0 |

V2 1/v/2 0] |0

V2 —1/v2 1| |1

/V2  1/v2 0

-1/v2  1/v2 0

1—-1/vV2 —1/v2 1

S .

— COEE
[ |




07-39: Non-Standard Axes

Rotate 174 around (1,0)
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07-40: Non-Standard Axes
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07-41: Non-Standard Axes

® Note that the rotation component (upper right 2x2
matrix) is the same as if we were rotating around
the origin

® Only the position component is altered.

® |n general, whenever we do a rotation and a
number of translations, the rotation component will
be unchanged




07-42: Non-Standard Axes 3D

® Jo rotate in 3D around an axis whose center point
does not go through the origin

e Let p = |p., p,, p.] be some point on the axis of
rotation

e | et R;,.5 be a 3x3 matrix that does the rotation,
assuming the axis goes through the origin

® \We can write the rotation as T R,,,7*, where T,
R,.., and T~ ! are defined as:




07-43: Non-Standard Axes 3D

1 0 0O O
0 1 0O O I O
T: —
0 0 1 0 —p 1
| Pz —Py —Pz 1 a
r11 T2 113 O
ro1  T22 123 O Rs3z3 O
Raza = =
r31 132 133 O 0 1
i 0 0 0 1 |
1 0 0 0|
—i_| 0 1 00| 0
0 0 1 0 p 1
| Pz Py Pz 1 1




07-44: Non-Standard Axes 3D

TRT' =

—p 1 0
R, 0

I 0| R.. 0]]

|

o
| I




07-45: Non-Standard Axes 3D

® | et’'s take a closer look:

e First, rotate around axis that goes through
origin (this will rotate the object’'s position
through space — we want to undo this)

 Move the object from its new (rotated) position
back to the origin

* Translate back to the original position

TRT1 =

| 0 Rsz3 O I O
—-p 1 0 1 p 1

Rs. 0
—pRs3.3+p 1




07-46: Non-Standard Axes 3D

® This doesn’t just work for rotating — it works for any
linear transform (scaling, reflecting, shearing, etc)

* Move object to origin
* Do the transformation
* Move the object back




07-47: Non-Standard Axes 3D

® This doesn’t just work for rotating — it works for any
linear transform (scaling, reflecting, shearing, etc)

* Do the transformation, assuming axis runs
through origin

* Move the object to the origin (using transformed
position)




07-48: Non-Standard Axes 3D

® This doesn’t just work for rotating — it works for any
linear transform (scaling, reflecting, shearing, etc)

* Do the transformation, assuming axis runs
through origin

* Move the object to the origin (using transformed
position)
* Move the object back to the original position

I 0 R, O I 0
TRT-! = ST3
—p 1 0o 1 p 1

B Rs, 0
—pPR3z3+p 1




07-49: HOmogenous Dimension =0

® Consider a vector in homogenous 4-space
® [aj7 y? Z? w]

® What happens when w = 07?




07-50: HOmogenous Dimension =0

® Consider a vector in homogenous 4-space
° ['ZC? y7 Z7 w]

® What happens when w = 07?
* x, 1y, and z components are divided by w
e “Point at infinity”
e Direction only, not magnitude




07-51: HOmogenous Dimension =0

® What happens when multiply a vector with w = 0
by a transform that contains no translation?

My My Myz 0

0 Ma1 Moy Mgz 0 _
[Qj, y7 Z? ] O -
Ty M3z 1TN33

o 0 0 1

[xm11 + yma1 + z2m31, xmi2 + ymaz + zm32, xmi13 + ymas + zmss, 0]

® Standard transformation —just as if w = 1




07-522. HOmogenous Dimension =0

® What happens when multiply a vector with w = 0
by a transform that does contiain translation?

My My Myz 0
0 Ma1 Moy Mgz 0 _
[:U, y? Z? ] O -
T3y Trhso  Thss

Ar Ay Az 1




07-53: HOmogenous Dimension =0

® What happens when multiply a vector with w = 0
by a transform that does contiain translation?

My My Myz 0
0 Ma1 Moy Moz 0 _
[xayaza ] O -
T3y Trhso  Thss

Ar Ay Az 1

[xm11 + yma1 + z2m31, xmi2 + ymaz + zm32, xmi13 + ymas + zmss, 0]

® Rotation occurs as before — but translation is
ignored




07-54: “Point at Infinity”

® |f we have “point at infinity”, then having the vector
be affected by rotation (and non-uniform scaling,
and shearing, etc.), but not translation makes

sense




07-55:  Point at Infinity”
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o7-s6: - Point at Infinity”

Toinfinity
/

| nfinite vector Trandationsdon’t
affect vector at all




o7-57: - Point at Infinity”
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07-58: HOmogenous Dimension =0

® We can “Turn off” translation by setting w = 0

® Handy for when we want direction only, not position

e Surface normals are an excellent example of
when we want rotation to affect the vector, but
not translation




07-59: Review

® We can describe the orientation of an object using
a rotation matrix

* Describes how to transform (rotate) points in
the object from object space to inertial space

e Example: Rotate 45 degrees around the Z-axis

cosm/4 sinm/4 0
—sinw/4 cosw/4 0
0 0 |




07-60: Review

® We have a point at position |z, y1, 21| in object
space (That's how points in the mesh are stored)

® We need to know the position of the point in world
space before rendering (assume no translation yet
— our model is at the origin)

® We can do a simple multiply:

cosm/4 sinm/4 0
1, Y1, 21 | —sinm/4 cosw/4 0
0 0 1




07-61: Review

® So, our rotation matrix gives us a way to transform
points from object space into world space

® Rotation matrix also tells us where our object is
facing in world space, and what the up vector of
our object is in world space

® How?




07-62: Review

® So, our rotation matrix gives us a way to transform
points from object space into world space

® Rotation matrix also tells us where our object is
facing in world space, and what the up vector of
our object is in world space
* We know the direction our object is facing in
local space: |0, 0, 1]
* |f we transfrom this by a matrix, what do we
get?




07-63: Review

® So, our rotation matrix gives us a way to transform
points from object space into world space

® Rotation matrix also tells us where our object is
facing in world space, and what the up vector of
our object is in world space
* We know the direction our object is facing in
local space: |0, 0, 1]
* |f we transfrom this by a matrix we get the
bottom row of the matrix




07-64: Review

® Of course, our objects are not always at the origin

® |n addition to the rotational matrix, we also have a
position — location of the center of the model

® Now, to transform a point, we first rotate it, and
then translate it
e Rotation matrix for our model: Mp
e Position of our object (displacement from the
origin): Pos = |y, Y, Zm)
® How can we transform a point |z, y, z] in the object
space of this model into world space?




07-65: Review

® Rotation matrix for our model: Mp
® Position of our object (displacement from the
origin): pos = [Z,., Y, Zm|
e How can we transform a point po = |z, ¥, z] in
the object space of this model into world space?

World space p., = poMg + pos




07-66: Review

® As a mathematical trick, we can combine our
rotation matrix and position into a single entity

mi1 mi2 mi3

0
m21 ma22 m23 0
m31  m32 m33 O

1

x Y z

® Now, to transform a point, convert it to a 4-element
vector (by adding a 1 at the end), multiply by this
matrix, look at first 3 elements of the vector




07-67: Review

® A 4x4 matrix represents a rotation, followed by a
translation

® We can combine multiple transformations by
multiplying matrices together

® Result is a single matrix, which represents a single
rotation, followed by a single translation.




07-68: Review

® Example: Finding the end of a tank barrel

* Tank has a location and rotation in world space
(represented by a position vector and 3x3
rotation matrix)

e Barrel has a location and rotation (represented
by a position vector and 3x3 rotation matrix —
reltaive to the center of the tank

e End of the tank barrel is at location |0, 0, 3] in
barrel space

® What is the location of the end of the tank barrel in
world space? (do both 3x3 matrices & positions,
and 4x4 matrices)




07-69: Review

® Given:
* A bullet position in world space p, = |b., b, b.]
* A bullet position in world space
v, = |bu,, bu,, bu, |
e A rotation matrix for a tank M, and a position
for a tank pr

 What is the position and velocity of the bullet in
tank space?

 Why might that be a useful thing to have?




07-70: Row vs. Column Vectors

® Row Vectors

 Rows of the matrix represent transform of
object (1st row is x, 2nd row is y, 3rd row Is z)

* To transform a vector v by first A, then B, then
C: vABC
® Column Vectors

e Columns of the matrix represent transform of
object (1st col is x, 2nd col is y, 3rd col is z)

e To transform a vector v by first A, then B, then
C: CBAv




07-71: Row vs. Column Vectors

® 4x4 Matrx using Row vectors:

Z1 2 L3
Y1 Y2 Y3
Z1 Z9 Z3

| Az Ay Az

_ O O O
L ]

® 4x4 Matrx using Column vectors:

1 Y1 21 Acx

T2 Y2 22 Ay

r3 ys z3 Az
0 0 O L




o7-72: Row vs. Column Vectors

® Ogre & OpenGL use column vectors
® Direct3D uses row vectors

® How does Ogre do both?
e Does everything in column vectors
* Multiplies matrices together using column
vector convetion
* When it's time to send a matrix to D3D, does a
quick transpose first




07-73: Rotational Matrix Trick

® To remember how to create rotational matrices for
the cardinal axes, you just need to remember: cos,
sin, -sin, COS

* |f you forget, do the 2D case

® Create 3x3 rotational matrix with the non-rotating
vector in the correct location

® From the one in the non-rotating vector, go down
and right, and fill in cos,sin,-sin,cos
 Wrap around as necessary
e Examples (column major and row major)
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