Game Engineering CS420-2016S-05 Linear Transforms

David Galles

Department of Computer Science University of San Francisco

05-0: Matrices as Transforms

- Recall that Matrices are transforms
 - Transform vectors by rotating, scaling, shearing
 - Transform objects as well
 - Transforming every vertex in the object

05-1: Calculating Transformations

 What happens when we transform [1,0,0], [0,1,0], and [0,0,1] by

```
\left[ egin{array}{cccc} m_{11} & m_{12} & m_{13} \ m_{21} & m_{22} & m_{23} \ m_{31} & m_{32} & m_{33} \ \end{array} 
ight]
```

05-2: Calculating Transformations

 What happens when we transform [1,0,0], [0,1,0], and [0,0,1]:

$$\begin{bmatrix} 1,0,0 \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} = \begin{bmatrix} m_{11}, m_{12}, m_{13} \end{bmatrix}$$

$$\begin{bmatrix} 0,1,0 \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} = \begin{bmatrix} m_{21}, m_{22}, m_{23} \end{bmatrix}$$

$$\begin{bmatrix} 0,0,1 \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} = \begin{bmatrix} m_{31}, m_{32}, m_{33} \end{bmatrix}$$

05-3: Calculating Transformations

- So, we want to make a transformation matrix
 - Matrix that, when multiplied by a vector, transforms the vector
 - (also transforms a model just a series of points)
- To create the matrix
 - Decide what the basis vectors should look like after the transformation
 - Fill in the matrix with the new basis vectors

05-4: Rotations

- Start with the 2D case
 - Rotate a vector θ degrees counter-clockwise
 - What do the basis vectors look like after the rotation?
 - That's the transformation matrix!

05-5: Rotations 2D

05-6: Rotations 2D

 $\cos \theta = a/c$ $\sin \theta = b/c$ a

05-7: Rotations 2D

 $\cos \theta = a$ $\sin \theta = b$ a X

05-8: Rotations 2D

```
New X basis vector:
[cos \theta, sin \theta]
    a
```

05-9: Rotations 2D

05-10: Rotations 2D

05-11: Rotations 2D

05-12: Rotations 3D

- For rotations in 3 dimensions, we need to define:
 - The axis we are rotating around
 - The direction that we are rotating
- Can't just use "counter-clockwise" anymore -"counter-clockwise" in relation to what?

05-13: Rotations 3D

- Rotation around the z axis
- Which direction to rotate depends upon whether you are using right-handed or left-handed coordinate system
- Select appropriate hand (right- or left-)
- Point thumb along the positive axis around which you are rotating
- ullet Fingers curl in direction of heta

05-14: Rotations 3D

- Rotations in 3D work just like rotations in 2D
 - Determine how the basis vectors will change under the rotation
 - Need to consider 3 vectors instead of 2
 - Create a matrix using the new basis vectors
 - 3x3 instead of 2x3

05-15: Rotations 3D

- Rotating θ degrees around the z axis
 - How do the z coordinates of a vector change in this rotation?
 - In other words, what happens to the z-basis vector when rotating around the z axis?

05-16: Rotations 3D

- Rotating θ degrees around the z axis
 - How do the z coordinates of a vector change in this rotation?
 - They don't!
 - In other words, what happens to the z-basis vector when rotating around the z axis?
 - It doesn't move!

05-17: Rotations 3D

 What about the x basis vector – how does it change?

05-18: Rotations 3D

```
Right or left handed?
```

05-19: Rotations 3D

05-20: Rotations 3D

```
Same as 2D Case!
new x: [cos \theta, sin \theta, 0] new y: [-sin \theta, cos \theta, 0]
                         0,
new z: [0,
```

05-21: Rotations 3D

- What about rotating around a different axis?
 - Works the same way
 - Axis being rotated around doesn't change
 - Other two axes are the 2D case

05-22: Rotations 3D

• Rotate θ degrees around the z-axis:

$$\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

05-23: Rotations 3D

• Rotate θ degrees around the x-axis:

05-24: Rotations 3D

• Rotate θ degrees around the x-axis:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix}$$

05-25: Rotations 3D

• Rotate θ degrees around the y-axis:

05-26: Rotations 3D

• Rotate θ degrees around the y-axis:

$$\begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$$

05-27: Arbitrary Axis Rotation

 What if we want to rotate about something other than a main axis?

05-28: Arbitrary Axis Rotation

- Use this trick to rotate a vector about aribitrary axis
 - Break the vector into two component vectors
 - Rotate the component vectors
 - Add them back together to get rotated vector
- The trick will be picking component vectors that are easy to rotate ...

05-29: Arbitrary Axis Rotation

05-30: Arbitrary Axis Rotation

- v is the vector we want to rotate
- n is the vector we want to rotate around (assume n is a unit vector)
- ullet Break ${f v}$ into v_{\parallel} and v_{\perp}
- Rotate v_{\parallel} and v_{\perp} around n
- Add them back together to get rotated v

05-31: Arbitrary Axis Rotation

05-32: Arbitrary Axis Rotation

- \bullet v is the vector we want to rotate
- n is the vector we want to rotate around (assume n is a unit vector)
- ullet Break ${f v}$ into ${f v}_{\parallel}$ and ${f v}_{\perp}$
- ullet What is the result of rotating ${f v}_{\parallel}$ around ${f n}$?

05-33: Arbitrary Axis Rotation

- v is the vector we want to rotate
- n is the vector we want to rotate around (assume n is a unit vector)
- ullet Break ${f v}$ into ${f v}_{\parallel}$ and ${f v}_{\perp}$
- lacktriangle What is the result of rotating ${f v}_{\parallel}$ around ${f n}$?
 - v_{\parallel} doesn't change!

05-34: Arbitrary Axis Rotation

- ullet Create ${f w}$, perpendicular to both ${f v}_{\parallel}$ and ${f v}_{\perp}$
 - ullet w is the same length as ${f v}_{\perp}$
 - w perpendicular to n
 - w, \mathbf{v}_{\perp} and \mathbf{v}_{\perp}' (\mathbf{v}_{\perp} after rotation) are all in the same plane.

05-35: Arbitrary Axis Rotation

- Vector v_{\perp} is rotating through the plane containing ${\bf w}$
- Since rotation is constrained to this one plane, back in the 2D case!

05-36: Arbitrary Axis Rotation

$$\sin \theta = a / ||v'_{\perp}|| = a / ||w||$$

$$\cos \theta = b / ||v'_{\perp}|| = b / ||v_{\perp}||$$
(b is negative in ths example)

05-37: Arbitrary Axis Rotation

$$\mathbf{v}'_{\perp}$$
 = \mathbf{a} + \mathbf{b}
 \mathbf{a} = $\sin \theta$ * \mathbf{w}
 \mathbf{b} = $\cos \theta$ * \mathbf{v}_{\perp}

05-38: Arbitrary Axis Rotation

- So, we have:
 - $ullet \mathbf{v}' = \mathbf{v}'_{\parallel} + \mathbf{v}'_{\perp}$
 - $ullet \mathbf{v}_{\parallel}' = \mathbf{v}_{\parallel}$
 - $\mathbf{v}'_{\perp} = \cos\theta\mathbf{v}_{\perp} + \sin\theta\mathbf{w}$
- All we need to do now is find $\mathbf{v}_{\parallel}, \mathbf{v}_{\perp}$ and \mathbf{w} .

05-39: Arbitrary Axis Rotation

- ullet What is \mathbf{v}_{\parallel} ?
 - That is, the projection of v onto n?

05-40: Arbitrary Axis Rotation

- What is \mathbf{v}_{\parallel} ?
- $oldsymbol{f v}_\parallel = ({f v}\cdot{f n}){f n}$

05-41: Arbitrary Axis Rotation

• Once we have \mathbf{v}_{\parallel} , finding \mathbf{v}_{\perp} is easy. Why?

05-42: Arbitrary Axis Rotation

- Once we have \mathbf{v}_{\parallel} , finding \mathbf{v}_{\perp} is easy.
 - ullet $\mathbf{v}=\mathbf{v}_{\parallel}+\mathbf{v}_{\perp}$
 - ullet $\mathbf{v}_{\perp} = \mathbf{v} \mathbf{v}_{\parallel}$

05-43: Arbitrary Axis Rotation

- ullet w is perpendicular to both ${f v}_{\perp}$ and ${f n}$
- n is a unit vector
- ullet w has the same magnitude as ${f v}_{\perp}$
- What is w?

05-44: Arbitrary Axis Rotation

- ullet w is perpendicular to both ${f v}_{\perp}$ and ${f n}$
- n is a unit vector
- ullet w has the same magnitude as ${f v}_{\perp}$
- What is w?
 - $\mathbf{n} \times \mathbf{v}_{\perp}$
 - Mutually perpendicular (left-handed system in diagrams)
 - $||\mathbf{n} \times \mathbf{v}_{\perp}|| = ||\mathbf{n}|| ||\mathbf{v}_{\perp}|| \sin \theta = ||\mathbf{v}_{\perp}||$

05-45: Arbitrary Axis Rotation

- $ullet \mathbf{v}' = \mathbf{v}'_{\parallel} + \mathbf{v}'_{\perp}$
- $ullet \mathbf{v}_{\parallel}' = (\mathbf{v} \cdot \mathbf{n})\mathbf{n}_{\parallel}'$
- $\mathbf{v}'_{\perp} = \cos \theta \mathbf{v}_{\perp} + \sin \theta \mathbf{w}$
- ullet $\mathbf{v}_{\perp}=\mathbf{v}-\mathbf{v}_{\parallel}$
- ullet $\mathbf{w} = \mathbf{n} \times \mathbf{v}_{\perp}$
- $\mathbf{v}' = \cos \theta (\mathbf{v} (\mathbf{v} \cdot \mathbf{n})\mathbf{n}) + \sin \theta (\mathbf{n} \times \mathbf{v}) + (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$ (whew!)

05-46: Arbitrary Axis Rotation

- OK, so we've found out how to rotate a single vector around an arbitrary axis.
- How do we create a rotation matrix that will do this rotation?
 - In general, how do we create a rotation matrix or any transformation matrix, for that matter

05-47: Arbitrary Axis Rotation

- How to create a transformation matrix:
 - Transform each of the axis vectors
 - Put them together into a matrix (either as rows or columns, depending upon whether you are using row- or column transformation matricies)
- So, for v = [1, 0, 0], [0, 1, 0] and [0, 0, 1], calculate:

$$\cos \theta (\mathbf{v} - (\mathbf{v} \cdot \mathbf{n})\mathbf{n}) + \sin \theta (\mathbf{n} \times \mathbf{v}) + (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$$

05-48: Arbitrary Axis Rotation

- $\mathbf{v} = [1, 0, 0]$
- $\mathbf{v}' = \cos \theta (\mathbf{v} (\mathbf{v} \cdot \mathbf{n})\mathbf{n}) + \sin \theta (\mathbf{n} \times \mathbf{v}) + (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$
 - $\cos \theta([1,0,0] ([1,0,0] \cdot [n_x, n_y, n_z])[n_x, n_y, n_z])$
 - $\cos \theta([1,0,0]-(n_x)[n_x,n_y,n_z])$
 - $\cos \theta([1 n_x^2, -n_x n_y, -n_x n_z])$

05-49: Arbitrary Axis Rotation

- $\mathbf{v} = [1, 0, 0]$
- $\mathbf{v}' = \cos \theta (\mathbf{v} (\mathbf{v} \cdot \mathbf{n})\mathbf{n}) + \sin \theta (\mathbf{n} \times \mathbf{v}) + (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$
 - $\sin \theta (\mathbf{n} \times \mathbf{v})$
 - $\sin \theta([n_x, n_y, n_z] \times [1, 0, 0])$
 - $\sin \theta([0, n_z, -n_z])$

05-50: Arbitrary Axis Rotation

- $\mathbf{v} = [1, 0, 0]$
- $\mathbf{v}' = \cos \theta (\mathbf{v} (\mathbf{v} \cdot \mathbf{n})\mathbf{n}) + \sin \theta (\mathbf{n} \times \mathbf{v}) + (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$
 - $\bullet (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$
 - $([1, 0, 0] \cdot [n_x, n_y, n_z])[n_x, n_y, n_z]$
 - $\bullet \ n_x[n_x,n_y,n_z]$
 - $ullet [n_x^2, n_x n_y, n_x n_z]$

05-51: Arbitrary Axis Rotation

Add them all up, and simplify, to get

$$[n_x^2(1-\cos\theta)+\cos\theta,n_xn_y(1-\cos\theta)+n_z\sin\theta,n_xn_z(1-\cos\theta)-n_y\sin\theta]$$

05-52: Arbitrary Axis Rotation

- Do the same thing for the other two basis vectors, and get:
- y basis vector

$$[n_x n_y (1 - \cos \theta) - n_z \sin \theta, n_y^2 (1 - \cos \theta) + \cos \theta, n_y n_z (1 - \cos \theta) + n_x \sin \theta]$$

z basis vector

```
[n_x n_z (1 - \cos \theta) + n_y \sin \theta, n_y n_z (1 - \cos \theta) - n_x \sin \theta, n_z^2 (1 - \cos \theta) + \cos \theta]
```

05-53: Arbitrary Axis Rotation

Giving the final matrix:

$$n_x^2(1-\cos\theta)+\cos\theta$$
 $n_xn_y(1-\cos\theta)+n_z\sin\theta$ $n_xn_z(1-\cos\theta)-n_y\sin\theta$ $n_xn_y(1-\cos\theta)-n_z\sin\theta$ $n_yn_z(1-\cos\theta)+n_z\sin\theta$ $n_yn_z(1-\cos\theta)+n_z\sin\theta$ $n_xn_z(1-\cos\theta)+n_z\sin\theta$ $n_yn_z(1-\cos\theta)+n_z\sin\theta$ $n_zn_z(1-\cos\theta)+n_z\sin\theta$ $n_zn_z(1-\cos\theta)+n_z\sin\theta$ $n_zn_z(1-\cos\theta)+n_z\sin\theta$

05-54: Scaling

- Uniform Scaling occurs when we scale an object uniformly in all directions
- Uniform scaling preserves angles, but not areas or volumes

05-55: Scaling

- Non-Uniform Scaling occurs when we scale an object by different amounts in different dimensions
- Non-uniform scaling does not preserve angles, areas, or volumes

05-56: Scaling

- Non-Uniform Scaling occurs when we scale an object by different amounts in different dimensions
- Non-uniform scaling does not preserve angles, areas, or volumes

05-57: Scaling in 3D

 The transformation matrix for scaling (both uniform and non-uniform) is straightforward:

$$\mathbf{S}(k_x, k_y, k_z) = \left[egin{array}{cccc} k_x & 0 & 0 \ 0 & k_y & 0 \ 0 & 0 & k_z \end{array}
ight]$$

- ullet s_x, s_y , and s_z are the scaling factors for x, y and z
- lacktriangle if $s_x = s_y = s_z$, then we have uniform scaling

05-58: Scaling Along a Vector

Scale by 2 along x axis

05-59: Scaling Along a Vector

Scale by 2 along x axis

Before Scale: $v = v_{x_{||}} + v_{x_{\perp}}$

After Scale:
$$v = 2 * v_{x_{||}} + v_{x_{||}}$$

05-60: Scaling Along a Vector

Scale by 2 along y axis

Before Scale: $v = v_{y_{||}} + v_{y_{\perp}}$

After Scale: $v = 2 * v_{Y_{||}} + v_{Y_{||}}$

05-61: Scaling Along a Vector

- To scale a vector along an axis:
 - Divide the vector into a component parallel to the axis, and perpendicular to the axis
 - Scale the component parallel to the axis
 - Leave the component perpendicular to the axis alone

05-62: Scaling Along a Vector

- \bullet We can use the same technique to scale a vector ${\bf v}$ along an arbitrary vector ${\bf n}$
 - Divide ${\bf v}$ into a component parallel to ${\bf n}$, and a component perpendicular to ${\bf n}$
 - Scale the component parallel n
 - Leave the component perpendicular to n alone

05-63: Scaling Along a Vector

Scale v by 2 along n

Decompse v into: $v = v_{n_{||}} + v_{n_{||}}$

After Scale:
$$v' = 2 * v_{y_{||}} + v_{y_{\perp}}$$

05-64: Scaling Along a Vector

Scale box by 2 along n

05-65: Scaling Along a Vector

- ullet Scaling a vector ${f v}$ by k along unit vector ${f n}$
 - ullet Break ${f v}$ into ${f v}_{\parallel}$ and ${f v}_{\perp}$
 - ullet $\mathbf{v} = \mathbf{v}_{\parallel} + \mathbf{v}_{\perp}$
 - $\mathbf{v}' = k * \mathbf{v}_{\parallel} + \mathbf{v}_{\perp}$
 - $ullet \mathbf{v}_\parallel = ext{?}, \mathbf{v}_\perp = ext{?}$

05-66: Scaling Along a Vector

- ullet Scaling a vector ${f v}$ by k along unit vector ${f n}$
 - ullet Break ${f v}$ into ${f v}_{\parallel}$ and ${f v}_{\perp}$
 - $ullet \mathbf{v} = \mathbf{v}_\parallel + \mathbf{v}_\perp$
 - \bullet $\mathbf{v}' = k * \mathbf{v}_{\parallel} + \mathbf{v}_{\perp}$
 - $ullet \mathbf{v}_\parallel = (\mathbf{v} \cdot \mathbf{n}) * \mathbf{n}$
 - ullet $\mathbf{v}_{\perp} = \mathbf{v} \mathbf{v}_{\parallel}$

05-67: Scaling Along a Vector

- $ullet \mathbf{v}_\parallel = (\mathbf{v} \cdot \mathbf{n}) * \mathbf{n}$
- ullet $\mathbf{v}_{\perp} = \mathbf{v} \mathbf{v}_{\parallel}$
- \bullet $\mathbf{v}' = k * \mathbf{v}_{\parallel} + \mathbf{v}_{\perp}$
- \bullet $\mathbf{v}' = k * \mathbf{v}_{\parallel} + \mathbf{v} \mathbf{v}_{\parallel}$
- $ledowred{\bullet} \mathbf{v}' = (k-1) * \mathbf{v}_{\parallel} + \mathbf{v}_{\parallel}$
- $\mathbf{v}' = (k-1) * (\mathbf{v} \cdot \mathbf{n}) * \mathbf{n} + \mathbf{v}$

05-68: Scaling Along a Vector

 Now that we know how to scale a vector along a different vector, how do we create the transformaion matrix?

05-69: Scaling Along a Vector

- Now that we know how to scale a vector along a different vector, how do we create the transformaion matrix?
 - Transform each of the axes
 - Fill in rows (columns, when using column vectors) of matrix

05-70: Scaling Along a Vector

- $\mathbf{v}' = (k-1) * (\mathbf{v} \cdot \mathbf{n}) * \mathbf{n} + \mathbf{v}$
- x-axis:

$$(k-1)([1,0,0] \cdot [n_x, n_y, n_z]) * [n_x, n_y, n_z] + [1,0,0] =$$

$$(k-1)(n_x) * [n_x, n_y, n_z] + [1,0,0] = [(k-1)n_x^2 + 1, (k-1)n_x n_y, (k-1)n_x n_z]$$

05-71: Scaling Along a Vector

- $\mathbf{v}' = (k-1) * (\mathbf{v} \cdot \mathbf{n}) * \mathbf{n} + \mathbf{v}$
- y-axis:

$$(k-1)([0,1,0] \cdot [n_x, n_y, n_z]) * [n_x, n_y, n_z] + [0,1,0] =$$

$$(k-1)(n_y) * [n_x, n_y, n_z] + [0,1,0] = [(k-1)n_x n_y, (k-1)n_y^2 + 1, (k-1)n_x n_z]$$

05-72: Scaling Along a Vector

- $\mathbf{v}' = (k-1) * (\mathbf{v} \cdot \mathbf{n}) * \mathbf{n} + \mathbf{v}$
- z-axis:

$$(k-1)([0,0,1] \cdot [n_x, n_y, n_z]) * [n_x, n_y, n_z] + [0,0,1] = (k-1)(n_z) * [n_x, n_y, n_z] + [0,0,1] = (k-1)n_x n_z, (k-1)n_y n_z, (k-1)n_z^2 + 1]$$

05-73: Scaling Along a Vector

$$\mathbf{S}(\mathbf{n},k) = \begin{bmatrix} (k-1)n_x^2 + 1 & (k-1)n_x n_y & (k-1)n_x n_z \\ (k-1)n_x n_y & (k-1)n_y^2 + 1 & (k-1)n_x n_z \\ (k-1)n_x n_z & (k-1)n_y n_z & (k-1)n_z^2 + 1 \end{bmatrix}$$

05-74: Reflections 2D

- Another transformation that we can do with matrices is reflections
- Carndinal axes are easy to reflect around

05-75: Reflections 2D

05-76: Reflections 2D

- Another transformation that we can do with matrices is reflections
- Carndinal axes are easy to reflect around
 - How does the y basis vector change when reflecting around the y axis?
 - How does the x basis vector change when reflecting around the y axis?

05-77: Reflections 2D

- Another transformation that we can do with matrices is reflections
- Carndinal axes are easy to reflect around
 - How does the y basis vector change when reflecting around the y axis?
 - It doesn't!
 - How does the x basis vector change when reflecting around the y axis?
 - Multiplied by -1

05-78: Reflections 2D

• Reflecting around the y axis is the same as scaling the x axis by -1

$$\left[egin{array}{ccc} -1 & 0 \ 0 & 1 \end{array}
ight]$$

05-79: Reflections 2D

ullet To reflect along the x axis, we scale y by -1

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]$$

- What happens when we reflect around the y axis, and then reflect around the y axis?
- Is this equivalent to doing some other operation?

05-80: Reflections 2D

05-81: Reflections 2D

 Let's say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis:

$$\left[\begin{array}{cc} x & y \end{array}\right] \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]$$

05-82: Reflections 2D

- Let's say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis
- Matrix Multiplication is associative

$$\left[\begin{array}{cc} x & y \end{array}\right] \left(\left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]\right)$$

05-83: Reflections 2D

- Let's say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis
- Matrix Multiplication is associative

$$\left[\begin{array}{cc} x & y \end{array}\right] \left(\left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right]\right)$$

05-84: Reflections 2D

- Let's say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis
- Equivalent to 180 degree (π radians) rotation

$$\begin{bmatrix} x & y \end{bmatrix} \begin{pmatrix} \begin{bmatrix} \cos \pi & \sin \pi \\ -\sin \pi & \cos \pi \end{bmatrix} \end{pmatrix}$$

05-85: Reflections 3D

• What about reflecting around the yz-plane?

05-86: Reflections 3D

- To reflect around the yz plane, scale x by -1
- To reflect around the xy plane, scale z by -1
- To reflect around the xz plane, scale y by -1

05-87: Reflections 3D

- To reflect around any plane
 - Find the normal of the plane (there are 2 doesn't matter which one)
 - Scale around this normal, with magnitude of -1

05-88: Reflections 3D

Reflect vector around yz-plane

Scale by -1 along normal to plane

05-89: Reflections 3D

Reflect vector around yz-plane

Scale by -1 along normal to plane

05-90: Reflections 3D

Reflect vector around any plane

Scale by -1 along normal to plane

05-91: Reflections 3D

Reflect vector around any plane

Scale by -1 along normal to plane

05-92: Reflections 3D

Reflect vector around any plane

Scale by -1 along normal to plane

05-93: Reflections 3D

- To reflect around any plane
 - Find the normal of the plane (there are 2 doesn't matter which one)
 - Scale along this normal, with magnitude of -1
- If only we had some way of scaling along the normal
- ... can we scale along an arbitrary vector?

05-94: Reflection in 3D

 To scale along an arbitrary vector n by a scaling factor of k:

$$\mathbf{S}(\mathbf{n},k) = \begin{bmatrix} (k-1)n_x^2 + 1 & (k-1)n_x n_y & (k-1)n_x n_z \\ (k-1)n_x n_y & (k-1)n_y^2 + 1 & (k-1)n_x n_z \\ (k-1)n_x n_z & (k-1)n_y n_z & (k-1)n_z^2 + 1 \end{bmatrix}$$

• Just need to set k = -1

05-95: Reflection in 3D

To reflect around the plane normal to vector n:

$$\mathbf{R}(\mathbf{n}) = \mathbf{S}(\mathbf{n}, -1) = \begin{bmatrix} -2n_x^2 + 1 & (-2)n_x n_y & -2n_x n_z \\ -2n_x n_y & -2n_y^2 + 1 & -2n_x n_z \\ -2n_x n_z & -2n_y n_z & -2n_z^2 + 1 \end{bmatrix}$$

05-96: Reflections

- Any two reflections are equivalent to a single rotation
 - Doesn't matter what axes (2D) or planes (3D) we're reflecting around
 - Reflect around any plane, then reflect around any other plane, still just a rotation
- First reflection flips model "inside out", second reflection flips model "right-side out"
- A reflection around any axis is equivalent to a reflection around a cardinal axis, followed by a rotation

05-97: Shearing

- A two-dimensional shear transform adds a multiple of x to y (while leaving x alone), or adds a multiple of y to x (while leaving y alone)
 - \bullet $[x,y] \Rightarrow [x+sy,y]$
 - \bullet $[x,y] \Rightarrow [x,y+sx]$
- Result is to "tilt" the object / image

05-98: Shearing

```
Shearing along x in 2D
 y' = y (unchagned)
 x' = x + sy
```

05-99: Shearing

- Shearing along x axis by s:
 - $[x,y] \Rightarrow [x+sy,y]$
- What should the matrix be?

05-100: Shearing

- Shearing along x axis by s:
 - $[x,y] \Rightarrow [x+sy,y]$
- What should the matrix be?

$$\left[\begin{array}{cc} x & y \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ s & 1 \end{array}\right]$$

05-101: Shearing

- Shearing along y axis by s:
 - $[x,y] \Rightarrow [x,y+sx]$

$$\left[\begin{array}{cc} x & y \end{array}\right] \left[\begin{array}{cc} 1 & s \\ 0 & 1 \end{array}\right]$$

05-102: Shearing

- We can extend shearing to 3 dimensions
 - Add a multiple of x to y, leaving x and y unchanged
 - Matrix?

05-103: Shearing

- We can extend shearing to 3 dimensions
 - Add a multiple of y to x, leaving y and z unchanged

$$\left[\begin{array}{cccc} x & y & z \end{array}\right] \left[\begin{array}{cccc} 1 & 0 & 0 \\ s & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

05-104: Shearing

- We can extend shearing to 3 dimensions
 - Add a multiple s of z to x, and a multiple t of z to y, leaving z unchanged
 - Matrix?

05-105: Shearing

- We can extend shearing to 3 dimensions
 - Add a multiple s of z to x, and a multiple t of z to y, leaving z unchanged

$$\left[egin{array}{ccccc} x & y & z \end{array}
ight] \left[egin{array}{cccc} 1 & 0 & 0 \ 0 & 1 & 0 \ s & t & 1 \end{array}
ight]$$

• Other shears? (adding a multiple s of x to y, and a multiple t of x to z, for instance)

05-106: Shearing

- Shearing is equivalent to rotation and non-uniform scale
 - Technically, rotation and non-uniform scale gives a sheared shape
 - Need to rotate back to get the same orientation

05-107: Shearing

Rotate clockwise 45

Non-uniform scale (strech x, shrink y)

Rotate counterclockwise (~32)

05-108: Shearing

- When shearing, angles are not preserved
- Areas (volumes) are preserved
- Parallel lines remain parallel

05-109: Combining Transforms

- A series of operations on a vector (model) is just a series of matrix multiplications
 - Rotate, scale, rotate (as above)
 - $((\mathbf{v}M_{rot})M_{scale})M_{rot}$
- Matrix multiplication is associative (but not communative!)

$$((\mathbf{v}M_{rot})M_{scale})M_{rot} = \mathbf{v}((M_{rot})(M_{scale}M_{rot}))$$
$$= \mathbf{v}M'$$

 We can create one matrix that does all transformations at once

05-110: Linear Transforms

- A transformation is *Linear* if:
 - $\mathbf{F}(\mathbf{a} + \mathbf{b}) = \mathbf{F}(\mathbf{a}) + \mathbf{F}(\mathbf{b})$
 - $\mathbf{F}(k\mathbf{a}) = k\mathbf{F}(\mathbf{a})$
- That is:
 - Transforming two vectors and then adding them is the same as adding them, and then transforming
 - Scaling a vector and then transforming it is the same as transforming a vector, and then scaling it

05-111: Linear Transforms

 All transformations that can be represented by matrix multiplication are linear

$$\mathbf{F}(\mathbf{a} + \mathbf{b}) = (\mathbf{a} + \mathbf{b})\mathbf{M}$$
$$= \mathbf{a}\mathbf{M} + \mathbf{b}\mathbf{M}$$
$$= \mathbf{F}(\mathbf{a}) + \mathbf{F}(\mathbf{b})$$

$$\mathbf{F}(k\mathbf{a}) = (k\mathbf{a})\mathbf{M}$$
$$= k(\mathbf{a}\mathbf{M})$$
$$= k\mathbf{F}(\mathbf{a})$$

05-112: Linear Transforms

- Rotation, scale (both uniform and non-uniform), reflection, and shearing are all linear transforms
- Is translation a linear transform?

05-113: Linear Transforms

- All linear transforms need to map the zero vector to the zero vector
 - Why?

05-114: Linear Transforms

- All linear transforms need to map the zero vector to the zero vector
 - Assume that $F(\mathbf{0}) = \mathbf{v}$
 - $F(k\mathbf{0}) = F(\mathbf{0}) = \mathbf{v}$
 - $\mathbf{F}(k\mathbf{a}) = k\mathbf{F}(\mathbf{a})$
 - Thus, $\mathbf{v} = k\mathbf{v}$ for all k, only true if \mathbf{v} is the zero vector

05-115: Linear Transforms

- All linear transforms need to map the zero vector to the zero vector
- Translations do not map the zero vector to the zero vector
- Translations are not linear
 - Can't represent translations using matrix multiplication
 - (We will use matricies to represent translations later, but we will need to use highter dimensions ...)

05-116: Linear Transforms

- In a linear transformation, parallel lines remain parallel after translation
 - Angles may or may not be preserved
 - Areas / volumes may or may not be preserved

05-117: Affine Transforms

- An Affine Transformation is a linear transformation followed by a translation
- ullet Any transform of form $\mathbf{F}(\mathbf{v}) = \mathbf{v}\mathbf{M} + \mathbf{b}$ is affine
- We will only concern ourselves with affine transforms in this class

05-118: Angle-Preserving Transforms

- A transform is angle preserving if angles are preserved.
- Which transformations are angle preserving?

05-119: Angle-Preserving Transforms

- A transform is angle preserving if angles are preserved.
- Which transformations are angle preserving?
 - Translations
 - Rotation
 - Uniform Scale
- Why not reflection?

05-120: Rigid Body Transforms

- Rigid body transforms change only:
 - Orientation of an object
 - Position of an object
- Only translation and rotation are rigid-body transforms
- Reflection is not rigid body
- Also known as "proper" transformations