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05-0: Matrices as Transforms

Recall that Matrices are transforms

Transform vectors by rotating, scaling, shearing

Transform objects as well
Transforming every vertex in the object



05-1: Calculating Transformations

What happens when we transform [1,0,0], [0,1,0],
and [0,0,1] by
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
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05-2: Calculating Transformations

What happens when we transform [1,0,0], [0,1,0],
and [0,0,1]:
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05-3: Calculating Transformations

So, we want to make a transformation matrix

Matrix that, when multiplied by a vector,
transforms the vector

(also transforms a model – just a series of
points)

To create the matrix

Decide what the basis vectors should look like
after the transformation

Fill in the matrix with the new basis vectors



05-4: Rotations

Start with the 2D case

Rotate a vector θ degrees counter-clockwise

What do the basis vectors look like after the
rotation?

That’s the transformation matrix!



05-5: Rotations 2D

x

y

θ



05-6: Rotations 2D

x

y

θ
b

a

c

cos θ = a/c
sin θ = b/c



05-7: Rotations 2D

x

y

θ
b

a

cos θ = a
sin θ = b



05-8: Rotations 2D

x

y

θ
b

a

1

New X basis vector:
[cos θ, sin θ]



05-9: Rotations 2D

x

y

θ

a

b

sin θ = a/c

c

cos θ = b/c



05-10: Rotations 2D

x

y

θ

a

b

sin θ = a
cos θ = b

New Y basis:
[-sin θ, cos θ]



05-11: Rotations 2D

x

y

θ

cos θ   sin θ
-sin θ  cos θ



05-12: Rotations 3D

For rotations in 3 dimensions, we need to define:

The axis we are rotating around

The direction that we are rotating

Can’t just use “counter-clockwise” anymore -
“counter-clockwise” in relation to what?



05-13: Rotations 3D

Rotation around the z axis

Which direction to rotate depends upon whether
you are using right-handed or left-handed
coordinate system

Select appropriate hand (right- or left-)

Point thumb along the positive axis around which
you are rotating

Fingers curl in direction of θ



05-14: Rotations 3D

Rotations in 3D work just like rotations in 2D

Determine how the basis vectors will change
under the rotation

Need to consider 3 vectors instead of 2

Create a matrix using the new basis vectors
3x3 instead of 2x3



05-15: Rotations 3D

Rotating θ degrees around the z axis

How do the z coordinates of a vector change in
this rotation?

In other words, what happens to the z-basis
vector when rotating around the z axis?



05-16: Rotations 3D

Rotating θ degrees around the z axis

How do the z coordinates of a vector change in
this rotation?

They don’t!

In other words, what happens to the z-basis
vector when rotating around the z axis?

It doesn’t move!



05-17: Rotations 3D

What about the x basis vector – how does it
change?



05-18: Rotations 3D

x

y

z

Right or left handed?



05-19: Rotations 3D

x

y

z

θ

θ



05-20: Rotations 3D

new y: [-sin θ, cos θ, 0]

x

y

z

θ

θ

Same as 2D Case!
new x: [cos θ,  sin θ, 0]

new z: [0,      0,     1]



05-21: Rotations 3D

What about rotating around a different axis?

Works the same way

Axis being rotated around doesn’t change

Other two axes are the 2D case



05-22: Rotations 3D

Rotate θ degrees around the z-axis:







cos θ sin θ 0

− sin θ cos θ 0

0 0 1









05-23: Rotations 3D

Rotate θ degrees around the x-axis:

x

y

zθ
θ

y [0,  cos θ, sin θ]
z [0, -sin θ, cos θ]



05-24: Rotations 3D

Rotate θ degrees around the x-axis:







1 0 0

0 cos θ sin θ

0 − sin θ cos θ









05-25: Rotations 3D

Rotate θ degrees around the y-axis:

x

y

z

x [cos θ, 0, -sin θ]
z [sin θ, 0, cos θ]

θ



05-26: Rotations 3D

Rotate θ degrees around the y-axis:







cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ









05-27: Arbitrary Axis Rotation

What if we want to rotate about something other
than a main axis?



05-28: Arbitrary Axis Rotation

Use this trick to rotate a vector about aribitrary axis

Break the vector into two component vectors

Rotate the component vectors

Add them back together to get rotated vector

The trick will be picking component vectors that are
easy to rotate ...



05-29: Arbitrary Axis Rotation



05-30: Arbitrary Axis Rotation

v is the vector we want to rotate

n is the vector we want to rotate around (assume n
is a unit vector)

Break v into v‖ and v⊥

Rotate v‖ and v⊥ around n

Add them back together to get rotated v



05-31: Arbitrary Axis Rotation

n

v

v
v

n

v

v’
vv’

v



05-32: Arbitrary Axis Rotation

v is the vector we want to rotate

n is the vector we want to rotate around (assume n
is a unit vector)

Break v into v‖ and v⊥

What is the result of rotating v‖ around n?



05-33: Arbitrary Axis Rotation

v is the vector we want to rotate

n is the vector we want to rotate around (assume n
is a unit vector)

Break v into v‖ and v⊥

What is the result of rotating v‖ around n?

v‖ doesn’t change!



05-34: Arbitrary Axis Rotation

n

v

v’
vv’

v

w

Create w, perpendicular to both v‖ and v⊥

w is the same length as v⊥

w perpendicular to n

w, v⊥ and v′
⊥ (v⊥ after rotation) are all in the

same plane.



05-35: Arbitrary Axis Rotation

Vector v⊥ is rotating through the plane containing
w

Since rotation is constrained to this one plane,
back in the 2D case!



05-36: Arbitrary Axis Rotation

cos θ = b / ||v’ || = b / ||v ||

v

w

θ
v’a

b

sin θ = a / ||v’ || = a / ||w|| 

(b is negative
 in ths example)



05-37: Arbitrary Axis Rotation

v

w

θ
v’ a

b

a = sin θ * w
b = cos θ * v

v’ = a + b

v’ = cos θ * v + sin θ * w



05-38: Arbitrary Axis Rotation

So, we have:

v′ = v′
‖ + v′

⊥

v′
‖ = v‖

v′
⊥ = cos θv⊥ + sin θw

All we need to do now is find v‖,v⊥ and w.



05-39: Arbitrary Axis Rotation

n

v

v’
vv’

v

w

What is v‖?

That is, the projection of v onto n?



05-40: Arbitrary Axis Rotation

n

v

v’
vv’

v

w

What is v‖?

v‖ = (v · n)n



05-41: Arbitrary Axis Rotation

Once we have v‖, finding v⊥ is easy. Why?



05-42: Arbitrary Axis Rotation

Once we have v‖, finding v⊥ is easy.

v = v‖ + v⊥

v⊥ = v − v‖



05-43: Arbitrary Axis Rotation

w is perpendicular to both v⊥ and n

n is a unit vector

w has the same magnitude as v⊥

What is w?



05-44: Arbitrary Axis Rotation

w is perpendicular to both v⊥ and n

n is a unit vector

w has the same magnitude as v⊥

What is w?

n× v⊥

Mutually perpendicular (left-handed system in
diagrams)

||n× v⊥|| = ||n||||v⊥|| sin θ = ||v⊥||



05-45: Arbitrary Axis Rotation

v′ = v′
‖ + v′

⊥

v′
‖ = (v · n)n

v′
⊥ = cos θv⊥ + sin θw

v⊥ = v − v‖

w = n× v⊥

v′ = cos θ(v − (v · n)n) + sin θ(n× v) + (v · n)n
(whew!)



05-46: Arbitrary Axis Rotation

OK, so we’ve found out how to rotate a single
vector around an arbitrary axis.

How do we create a rotation matrix that will do this
rotation?

In general, how do we create a rotation matrix –
or any transformation matrix, for that matter



05-47: Arbitrary Axis Rotation

How to create a transformation matrix:

Transform each of the axis vectors

Put them together into a matrix (either as rows
or columns, depending upon whether you are
using row- or column transformation matricies)

So, for v = [1, 0, 0], [0, 1, 0] and [0, 0, 1], calculate:

cos θ(v − (v · n)n) + sin θ(n× v) + (v · n)n



05-48: Arbitrary Axis Rotation

v = [1, 0, 0]

v′ = cos θ(v − (v · n)n) + sin θ(n× v) + (v · n)n

cos θ([1, 0, 0]− ([1, 0, 0] · [nx, ny, nz])[nx, ny, nz])

cos θ([1, 0, 0] − (nx)[nx, ny, nz])

cos θ([1− n2

x,−nxny,−nxnz])



05-49: Arbitrary Axis Rotation

v = [1, 0, 0]

v′ = cos θ(v − (v · n)n) + sin θ(n× v) + (v · n)n

sin θ(n× v)

sin θ([nx, ny, nz]× [1, 0, 0])

sin θ([0, nz,−nz]



05-50: Arbitrary Axis Rotation

v = [1, 0, 0]

v′ = cos θ(v − (v · n)n) + sin θ(n× v) + (v · n)n

(v · n)n

([1, 0, 0] · [nx, ny, nz])[nx, ny, nz]

nx[nx, ny, nz]

[n2

x, nxny, nxnz]



05-51: Arbitrary Axis Rotation

Add them all up, and simplify, to get

[n2
x
(1− cos θ) + cos θ, nxny(1− cos θ) + nz sin θ, nxnz(1− cos θ)− ny sin θ]



05-52: Arbitrary Axis Rotation

Do the same thing for the other two basis vectors,
and get:

y basis vector
[nxny(1− cos θ)− nz sin θ, n2

y
(1− cos θ) + cos θ, nynz(1− cos θ) + nx sin θ]

z basis vector
[nxnz(1− cos θ) + ny sin θ, nynz(1− cos θ)− nx sin θ, n2

z
(1− cos θ) + cos θ]



05-53: Arbitrary Axis Rotation

Giving the final matrix:









n2
x
(1− cos θ) + cos θ nxny(1− cos θ) + nz sin θ nxnz(1− cos θ)− ny sin θ

nxny(1− cos θ)− nz sin θ n2
y
(1− cos θ) + cos θ nynz(1− cos θ) + nx sin θ

nxnz(1− cos θ) + ny sin θ nynz(1− cos θ)− nx sin θ n2
z
(1− cos θ) + cos θ











05-54: Scaling

Uniform Scaling occurs when we scale an
object uniformly in all directions

Uniform scaling preserves angles, but not areas or
volumes

x

y

x

y

2
0
0
2



05-55: Scaling

Non-Uniform Scaling occurs when we scale an
object by different amounts in different dimensions

Non-uniform scaling does not preserve angles,
areas, or volumes

x

y

x

y

1
0
0
2



05-56: Scaling

Non-Uniform Scaling occurs when we scale an
object by different amounts in different dimensions

Non-uniform scaling does not preserve angles,
areas, or volumes

x

y

x

y
1
0
0
2

Square Parallelogram



05-57: Scaling in 3D

The transformation matrix for scaling (both uniform
and non-uniform) is straightforward:

S(kx, ky, kz) =







kx 0 0

0 ky 0

0 0 kz







sx, sy, and sz are the scaling factors for x, y and z

if sx = sy = sz, then we have uniform scaling



05-58: Scaling Along a Vector

Scale by 2 along x axis



05-59: Scaling Along a Vector

Before Scale:  v = 

vx

vx

vx vx+

Scale by 2 along x axis

vx

vx2*

After Scale:  v = 2 * vx vx+



05-60: Scaling Along a Vector

Before Scale:  v = 

vy

vy

vy vy+

Scale by 2 along y axis

vy

vy2*

After Scale:  v = 2 * vy vy+



05-61: Scaling Along a Vector

To scale a vector along an axis:

Divide the vector into a component parallel to
the axis, and perpendicular to the axis

Scale the component parallel to the axis

Leave the component perpendicular to the axis
alone



05-62: Scaling Along a Vector

We can use the same technique to scale a vector
v along an arbitrary vector n

Divide v into a component parallel to n, and a
component perpendicular to n

Scale the component parallel n

Leave the component perpendicular to n alone



05-63: Scaling Along a Vector

Decompse v into: v = vn vn+

Scale v by 2 along n

After Scale:  v’= 2 * vy vy+

v

n

v

n nv

vn v’

n
nv

vn

2



05-64: Scaling Along a Vector

Scale box by 2 along n

n

n



05-65: Scaling Along a Vector

Scaling a vector v by k along unit vector n

Break v into v‖ and v⊥

v = v‖ + v⊥

v′ = k ∗ v‖ + v⊥

v‖ = ?, v⊥ = ?



05-66: Scaling Along a Vector

Scaling a vector v by k along unit vector n

Break v into v‖ and v⊥

v = v‖ + v⊥

v′ = k ∗ v‖ + v⊥

v‖ = (v · n) ∗ n

v⊥ = v − v‖



05-67: Scaling Along a Vector

v‖ = (v · n) ∗ n

v⊥ = v − v‖

v′ = k ∗ v‖ + v⊥

v′ = k ∗ v‖ + v − v‖

v′ = (k − 1) ∗ v‖ + v

v′ = (k − 1) ∗ (v · n) ∗ n+ v



05-68: Scaling Along a Vector

Now that we know how to scale a vector along a
different vector, how do we create the
transformaion matrix?



05-69: Scaling Along a Vector

Now that we know how to scale a vector along a
different vector, how do we create the
transformaion matrix?

Transform each of the axes

Fill in rows (columns, when using column
vectors) of matrix



05-70: Scaling Along a Vector

v′ = (k − 1) ∗ (v · n) ∗ n+ v

x-axis:

(k − 1)([1, 0, 0] · [nx, ny, nz ]) ∗ [nx, ny , nz ] + [1, 0, 0] =

(k − 1)(nx) ∗ [nx, ny, nz ] + [1, 0, 0] = [(k − 1)n2
x
+ 1, (k − 1)nxny , (k − 1)nxnz ]



05-71: Scaling Along a Vector

v′ = (k − 1) ∗ (v · n) ∗ n+ v

y-axis:

(k − 1)([0, 1, 0] · [nx, ny, nz ]) ∗ [nx, ny , nz ] + [0, 1, 0] =

(k − 1)(ny) ∗ [nx, ny, nz ] + [0, 1, 0] = [(k − 1)nxny, (k − 1)n2
y
+ 1, (k − 1)nxnz ]



05-72: Scaling Along a Vector

v′ = (k − 1) ∗ (v · n) ∗ n+ v

z-axis:

(k− 1)([0, 0, 1] · [nx, ny, nz ]) ∗ [nx, ny, nz ] + [0, 0, 1] = (k− 1)(nz) ∗ [nx, ny , nz ] + [0, 0, 1] =

[(k − 1)nxnz , (k − 1)nynz , (k − 1)n2
z
+ 1]



05-73: Scaling Along a Vector

S(n, k) =









(k − 1)n2
x
+ 1 (k − 1)nxny (k − 1)nxnz

(k − 1)nxny (k − 1)n2
y
+ 1 (k − 1)nxnz

(k − 1)nxnz (k − 1)nynz (k − 1)n2
z
+ 1











05-74: Reflections 2D

Another transformation that we can do with
matrices is reflections

Carndinal axes are easy to reflect around



05-75: Reflections 2D

x

y

x

y



05-76: Reflections 2D

Another transformation that we can do with
matrices is reflections

Carndinal axes are easy to reflect around

How does the y basis vector change when
reflecting around the y axis?

How does the x basis vector change when
reflecting around the y axis?



05-77: Reflections 2D

Another transformation that we can do with
matrices is reflections

Carndinal axes are easy to reflect around

How does the y basis vector change when
reflecting around the y axis?

It doesn’t!

How does the x basis vector change when
reflecting around the y axis?

Multiplied by -1



05-78: Reflections 2D

Reflecting around the y axis is the same as scaling
the x axis by -1

[

−1 0

0 1

]



05-79: Reflections 2D

To reflect along the x axis, we scale y by -1

[

1 0

0 −1

]

What happens when we reflect around the y axis,
and then reflect around the y axis?

Is this equivalent to doing some other operation?



05-80: Reflections 2D

x

y

x

y

x

y



05-81: Reflections 2D

Let’s say that we took a vector, then reflected it
around the y axis, and then reflected it around the
x axis:

[

x y
]

[

−1 0

0 1

] [

1 0

0 −1

]



05-82: Reflections 2D

Let’s say that we took a vector, then reflected it
around the y axis, and then reflected it around the
x axis

Matrix Multiplication is associative

[

x y
]

([

−1 0

0 1

] [

1 0

0 −1

])



05-83: Reflections 2D

Let’s say that we took a vector, then reflected it
around the y axis, and then reflected it around the
x axis

Matrix Multiplication is associative

[

x y
]

([

−1 0

0 −1

])



05-84: Reflections 2D

Let’s say that we took a vector, then reflected it
around the y axis, and then reflected it around the
x axis

Equivalent to 180 degree (π radians) rotation

[

x y
]

([

cos π sin π

− sin π cos π

])



05-85: Reflections 3D

What about reflecting around the yz-plane?

x

y

z

x

y

z



05-86: Reflections 3D

To reflect around the yz plane, scale x by -1

To reflect around the xy plane, scale z by -1

To reflect around the xz plane, scale y by -1



05-87: Reflections 3D

To reflect around any plane

Find the normal of the plane (there are 2 –
doesn’t matter which one)

Scale around this normal, with magnitude of -1



05-88: Reflections 3D

x

y

z

Reflect vector around yz-plane

Scale by -1 along normal to plane



05-89: Reflections 3D

x

y

z

Reflect vector around yz-plane

Scale by -1 along normal to plane

x

y

z



05-90: Reflections 3D

x

y

z

Reflect vector around any plane

Scale by -1 along normal to plane



05-91: Reflections 3D

x

y

z

Reflect vector around any plane

Scale by -1 along normal to plane



05-92: Reflections 3D

x

y

z

x

y

z

Reflect vector around any plane

Scale by -1 along normal to plane



05-93: Reflections 3D

To reflect around any plane

Find the normal of the plane (there are 2 –
doesn’t matter which one)

Scale along this normal, with magnitude of -1

If only we had some way of scaling along the
normal

... can we scale along an arbitrary vector?



05-94: Reflection in 3D

To scale along an arbitrary vector n by a scaling
factor of k:

S(n, k) =









(k − 1)n2
x
+ 1 (k − 1)nxny (k − 1)nxnz

(k − 1)nxny (k − 1)n2
y
+ 1 (k − 1)nxnz

(k − 1)nxnz (k − 1)nynz (k − 1)n2
z
+ 1









Just need to set k = −1



05-95: Reflection in 3D

To reflect around the plane normal to vector n:

R(n) = S(n,−1) =









−2n2
x
+ 1 (−2)nxny −2nxnz

−2nxny −2n2
y
+ 1 −2nxnz

−2nxnz −2nynz −2n2
z
+ 1











05-96: Reflections

Any two reflections are equivalent to a single
rotation

Doesn’t matter what axes (2D) or planes (3D)
we’re reflecting around

Reflect around any plane, then reflect around
any other plane, still just a rotation

First reflection flips model “inside out”, second
reflection flips model “right-side out”

A reflection around any axis is equivalent to a
reflection around a cardinal axis, followed by a
rotation



05-97: Shearing

A two-dimensional shear transform adds a multiple
of x to y (while leaving x alone), or adds a multiple
of y to x (while leaving y alone)

[x, y] ⇒ [x+ sy, y]

[x, y] ⇒ [x, y + sx]

Result is to “tilt” the object / image



05-98: Shearing

x

y

x

y

Shearing along x in 2D

y’ = y (unchagned)
x’ = x + sy  



05-99: Shearing

Shearing along x axis by s:

[x, y] ⇒ [x+ sy, y]

What should the matrix be?



05-100: Shearing

Shearing along x axis by s:

[x, y] ⇒ [x+ sy, y]

What should the matrix be?

[

x y
]

[

1 0

s 1

]



05-101: Shearing

Shearing along y axis by s:

[x, y] ⇒ [x, y + sx]

[

x y
]

[

1 s

0 1

]



05-102: Shearing

We can extend shearing to 3 dimensions

Add a multiple of x to y, leaving x and y
unchanged

Matrix?



05-103: Shearing

We can extend shearing to 3 dimensions

Add a multiple of y to x, leaving y and z
unchanged

[

x y z
]







1 0 0

s 1 0

0 0 1









05-104: Shearing

We can extend shearing to 3 dimensions

Add a multiple s of z to x, and a multiple t of z
to y, leaving z unchanged

Matrix?



05-105: Shearing

We can extend shearing to 3 dimensions

Add a multiple s of z to x, and a multiple t of z
to y, leaving z unchanged

[

x y z
]







1 0 0

0 1 0

s t 1







Other shears? (adding a multiple s of x to y,
and a multiple t of x to z, for instance)



05-106: Shearing

Shearing is equivalent to rotation and non-uniform
scale

Technically, rotation and non-uniform scale
gives a sheared shape

Need to rotate back to get the same orientation



05-107: Shearing

x

y

x

y

x

y

x

y

Rotate clockwise 45

Non-uniform scale
(strech x, shrink y)

Rotate counter-
clockwise (~32)



05-108: Shearing

When shearing, angles are not preserved

Areas (volumes) are preserved

Parallel lines remain parallel



05-109: Combining Transforms

A series of operations on a vector (model) is just a
series of matrix multiplications

Rotate, scale, rotate (as above)

((vMrot)Mscale)Mrot

Matrix multiplication is associative (but not
communative!)

((vMrot)Mscale)Mrot = v((Mrot)(MscaleMrot))

= vM ′

We can create one matrix that does all
transformations at once



05-110: Linear Transforms

A transfomation is Linear if:

F(a+ b) = F(a) + F(b)

F(ka) = kF(a)

That is:

Transforming two vectors and then adding them
is the same as adding them, and then
transforming

Scaling a vector and then transforming it is the
same as transforming a vector, and then
scaling it



05-111: Linear Transforms

All transformations that can be represented by
matrix multiplication are linear

F(a + b) = (a+ b)M

= aM+ bM

= F(a) + F(b)

F(ka) = (ka)M

= k(aM)

= kF(a)



05-112: Linear Transforms

Rotation, scale (both uniform and non-uniform),
reflection, and shearing are all linear transforms

Is translation a linear transform?



05-113: Linear Transforms

All linear transforms need to map the zero vector to
the zero vector

Why?



05-114: Linear Transforms

All linear transforms need to map the zero vector to
the zero vector

Assume that F (0) = v

F (k0) = F (0) = v

F(ka) = kF(a)

Thus, v = kv for all k, only true if v is the zero
vector



05-115: Linear Transforms

All linear transforms need to map the zero vector to
the zero vector

Translations do not map the zero vector to the zero
vector

Translations are not linear

Can’t represent translations using matrix
multiplication

(We will use matricies to represent translations
later, but we will need to use highter
dimensions ...)



05-116: Linear Transforms

In a linear transformation, parallel lines remain
parallel after translation

Angles may or may not be preserved

Areas / volumes may or may not be preserved



05-117: Affine Transforms

An Affine Transformation is a linear transformation
followed by a translation

Any transform of form F(v) = vM+ b is affine

We will only concern ourselves with affine
transforms in this class



05-118: Angle-Preserving Transforms

A transform is angle preserving if angles are
preserved.

Which transformations are angle preserving?



05-119: Angle-Preserving Transforms

A transform is angle preserving if angles are
preserved.

Which transformations are angle preserving?

Translations

Rotation

Uniform Scale

Why not reflection?



05-120: Rigid Body Transforms

Rigid body transforms change only:

Orientaton of an object

Position of an object

Only translation and rotation are rigid-body
transforms

Reflection is not rigid body

Also known as “proper” transformations
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