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07-0: Matrices and Translations

Matrices are great for rotations, reflections, scale

Can’t do translations

Matrices can only do linear transformations

Translations aren’t linear

Like to do everything with matrices

Solution: Add a dimension



07-1: 4D Homogenous Space

Extend 3D coordinates (x, y, z) to 4D homogenous

coordinates (x, y, z, w)

4th dimension is not time

Start with extending 2D coordinates (x, y) to 3D

homogenous coordinates (x, y, w)



07-2: 3D Homogenous Space

To convert a point (x, y, w) in 3D Homogenous

space into 2D (x, y) space:

Place a plane at w = 1

(x, y, w) maps to the (x, y) position on the

plane where the ray (x, y, w) intersects the
plane



07-3: 3D Homogenous Space
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07-4: 3D Homogenous Space
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07-5: 3D Homogenous Space

Converting from a point in 3D homogenous space
to 2D space is easy

Divide the x and y coordinates by w

What happens when w = 0?



07-6: 3D Homogenous Space

Converting from a point in 3D homogenous space
to 2D space is easy

Divide the x and y coordinates by w

What happens when w = 0?
“Point at infinity”
Direction, but not a magnitude



07-7: 3D Homogenous Space

For a given (x, y, w) point in 3D Homogenous
space, there is a single corresponding point in
“standard” 2D space

Though when w = 0, we are in a bit of a special
case

For a single point in “standard” 2D space, there are
an infinite number of corresponding points in 3D
Homogenous space



07-8: 4D Homogenous Space

We can now extend to 3 (4!) dimensions

A point in 4D Homogeous space (x, y, z, w)
transforms to a point in 3D space by dividing x, y
and z by w

That is, where the line defined by points (0,0,0,0)
and (x, y, z, w) intersects the hyperplane at w = 1



07-9: 4x4 Transfromation matrices

In the 3x3 case, a matrix is a transformation of a
3D vector

In the 4x4 case, a matrix is a transformation of a
4D vector (which we wil then project back into 3D
space)

Let’s look at what happens when we restrict w to
be 1:



07-10: 4x4 Transfromation matrices

Given any 3x3 transformation marix, we can
convert it to 4D as follows:









m11 m12 m13

m21 m22 m23

m31 m32 m33









⇒















m11 m12 m13 0

m21 m22 m23 0

m31 m32 m33 0

0 0 0 1

















07-11: 4x4 Transfromation matrices

Now, take any 3D vector v = [x, y, z], and matrix
M

Convert v to 4D vector with w = 1

Convert M to 4D matrix as above

Transform vector using the new matrix

Transform back to 3D space

Get the same vector as if we had not gone into
4D homogenous space at all



07-12: 4x4 Transfromation matrices

[x, y, z]









m11 m12 m13

m21 m22 m23

m31 m32 m33









= [xm11 + ym21 + zm31, xm12 + ym22 + zm32, xm13 + ym23 + zm33]

[x, y, z, 1]















m11 m12 m13 0

m21 m22 m23 0

m31 m32 m33 0

0 0 0 1















= [xm11 + ym21 + zm31, xm12 + ym22 + zm32, xm13 + ym23 + zm33, 1]



07-13: 4x4 Transfromation matrices

As long as the w component is 1 going in, it will be
1 coming out

Easy to go back and forth between 3D
coordinates and homogenous 4D coordinates

We’ve transformed 3D problem into an equivant 4D
problem

Why?



07-14: Translation

Consider the matrix:











1 0 0 0

0 1 0 0

0 0 1 0

∆x ∆y ∆z 1











What happens when we put a vector [x, y, z, 1]
through this matrix?



07-15: Translation

[x, y, z, 1]















1 0 0 0

0 1 0 0

0 0 1 0

∆x ∆y ∆z 1















= [x+∆x, y +∆y, z +∆z, 1]

We can now use matrices to do translations!



07-16: Translation

But ...

We’re still just doing matrix multiplication

Matrix multiplication does linear transforms

Translation is not linear

What’s going on?



07-17: Translation

We are still doing a linear trasformation of the 4D
vector

We are shearing the 4D space

The resulting projection back to 3D is seen as a
translation



07-18: Translation

x

y

w

x

y

x

y

w

x

y

2D Shape Transform to 3D Homogenous Space

Shear operation in 3D space Back to 2D



07-19: Translation

Recall our matricies for shearing in 3D:







1 0 0

0 1 0

s t 1







This is precisely what we are doing when
translating!











1 0 0 0

0 1 0 0

0 0 1 0

∆x ∆y ∆z 1













07-20: Combining Transforms

Since matrix multiplication is associative, we can
combine translation and rotation into a single
matrix

First do a rotation, and then a translation

Order is important!

Why?



07-21: Combining Transforms
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07-22: Combining Transforms

First rotate, and then translate

(vMR)MT = v(MrMT )

What is MrMT?

MR =















r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1





























1 0 0 0

0 1 0 0

0 0 1 0

∆x ∆y ∆z 1

















07-23: Combining Transforms

First rotate, and then translate

(vMR)MT = v(MrMT )

What is MrMT?

MR =















r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1





























1 0 0 0

0 1 0 0

0 0 1 0

∆x ∆y ∆z 1















=















r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

∆x ∆y ∆z 1

















07-24: Combining Transforms

Any 4x4 Homogenous matrix can be split into a
rotational component and a translation component

Upper 3x3 matrix is rotation (which is done first)

Bottom row is translation (done second)

But wait – rotation is not always done first!

True, but any series of rotations and
translations is equivalent to a single rotation
followed by a single translation



07-25: Combining Transforms

Let’s look at an example

First rotate by π/2 (90 degrees)
counterclockwise

Then translate x by +1

Rotate π/2 Translate
+1 x



07-26: Combining Transforms









cosΘ sinΘ 0

− sinΘ cosΘ 0

0 0 1

















1 0 0

0 1 0

1 0 1









=









cosΘ sinΘ 0

− sinΘ cosΘ 0

1 0 1









=









0 1 0

−1 0 0

1 0 1











07-27: Combining Transforms

Another example

First translate x by +1

Then rotate by π/2 (90 degrees)
counterclockwise

Rotate π/2
Translate
+1 x



07-28: Combining Transforms









1 0 0

0 1 0

1 0 1

















cosΘ sinΘ 0

− sinΘ cosΘ 0

0 0 1









=









cosΘ sinΘ 0

− sinΘ cosΘ 0

cosΘ sinΘ 1









=









0 1 0

−1 0 0

1 0 1









Same as rotating, and then moving up +y



07-29: Combining Transforms

Rotate π/4 Translate
+1 x

Rotate π/4Translate
+1 x



07-30: Combining Transforms

Rotating by π/4, then translating 1 unit +x









cosΘ sinΘ 0

− sinΘ cosΘ 0

0 0 1

















1 0 0

0 1 0

1 0 1









=









cosΘ sinΘ 0

− sinΘ cosΘ 0

1 0 1









=









1/
√
2 1/

√
2 0

−1/
√
2 1/

√
2 0

1 0 1











07-31: Combining Transforms

Translating 1 unit +x, then rotating by π/4









1 0 0

0 1 0

1 0 1

















cosΘ sinΘ 0

− sinΘ cosΘ 0

0 0 1









=









cosΘ sinΘ 0

− sinΘ cosΘ 0

cosΘ sinΘ 1









=









1/
√
2 1/

√
2 0

−1/
√
2 1/

√
2 0

1/
√
2 1/

√
2 1









Same as rotating π/4 counterclockwise, and then

translating over (+x) 1/
√

2 and up (+y) 1/
√

2



07-32: Non-Standard Axes

We want to rotate around an axis that does not go
through the origin

2D Case: Rotate around point at 1,0

Create the approprate 3x3 vector



07-33: Non-Standard Axes

Rotate π/4 around (1,0)



07-34: Non-Standard Axes

First, translate to the origin

Then, do the rotation

Finally, translate back



07-35: Non-Standard Axes

First, translate to the origin







1 0 0

0 1 0

−1 0 1







Then, do the rotation

Finally, translate back



07-36: Non-Standard Axes

First, translate to the origin

Then, do the rotation






cosΘ sinΘ 0

− sinΘ cosΘ 0

0 0 1






=







1/
√

2 1/
√

2 0

−1/
√

2 1/
√

2 0

0 0 1







Finally, translate back



07-37: Non-Standard Axes

First, translate to the origin

Then, do the rotation

Finally, translate back







1 0 0

0 1 0

1 0 1









07-38: Non-Standard Axes

Final matrix:







1 0 0

0 1 0

−1 0 1













1/
√

2 1/
√

2 0

−1/
√

2 1/
√

2 0

0 0 1













1 0 0

0 1 0

1 0 1













1/
√

2 1/
√

2 0

−1/
√

2 1/
√

2 0

−1/
√

2 −1/
√

2 1













1 0 0

0 1 0

1 0 1













1/
√

2 1/
√

2 0

−1/
√

2 1/
√

2 0

1− 1/
√

2 −1/
√

2 1









07-39: Non-Standard Axes

Rotate π/4 around (1,0)

Translate to origin, Rotate π/4 around (0,0), Translate back



07-40: Non-Standard Axes

Rotate p/4 around (0,0), then translate over 
1 - 1 / 2  and down 1/ 2

Rotate π/4 around (1,0)



07-41: Non-Standard Axes

Note that the rotation component (upper right 2x2
matrix) is the same as if we were rotating around
the origin

Only the position component is altered.

In general, whenever we do a rotation and a
number of translations, the rotation component will
be unchanged



07-42: Non-Standard Axes 3D

To rotate in 3D around an axis whose center point
does not go through the origin

Let p = [px, py, pz] be some point on the axis of
rotation

Let R3x3 be a 3x3 matrix that does the rotation,
assuming the axis goes through the origin

We can write the rotation as TR4x4T
−1, where T ,

R4x4, and T−1 are defined as:



07-43: Non-Standard Axes 3D

T =















1 0 0 0

0 1 0 0

0 0 1 0

−px −py −pz 1















=





I 0

−p 1





R4x4 =















r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1















=





R3x3 0

0 1





T−1 =















1 0 0 0

0 1 0 0

0 0 1 0

px py pz 1















=





I 0

p 1







07-44: Non-Standard Axes 3D

TRT−1 =

[

I 0

−p 1

] [

R3x3 0

0 1

] [

I 0

p 1

]

=

[

R3x 0

−pR3x3 + p 1

]



07-45: Non-Standard Axes 3D

Let’s take a closer look:

First, rotate around axis that goes through
origin (this will rotate the object’s position
through space – we want to undo this)

Move the object from its new (rotated) position
back to the origin

Translate back to the original position

TRT−1 =





I 0

−p 1









R3x3 0

0 1









I 0

p 1





=





R3x 0

−pR3x3 + p 1







07-46: Non-Standard Axes 3D

This doesn’t just work for rotating – it works for any
linear transform (scaling, reflecting, shearing, etc)

Move object to origin

Do the transformation

Move the object back



07-47: Non-Standard Axes 3D

This doesn’t just work for rotating – it works for any
linear transform (scaling, reflecting, shearing, etc)

Do the transformation, assuming axis runs
through origin

Move the object to the origin (using transformed
position)



07-48: Non-Standard Axes 3D

This doesn’t just work for rotating – it works for any
linear transform (scaling, reflecting, shearing, etc)

Do the transformation, assuming axis runs
through origin

Move the object to the origin (using transformed
position)

Move the object back to the original position

TRT−1 =





I 0

−p 1









R3x3 0

0 1









I 0

p 1





=





R3x 0

−pR3x3 + p 1







07-49: Homogenous Dimension = 0

Consider a vector in homogenous 4-space

[x, y, z, w]

What happens when w = 0?



07-50: Homogenous Dimension = 0

Consider a vector in homogenous 4-space

[x, y, z, w]

What happens when w = 0?

x, y, and z components are divided by w

“Point at infinity”

Direction only, not magnitude



07-51: Homogenous Dimension = 0

What happens when multiply a vector with w = 0
by a transform that contains no translation?

[x, y, z, 0]











m11 m12 m13 0

m21 m22 m23 0

m31 m32 m33 0

0 0 0 1











=

[xm11 + ym21 + zm31, xm12 + ym22 + zm32, xm13 + ym23 + zm33, 0]

Standard transformation – just as if w = 1



07-52: Homogenous Dimension = 0

What happens when multiply a vector with w = 0
by a transform that does contiain translation?

[x, y, z, 0]











m11 m12 m13 0

m21 m22 m23 0

m31 m32 m33 0

∆x ∆y ∆z 1











=



07-53: Homogenous Dimension = 0

What happens when multiply a vector with w = 0
by a transform that does contiain translation?

[x, y, z, 0]











m11 m12 m13 0

m21 m22 m23 0

m31 m32 m33 0

∆x ∆y ∆z 1











=

[xm11 + ym21 + zm31, xm12 + ym22 + zm32, xm13 + ym23 + zm33, 0]

Rotation occurs as before – but translation is
ignored



07-54: “Point at Infinity”

If we have “point at infinity”, then having the vector
be affected by rotation (and non-uniform scaling,
and shearing, etc.), but not translation makes
sense



07-55: “Point at Infinity”

Long vector

small translations
barely affect vector



07-56: “Point at Infinity”

Infinite vector

...
To infinity

Translations don’t
affect vector at all



07-57: “Point at Infinity”

Infinite vector

...

To infinity

...
To infinity

Infinite vectors can be rotated



07-58: Homogenous Dimension = 0

We can “Turn off” translation by setting w = 0

Handy for when we want direction only, not position

Surface normals are an excellent example of
when we want rotation to affect the vector, but
not translation



07-59: Review

We can describe the orientation of an object using
a rotation matrix

Describes how to transform (rotate) points in
the object from object space to inertial space

Example: Rotate 45 degrees around the Z-axis







cos π/4 sin π/4 0

− sin π/4 cos π/4 0

0 0 1









07-60: Review

We have a point at position [x1, y1, z1] in object
space (That’s how points in the mesh are stored)

We need to know the position of the point in world
space before rendering (assume no translation yet
– our model is at the origin)

We can do a simple multiply:

[x1, y1, z1]







cos π/4 sin π/4 0

− sin π/4 cos π/4 0

0 0 1









07-61: Review

So, our rotation matrix gives us a way to transform
points from object space into world space

Rotation matrix also tells us where our object is
facing in world space, and what the up vector of
our object is in world space

How?



07-62: Review

So, our rotation matrix gives us a way to transform
points from object space into world space

Rotation matrix also tells us where our object is
facing in world space, and what the up vector of
our object is in world space

We know the direction our object is facing in

local space: [0, 0, 1]

If we transfrom this by a matrix, what do we
get?



07-63: Review

So, our rotation matrix gives us a way to transform
points from object space into world space

Rotation matrix also tells us where our object is
facing in world space, and what the up vector of
our object is in world space

We know the direction our object is facing in

local space: [0, 0, 1]

If we transfrom this by a matrix we get the
bottom row of the matrix



07-64: Review

Of course, our objects are not always at the origin

In addition to the rotational matrix, we also have a
position – location of the center of the model

Now, to transform a point, we first rotate it, and
then translate it

Rotation matrix for our model: MR

Position of our object (displacement from the
origin): pos = [xm, ym, zm]

How can we transform a point [x, y, z] in the object
space of this model into world space?



07-65: Review

Rotation matrix for our model: MR

Position of our object (displacement from the
origin): pos = [xm, ym, zm]

How can we transform a point pO = [x, y, z] in
the object space of this model into world space?

World space pw = pOMR + pos



07-66: Review

As a mathematical trick, we can combine our
rotation matrix and position into a single entity















m11 m12 m13 0

m21 m22 m23 0

m31 m32 m33 0

x y z 1















Now, to transform a point, convert it to a 4-element
vector (by adding a 1 at the end), multiply by this
matrix, look at first 3 elements of the vector



07-67: Review

A 4x4 matrix represents a rotation, followed by a
translation

We can combine multiple transformations by
multiplying matrices together

Result is a single matrix, which represents a single
rotation, followed by a single translation.



07-68: Review

Example: Finding the end of a tank barrel

Tank has a location and rotation in world space
(represented by a position vector and 3x3
rotation matrix)

Barrel has a location and rotation (represented
by a position vector and 3x3 rotation matrix –
reltaive to the center of the tank

End of the tank barrel is at location [0, 0, 3] in
barrel space

What is the location of the end of the tank barrel in
world space? (do both 3x3 matrices & positions,
and 4x4 matrices)



07-69: Review

Given:

A bullet position in world space pb = [bx, by, bz]

A bullet position in world space
vb = [bvx, bvy, bvz]

A rotation matrix for a tank MT , and a position
for a tank pT

What is the position and velocity of the bullet in
tank space?

Why might that be a useful thing to have?



07-70: Row vs. Column Vectors

Row Vectors

Rows of the matrix represent transform of
object (1st row is x, 2nd row is y, 3rd row is z)

To transform a vector v by first A, then B, then
C: vABC

Column Vectors

Columns of the matrix represent transform of
object (1st col is x, 2nd col is y, 3rd col is z)

To transform a vector v by first A, then B, then
C: CBAv



07-71: Row vs. Column Vectors

4x4 Matrx using Row vectors:














x1 x2 x3 0

y1 y2 y3 0

z1 z2 z3 0

∆x ∆y ∆z 1















4x4 Matrx using Column vectors:














x1 y1 z1 ∆x

x2 y2 z2 ∆y

x3 y3 z3 ∆z

0 0 0 1

















07-72: Row vs. Column Vectors

Ogre & OpenGL use column vectors

Direct3D uses row vectors

How does Ogre do both?

Does everything in column vectors

Multiplies matrices together using column
vector convetion

When it’s time to send a matrix to D3D, does a
quick transpose first



07-73: Rotational Matrix Trick

To remember how to create rotational matrices for
the cardinal axes, you just need to remember: cos,
sin, -sin, cos

If you forget, do the 2D case

Create 3x3 rotational matrix with the non-rotating
vector in the correct location

From the one in the non-rotating vector, go down
and right, and fill in cos,sin,-sin,cos

Wrap around as necessary

Examples (column major and row major)
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