Game Engineering
CS420-2016S-05

Linear Transforms

Davi |

Department of Computer Science
University of San Francisco



http://www.cs.usfca.edu/galles

05-0: Matrices as Transforms

® Recall that Matrices are transforms
* Transform vectors by rotating, scaling, shearing

e Transform objects as well
- Transforming every vertex in the object




05-1: Calculating Transformations

® What happens when we transform [1,0,0], [0,1,0],
and [0,0,1] by
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05-2: Calculating Transformations

® What happens when we transform [1,0,0], [0,1,0],
and [0,0,1]:

mi1  mi2 Mi3
[1,0,0] | mo1  ma22 mas | = [m11,m12, m13]

| M31 Mm32 M33

mii mi2 mi13

0,1,0] | mo1 ma2 me3z | = [ma21, ma2, ma3]

| m31 m32 Mm33 |

mii mi2 mi3

[0,0,1] | m9; may ma3 | = [m31,m32, m33]

| m31 m32 Mm33 |




05-3: Calculating Transformations

® S0, we want to make a transformation matrix

e Matrix that, when multiplied by a vector,
transforms the vector

e (also transforms a model — just a series of
points)
® Jo create the matrix

e Decide what the basis vectors should look like
after the transformation

e Fill in the matrix with the new basis vectors




05-4: Rotations

® Start with the 2D case
* Rotate a vector 6 degrees counter-clockwise

e What do the basis vectors look like after the
rotation?

e That's the transformation matrix!




05-5: Rotations 2D
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05-6: Rotations 2D
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05-7: Rotations 2D
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05-8: Rotations 2D
y

New X basi s vector:
[cos O, sin 0]

a

1 b
0




05-9: Rotations 2D

y
a |,
sin 6 = al/c
h 0 cos O = b/c




05-10: Rotations 2D

y
a |
SIn 6 = a
h 0 cos O =D
New Y basi sS:
[-sin O, cos 0]
X




05-11: Rotations 2D

y




05-12: Rotations 3D

® [or rotations in 3 dimensions, we need to define:
* The axis we are rotating around
* The direction that we are rotating

® Can't just use “counter-clockwise” anymore -
“counter-clockwise” in relation to what?




05-13: Rotations 3D

® Rotation around the z axis

® Which direction to rotate depends upon whether
you are using right-handed or left-handed
coordinate system

® Select appropriate hand (right- or left-)

® Point thumb along the positive axis around which
you are rotating

® Fingers curl in direction of ¢




05-14: Rotations 3D

® Rotations in 3D work just like rotations in 2D

e Determine how the basis vectors will change
under the rotation
- Need to consider 3 vectors instead of 2

e Create a matrix using the new basis vectors
+ 3x3 instead of 2x3




05-15: Rotations 3D

® Rotating 6 degrees around the z axis

* How do the z coordinates of a vector change in
this rotation?

* |In other words, what happens to the z-basis
vector when rotating around the z axis?




05-16: Rotations 3D

® Rotating 6 degrees around the z axis

* How do the z coordinates of a vector change in
this rotation?
- They don't!
* |In other words, what happens to the z-basis
vector when rotating around the z axis?
- It doesn’t move!




05-17: Rotations 3D

® \What about the x basis vector — how does it
change?




05-18: Rotations 3D

¢ R ght or |eft handed?




05-19: Rotations 3D

y




05-20: Rotations 3D

Sane as 2D (Casel!

4 new X: [cos O, sin 0,
new y:. |[-sin 06, cos 0,
I new z: [0, 0,
0
Z
0 , >




05-21: Rotations 3D

® What about rotating around a different axis?
 Works the same way
e Axis being rotated around doesn’t change
e Other two axes are the 2D case




05-22: Rotations 3D

® Rotate # degrees around the z-axis:

cosf sinf 0
—sinf cosf 0

0 0 1




05-23: Rotations 3D

® Rotate # degrees around the z-axis:

y [0, <cos O, sin 9
z [0, -sin B, cos 0]




05-24: Rotations 3D

® Rotate # degrees around the z-axis:

1 0 0
0 cosf sind

0 —sinf coséb




05-25: Rotations 3D
® Rotate ¢/ degrees around the y-axis:

YI' X [cos B, 0, -sin 6]

Z [sin 6, 0, cos O]




05-26: Rotations 3D

® Rotate ¢/ degrees around the y-axis:

cosf 0 —sinfh
0 1 0
i sinff 0 cosf




0s-27: Arbitrary Axis Rotation

® What if we want to rotate about something other
than a main axis?
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0s-28: Arbitrary Axis Rotation

® Use this trick to rotate a vector about aribitrary axis
* Break the vector into two component vectors
* Rotate the component vectors
* Add them back together to get rotated vector

® The trick will be picking component vectors that are
easy to rotate ...




0s-29: Arbitrary Axis Rotation

AV




0s-30: Arbitrary Axis Rotation

® v s the vector we want to rotate

® n is the vector we want to rotate around (assume n
IS a unit vector)

® Break v into v and v,
® Rotate v and v, around n
® Add them back together to get rotated v




05-31: Arbitrary Axis Rotation




0s-32: Arbitrary Axis Rotation

® v s the vector we want to rotate

® n is the vector we want to rotate around (assume n
IS a unit vector)

® Break v into vy and v

® What is the result of rotating v around n?




05-33: Arbitrary Axis Rotation

® v s the vector we want to rotate

® n is the vector we want to rotate around (assume n
IS a unit vector)

® Break v into vy and v

® What is the result of rotating v around n?
* v doesn’t change!




0s-3a: Arbitrary Axis Rotation

® Create w, perpendicular to both v and v,
* w Is the same length as v
e w perpendicular to n

e w, v, and v/, (v, after rotation) are all in the
same plane.




05-35: Arbitrary Axis Rotation

® \ector v, Is rotating through the plane containing
\%%

® Since rotation is constrained to this one plane,
back in the 2D case!




0s-36: Arbitrary Axis Rotation

sin 0 = a/ V' = a / W
cos O = b/ V' = b/ V||
A

(b I's negative
I n ths exanpl e)




05-37: Arbitrary Axis Rotation

a+ b
sin 6 * w

<
® -
i

b =cos 0* v,

= Cc0oS B0 * v+ sin 0 * w




0s-38: Arbitrary Axis Rotation

® So, we have:
*V =v, +V)
A
"ViI=VI
e v/, =cosfv, + sinfw

® All we need to do now is find v, v, and w.




05-39: Arbitrary Axis Rotation

® What is V||?
* That is, the projection of v onto n?




0s-40: Arbitrary Axis Rotation

® What is V||?

® vi=(v-n)n




0s-41: Arbitrary Axis Rotation

® Once we have vy, finding v, is easy. Why?




0s-42: Arbitrary Axis Rotation

® Once we have v, finding v is easy.
* V=V TV,
*V, =V YV




05-43: Arbitrary Axis Rotation

® w Is perpendicular to both v, and n
® n is a unit vector

® w has the same magnitude as v

® What is w?




0s-a4: Arbitrary Axis Rotation

® w Is perpendicular to both v, and n
® n is a unit vector
® w has the same magnitude as v
® What is w?
*°nxv,

 Mutually perpendicular (left-handed system in
diagrams)

* |[[nxvif| = [n]|[lvi|[sing = [lv_||




0s-45: Arbitrary Axis Rotation

* Vv i=v +V)

® vi=(v-n)n

® v =cosfv, + sinfw
v, =v—-y

®* wW—nxv,

® v =cosf(v—(v-n)n)+sinf(n xv)+ (v-n)n
(whew!)




0s-46: Arbitrary Axis Rotation

® OK, so we've found out how to rotate a single
vector around an arbitrary axis.

® How do we create a rotation matrix that will do this
rotation?

* |n general, how do we create a rotation matrix —
or any transformation matrix, for that matter




0s-47: Arbitrary Axis Rotation

® How to create a transformation matrix:
e Transform each of the axis vectors

e Put them together into a matrix (either as rows
or columns, depending upon whether you are
using row- or column transformation matricies)

® So, forv =1,0,0], 0, 1,0] and [0, 0, 1], calculate:

cosf(v — (v-n)n) +sinf(n x v) + (v-n)n




0s-a8: Arbitrary Axis Rotation

* v=11,0,0]

® v =cosf(v—(v-n)n)+sinf(n xv)+ (v-n)n
e cosf([1,0,0] — ([1,0,0] - [ng, 1y, n.]) |0y, 1y, 1))
* cosO(|1,0,0] = (1) [1z, 12y, 122

e cosO(|1 —n;, —n.n,, —n,n,|)




0s-49: Arbitrary Axis Rotation

* v=11,0,0]

® v =cosf(v—(v-n)n)+sinf(nxv)+(v-nn
e sinf(n x v)
e sinf([n,,n,,n.] x[1,0,0])
e sinf(|0,n,, —n,]




0s-50: Arbitrary Axis Rotation

* v=11,0,0]

® v =cosf(v—(v-n)n)+sinf(n xv)+ (v -n)n
e (v-n)n
* (11,0,0] - [, my, me]) M, My, 2]
® NNy, Ny, N,

° [ngzca nﬂcnya nxnz]




05-51: Arbitrary Axis Rotation

® Add them all up, and simplify, to get

[n2(1 — cos @) + cos 0, ngyny (1l —cosh) +n,sinb, ngn,(1 — cosf) — ny sin 6]




0s-52: Arbitrary Axis Rotation

® Do the same thing for the other two basis vectors,
and get:

® 1 basis vector

[neny (1 — cosf) —n.sin,n2 (1 — cosd) + cosh,nyn. (1 — cosf) + ngy sin 6]

® - basis vector

[nanz(1 — cosf) + ny sinf, nyn, (1 — cos @) — ny sin @, n2 (1 — cos ) + cos 0]




05-53: Arbitrary Axis Rotation

® Giving the final matrix:

n2(1 — cos @) + cos 6 NgNy(l —cosf) +n,sinf  ngnz(l —cosf) —nysinb ]
NgNy(l —cosf) —n.siné n%(l — cos ) + cos b Nynz (1 —cosf) + ng sin 6
| nanz(l —cosf) +nysind  nynz(1l —cosf) — ny sind n2(1 — cosf) + cos




05-54: Scaling

® Uniform Scaling occurs when we scale an
object uniformly in all directions

® Uniform scaling preserves angles, but not areas or

volumes
y y
2 0
<o 2]
O O
0, %
NN
X X




05-55: Scaling

® Non-Uniform Scaling occurs when we scale an
object by different amounts in different dimensions

® Non-uniform scaling does not preserve angles,
areas, or volumes

Lo

0 0




05-56: Ocaling

® Non-Uniform Scaling occurs when we scale an
object by different amounts in different dimensions

® Non-uniform scaling does not preserve angles,
areas, or volumes

g

Squar e X Par al | el ogram X




05-57: 9caling in 3D

® The transformation matrix for scaling (both uniform
and non-uniform) is straightforward:

k, 0 0
k, 0

S(ky ky k) = | 0
0 0 k.

® s..s,, and s, are the scaling factors for x, y and z
® if s, = s, = s., then we have uniform scaling




05-58: Ocaling Along a Vector

Scale by 2 along x axis

/

/




05-59: Ocaling Along a Vector

Scale by 2 along x axis
Before Scale: v =v, +vV

X X
V
/ X1 / VXJ_
P> |
2% V
VX” X

After Scale: v = 2 * v, +vV




05-60: Ocaling Along a Vector

Scale by 2 along y axis

Before Scale: v :Vy”*'vyl

VYL

VYL

o 2* Vy,
y||

. — *
After Scale: v 2 vy”+vyl




05-61: Scaling Along a Vector

® Jo scale a vector along an axis:

e Divide the vector into a component parallel to
the axis, and perpendicular to the axis

e Scale the component parallel to the axis

* | eave the component perpendicular to the axis
alone




05-62: Scaling Along a Vector

® We can use the same technique to scale a vector
v along an arbitrary vector n

e Divide v into a component parallel to n, and a
component perpendicular to n

e Scale the component parallel n
* | eave the component perpendicular to n alone




05-63: Ocaling Along a Vector

Scale v by 2 along n

Deconmpse v into: v = v, +V

After Scale: v = 2 * v, +Vv




05-64: Scaling Along a Vector

Scal e box by 2 along n

o




05-65: Ocaling Along a Vector

® Scaling a vector v by k£ along unit vector n
* Break v into v and v
V=V TV,
s Vi=k*xv+v,

.V”:?,VJ_:?




05-66: Ocaling Along a Vector

® Scaling a vector v by k£ along unit vector n
* Break v into v and v
V=V TV,
s Vi=k*xv+v,
e vi=(v-n)*n
* V| =V -V,




Vector
Scaling Along a
05-67:

(V-n)*xn
‘- V)
.VJ_:V_

/_/-C*V”
‘V—

— V]
/:k*V”——V :
. (k—l)*V||—|—
.V:

v =(k—1)%(v-n)xn




05-68: Ocaling Along a Vector

® Now that we know how to scale a vector along a
different vector, how do we create the
transformaion matrix?




05-69: Ocaling Along a Vector

® Now that we know how to scale a vector along a
different vector, how do we create the
transformaion matrix?

e Transform each of the axes

e Fill in rows (columns, when using column
vectors) of matrix




05-70: Scaling Along a Vector
ov=(k—1)x(v-n)*sn+v
® x-axis:

(k—1)([1,0,0] - [ng,ny,nz]) * [ng, ny,nz] + [1,0,0] =
(k—1)(ng) * [ng,ny,nz] +[1,0,0] = [(k — 1)n923 + 1, (k — D)ngngy, (kK — 1)ngn;]




05-71: Scaling Along a Vector
ov=(k—1)x(v-n)*sn+v
® y-axis:

(k—1)([0,1,0] - [ng,ny,nz]) * [ng, ny,nz] +[0,1,0] =
(k—1)(ny) * [ng,ny,nz] +[0,1,0] = [(k — 1)ngny, (k — 1)n§ +1,(k—1)ngnz|




05-72: Scaling Along a Vector

ov=(k—1)x(v-n)*sn+v
® z-axis:

(k—1)(]0,0,1] - [ng, ny,nz]) * [Nz, ny,nz] +1[0,0,1] = (k—1)(nz) * [ng, ny,nz]+[0,0,1] =

[(k — Dngnz, (k— Dnyns, (k — 1)n2 + 1]




05-73: Scaling Along a Vector

(k—1)n2 +1
(kK — 1)ngny
| (k= 1)ngn:

(kK — 1)ngny
(k—1)nZ +1
(k—1)nyn,

(k— 1)ngn, ]
(k— 1)ngn,
(k—1)n2+1




05-74: Reflections 2D

® Another transformation that we can do with
matrices is reflections

® Carndinal axes are easy to reflect around




05-75: Reflections 2D

/ y
N 7
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05-76: Reflections 2D

® Another transformation that we can do with
matrices is reflections
® Carndinal axes are easy to reflect around

* How does the y basis vector change when
reflecting around the y axis?

* How does the x basis vector change when
reflecting around the y axis?




05-77: Reflections 2D

® Another transformation that we can do with
matrices is reflections

® Carndinal axes are easy to reflect around

* How does the y basis vector change when
reflecting around the y axis?
» It doesn’t!

* How does the x basis vector change when
reflecting around the y axis?
» Multiplied by -1




05-78: Reflections 2D

® Reflecting around the y axis is the same as scaling
the x axis by -1




05-79: Reflections 2D

® To reflect along the z axis, we scale y by -1

I 0
0 —1

® What happens when we reflect around the y axis,
and then reflect around the y axis?

® |s this equivalent to doing some other operation?




05-80: Reflections 2D

y
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05-81: Reflections 2D

® | et’s say that we took a vector, then reflected it
around the y axis, and then reflected it around the
x axis:

[my} —1 0 1 0




05-82: Reflections 2D

® | et’s say that we took a vector, then reflected it
around the y axis, and then reflected it around the

x axis
® Matrix Multiplication is associative

(ot )




05-83: Reflections 2D

® | et’s say that we took a vector, then reflected it
around the y axis, and then reflected it around the

x axis
® Matrix Multiplication is associative

() )




05-84: Reflections 2D

® | et’s say that we took a vector, then reflected it
around the y axis, and then reflected it around the

x axis
® Equivalent to 180 degree (7 radians) rotation

[ } COSTT SInT
T .
—SIN7T COST




05-85: Reflections 3D

® What about reflecting around the yz-plane?

Y y
VA
L

- X




05-86: Reflections 3D

® To reflect around the yz plane, scale z by -1
* To reflect around the zy plane, scale z by -1
® To reflect around the zz plane, scale y by -1




05-87: Reflections 3D

® o reflect around any plane

* Find the normal of the plane (there are 2 —
doesn’'t matter which one)

e Scale around this normal, with magnitude of -1




05-88: Reflections 3D

Refl ect vector around yz-pl ane

Scale by -1 along nornmal to plane

N

P
P




05-89: Reflections 3D

Refl ect vector around yz-pl ane

Scale by -1 along nornmal to plane

LA
L

_~
P

)




05-90: Reflections 3D

Refl ect vector around any pl ane

Scale by -1 along normal to pl ane




05-91: Reflections 3D

Refl ect vector around any pl ane

Scale by -1 along normal to pl ane




05-92: Reflections 3D

Refl ect vector around any pl ane

Scale by -1 along normal to plane

y




05-93: Reflections 3D

® o reflect around any plane

* Find the normal of the plane (there are 2 —
doesn’'t matter which one)

e Scale along this normal, with magnitude of -1

® |f only we had some way of scaling along the
normal

® .. can we scale along an arbitrary vector?




05-94: Reflection in 3D

® Jo scale along an arbitrary vector n by a scaling
factor of £:

[ (k—Dn2+1  (k—Dneny  (k—Dnans |
S(n, k) = (k—1D)nzgny (k- 1)n§ +1 (k= 1)ngn,
| (k= 1)ngzn. (k—Lnyn, (k—1)n2+1

® Justneedtosetk = —1




05-95: Reflection in 3D

® To reflect around the plane normal to vector n:

R(n) =S(n,—1) = — —2n§ +1 —2ngn,
i —2N:N 5 —2Nyn, —2n§ +1 J




05-96: Reflections

® Any two reflections are equivalent to a single
rotation

 Doesn’'t matter what axes (2D) or planes (3D)
we're reflecting around

» Reflect around any plane, then reflect around
any other plane, still just a rotation

® First reflection flips model “inside out”, second
reflection flips model “right-side out”

® A reflection around any axis is equivalent to a
reflection around a cardinal axis, followed by a
rotation




05-97: Shearing

® A two-dimensional shear transform adds a multiple
of x to y (while leaving x alone), or adds a multiple
of y to x (while leaving y alone)

* [z,y] = [z + sy, yl
* |z,y] =[x,y + sz
® Result is to “tilt” the object / image




05-98: Shearing

Shearing along x In 2D

Y
X

X + Sy

y

= y (unchagned)

&

)




05-99: Shearing

® Shearing along x axis by s:
* |z,y] = [z + sy, y]
® \What should the matrix be?




05-100: Shearing

® Shearing along x axis by s:
* |z,y] = [z + sy, y]
® \What should the matrix be?

£

VAR

—




05-101: Shearing

® Shearing along y axis by s:

e z,y] = |x,y + sz

£

S =

eV )




05-102: Shearing

® We can extend shearing to 3 dimensions

* Add a multiple of x to y, leaving x and y
unchanged

e Matrix?




05-103: Shearing

® We can extend shearing to 3 dimensions

 Add a multiple of y to x, leaving y and z
unchanged

oy

O »w =
O~ O
— O O




05-104: Shearing

® We can extend shearing to 3 dimensions

* Add a multiple s of z to x, and a multiple ¢ of z
to vy, leaving z unchanged

e Matrix?




05-105: Shearing

® We can extend shearing to 3 dimensions

* Add a multiple s of z to x, and a multiple ¢ of z
to vy, leaving z unchanged

~+ = O

0
0
|

1
[:13 Y z} 0
K

e Other shears? (adding a multiple s of x to v,
and a multiple ¢ of x to z, for instance)




05-106: Shearing

® Shearing is equivalent to rotation and non-uniform
scale

* Technically, rotation and non-uniform scale
gives a sheared shape

* Need to rotate back to get the same orientation




05-107: Shearing

Rot at e cl ockwi se 45

y y

O<>O /fo\
S

Non-uni form scal e Rot at e count er -
(strech x, shrink y) cl ockwi se (~32)

y y

O Yy,

= T




05-108: Shearing

® When shearing, angles are not preserved
® Areas (volumes) are preserved
® Parallel lines remain parallel




05-100: Combining Transforms

® A series of operations on a vector (model) is just a
series of matrix multiplications

* Rotate, scale, rotate (as above)
® ((VMrot)Mscale)Mrot

® Matrix multiplication is associative (but not
communative!)

((VMrot)Mscale)Mrot — V((Mrot) (MscaleMrot))
v M’

® \We can create one matrix that does all
transformations at once




05-110: LInear Transforms

® A transfomation is Linear if:
e Fla+b)=F(a)+ F(b)
e F(ka) = kF(a)

® Thatis:

* Transforming two vectors and then adding them
IS the same as adding them, and then
transforming

e Scaling a vector and then transforming it is the
same as transforming a vector, and then
scaling it




05-111: LInear Transforms

® All transformations that can be represented by
matrix multiplication are linear

F(a+b) = (a+b)M
aM + bM
F(a) + F(b)

F(ka) =

|
.
S
=




05-112: LInear Transforms

® Rotation, scale (both uniform and non-uniform),
reflection, and shearing are all linear transforms

® |s translation a linear transform?




05-113: LInear Transforms

® All linear transforms need to map the zero vector to
the zero vector

e Why?




05-114: LInear Transforms

® All linear transforms need to map the zero vector to
the zero vector

e Assume that F'(0) =v

e F'(kE0) = F(0)=v

e F(ka) = kF(a)

 Thus, v = kv for all k£, only true if v is the zero
vector




05-115: LInear Transforms

® All linear transforms need to map the zero vector to
the zero vector

® Translations do not map the zero vector to the zero
vector

® Jranslations are not linear

e Can’t represent translations using matrix
multiplication

* (We will use matricies to represent translations
later, but we will need to use highter
dimensions ...)




05-116: LInear Transforms

® |n a linear transformation, parallel lines remain
parallel after translation

* Angles may or may not be preserved
* Areas / volumes may or may not be preserved




05-117: Affine Transforms

® An Affine Transformation is a linear transformation
followed by a translation

® Any transform of form F(v) = vM + b is affine

® We will only concern ourselves with affine
transforms in this class




05-118: Angle-Preserving Transforms

® A transform is angle preserving if angles are
preserved.

® Which transformations are angle preserving?




05-119: Angle-Preserving Transforms

® A transform is angle preserving if angles are
preserved.
® Which transformations are angle preserving?
* Translations
* Rotation
e Uniform Scale

® Why not reflection?




05-120: Rigid Body Transforms

® Rigid body transforms change only:
e QOrientaton of an object
* Position of an object

® Only translation and rotation are rigid-body
transforms

® Reflection is not rigid body
® Also known as “proper” transformations
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