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0s-0: Right-Handed vs. Left-Handed

® Hold out your left hand (really, do it!):
* Thumb to the right
* |Index finder up
* Middle finger straight ahead

® This forms a basis for a 3D coordinate system




0s-1: Right-Handed vs. Left-Handed

® Hold out your left hand (really, do it!):
* Thumb to the right (+ x)
* Index finder up (+y)
* Middle finger straight ahead (+ z)

® This forms a basis for a 3D coordinate system —
Left-Handed Coordinate system




0s-2: Right-Handed vs. Left-Handed

® Now, Hold out your right hand (yes, really do it!):
 Thumb to the left (+ x)
* Index finder up (+y)
* Middle finger straight ahead (+ z)

® This forms the other basis for 3D coordinate
system — Right-Handed Coordinate system




04-3: Right-Handed vs. Left-Handed

® Any basis can be rotated to be either left-handed
or right-handed

® Swap between systems by flipping any one axis

® Flipping two axes leaves handedness unchanged
(why?)
* What about flipping all 37




0s-4: Right-Handed vs. Left-Handed

® Computer Graphics typically uses Left-Handed
coordinate system

* Book does, too
® “Pure” linear algebra often uses Right-Handed
coordiate system

e Ogre also uses a Right-Handed coordinate
system

e Easy transformation, just invert the sign of one
axis




04-5: Multiple Cooridinate Systems

® OK, so we've decided on a right-handed coordinate
system (given Ogre), with y pointing “Up”
® Pick an arbitrary location for the origin
e Often in the middle of the world
e Can place it off in some corner

® Not quite done — can use multiple coordinate
systems!




0s-6: Multiple Cooridinate Systems

® World Space

® Object Space

® Camera Space (Special case of Object Space)
® |ntertial Space




0s-7: World Space

® Assume that the origin of the world is the middle of
the field between Sl and K Hall

e 2130 Fulton, the official University address is
there

* +x Is East (along Fulton), +y is straight up, +z is
North
® What direction is “forward” from me in world
space?
® What is the point 5 feet in front of me in world
space”?
 What if | rotate 15 deg. to the left?




0s-8: Object Space

® Define a new coordinate system
® Qrigin is at my center

® +x to my right

® +vyis up through my head

® ;7 is straight ahead




04-9: Object Space

® |n my object space, finding a point right ahead of
me is trivial

® (Given a coordinate in my object space, determining
where | have to look (to aim, for instance) is trivial

® Of course, we will need a way to translate between
world space and object space
e Say tuned!

® Define an “Object Space” for each object in our
world




04-10: Camera Space

® Camera Space is a special case of object space
* Object is the camera

® We'll use left-handed coordinates (+z into the
screen), swapping to right-hand is easy (invert Z)

® Why is camera space useful?




11: Camera Space
04-11:

ty

+X




04-12: Camera Space

® |s an object within the camera’s frustum?

® |s object A in front of object B, or vice-versa?

® |s an object close enough to the camera to render?
® . eic




04-13: Intertial Space

® Halfway betwen object space and world space
® Axes parallel to world space
® Origin same as object space




04-14: Inertial Space




04-15: Inertial Space




0s-16: Inertial Space

| nertial Space




0s-17: Nested Coordinate Spaces

® Each object needs to be oriented in world space

® That is, the axes for the local space of the object
need to be oriented in world space.

® We could use a different object’s local space
instead of global space

e Easiest to see with an example




0s-18: Nested Coordinate Spaces

® Assume that we have a dog, which has a head and
ears

* The head can wag back and forth (in relation to
the body)

* The ears can flap up and down (in relation to
the head)

<Y

® We don’t want to decribe the position of the ears in
world space, or even in dog space

e Head space is much more convienent




0s-19: Nested Coordinate Spaces

® Dog's ears are described in head space
 Up and down in relation to the head

® Dog’s head is described in dog space
e Back and forth in relation to the dog

® Dog’s position is described in world space




0s-20: Nested Coordinate Spaces

® To render the dog (with ears!)
* Translate the ear location from head space to
dog space
* Translate the ear location (and the head
location) from do space to world space

* Translate all the dog from world space to
camera space

* Project the objects from 3-space to a plane




0s-21: Nested Coordinate Spaces

® The Head space is a child of the Dog space
* The Dog space is the parent of the Head space

® The Ear space is a child of the head space
* The Head space is the parent of the ear space

® We could also dynamically parent and unparent
objects




04-22: Changing Coordinate Spaces

® Qur character is wearing a red hat
® The hat is at position (0,100) in object space
® What is the position of the hat in world space?

® To make life easier, we will think about rotating the
axes, instead of moving the objects




04-23: Changing Coordinate Spaces

A+y

Wor| d Space




04-24: Changing Coordinate Spaces

A+y

Rot ate axis cl ockwi se 45 degrees

Wor| d Space




04-25: Changing Coordinate Spaces

A+y

Tr ansl at e axes
to the left & down

A /

ty
A

N +x

>

hj ect Space
(now I nertial Space)

+X

Wor| d Space




04-26: Changing Coordinate Spaces

WY
Ty
A
hj ect Space
(now Worl d Space)
+X X
> >

Wor| d Space




04-27: Changing Coordinate Spaces

® Rotate axes to the right 45 degrees
e Hat rotates the the left 45 degrees, from (0,100)
to (-70, 70)
® Translate axes to the left 150, and down 50

e Hat rotates to the right 150 and up 50, to (80,
120)

® We'll see how to do those rotations using matrices
later ...




04-28: Changing Coordinate Spaces

A+y

(80, 120) worl d space

(0, 100) Object space

o)
"

Wor| d Space




04-29: Back to Basics

® A Vector is a displacement
® \ector has both direction and length

® Can also think of a vector as a position (just a
displacement from the origin)

® Can be written as a row or column vector
e Differnence can be important for multiplication




04-30: Vector Operations

® Multiplying by a scalar
* To multiply a vector v by a scalar s, multiply
each component of the vector by s

e Effect is scaling the vector — multiplying by 2
maintains the direction of the vector, but makes
the length twice as long

* Works the same for 2D and 3D vectors (and
highter dimemsion vectors, too, for that matter)




04-31: Vector Operations

® Multiplying by a scalar
e Multiplying a vector by -1 flips the direction of
the vector
 Works for 2D and 3D

* Multiplying a vector by -2 both flips the
direction, and scales the vector




04-32: Scaling a Vector

V/




04-33: Length

® \ector has both direction and length

Directi on




04-32: Length

® \ector has both direction and length

&

\
\\LZ\J Direction

(Two angl es)




04-35: Length

® Vector v = |vy, Vg, ... U]
® | ength of v:

Vil =y 3

Qa“%
b

a




04-36: Normalizing a Vector

® Normalize a vector by setting its length to 1, but
maintining its direction.

® Multiply by 1/length

\%

V’I’LO’/"I’I’L — ||V||

® Of course, v can’t be the zero vector
e Zero vector is the only vector without a direction




04-37: Vector Addition

® Add two vectors by adding their components

® (U, Us, Us| + V1, Vo, V3] = |y +V1, Uz + Vo, us+ U+ 3]

v1i+v2




04-38: Vector Subtraction

® \lector subtraction is the same as multiplying by -1
and adding

® v, — Vv, Is the displacement from the point at v, to
the point at v,

* notthe displacement from v; to v,




04-30: Vector Subtraction




04-40: Point Distance

® We can use subtraction and length to find the
distance between two points

® Represent points as vectors — displacement from
the origin

® Distance fromvtouis ||[v—u|| = ||lu—v||
 Where ||v|| is the length of the vector v.




04-41: Dot Product

® 0= l|a,qy,...,a,]

® b= |b,by, ..., b,

® a-b=>", ab

® v = [5171791,2’1],?)2 — [517272‘/2,22]

® V-V =219 + Y1Y2 + 2120




04-42: Dot Product

a-b=||al| * ||b|| * cos @




04-43: Dot Product

( . )

If @ and b are unit vectors:

0 = arccos (a - b)




04-44: Dot Product

® |[f we don’'t need the exact angle, we can just use
the sign

e [f0 <90, cosf >0

e [f 0 =90, cosfd =0

e [f90 < 6 < 180, cosf < 0
® Since a - b= ||a|l|||b|| cos 6:
*lfa-b>0,0<90(3)
*lfa-b=0,0=90(7)

e fa-b< 0,90 <0 < 180
’%<(9<7T




04-45: Projecting Vectors

PNS




0s-46: Projecting Vectors

® (Given a vector v and n, we want to decompose v
into two vectors, v (parallel to n) and v,

(perpendicular to n)

ol

*y=n
Il

* So all we need is ||vy|]

|yl

cosf =
|v]]

lul] = cosO|v]




04-47: Projecting Vectors

&

[

*y=n

® ||l = cos@l|v]]

s
|
S

cos 0] |v][|n]]

In]|?
v-n

n
[nl]?




04-48: Projecting Vectors

® Once we have vy, finding v, is easy, since
V=0 + VU

v +v = v
v, = U—UH
UV-N
vV, = UV—nNn

n]|?




04-49: Cross Product

® v = [5171791721], Vg = [372792722]

® U XUy = [?/122 — Z21Y9, 21T9 — L1292, L1Ys — y15132]

® Cross product of two vectors is a new vector
perpendicular to the other two vectors




04-50: Cross Product

1< b




04-51: Cross Product

® Which way does the cross product a x b point?

* |t depends upon your coordinate system —
right-handed vs. left-handed

® For right-handed coordinate systems, take your
right hand, move your fingers from a to b — thumb
points along a x b

® For left-handed coordinate systems, take your right
hand, move your fingers from a to b — thumb points
along a x b




04-52: Cross Product

® Magnitude of cross product:
* [la x b]| = ||all[|0]] sin 6

® Same as the area of the parallelogram defined by
a and b

-




04-53: Cross Product

wW

b

® Area of parallelogram = w x h
* w = |||
® sint) = h/||al||, h = ||al|sin @

® wxh =/||a||||b|]|sinf = ||a x b||




04-54: Matrices

® A 4x3 matrix M:




04-55: Matrices

® A Square matrix has the same width and height

M = o1 Moo TNog

® A diagonal matrix is a square matrix with
non-diagonal elements equal to zero

™11 0 0
M = 0 TN99 0
0 0 133 |




0s-56: Matrices

® The Identity Matrizis a diagonal matrix with all
diagonal elements = 1

O = O
—_ O O




04-57: Matrices

® Matrices and vectors
* Vectors are a special case of matrices
e Row vectors (as we’ve seen so far) |z, y, |

X
e Columnvectors: | y
<




0s-58: Matrices

® Transpose

e Written M*
 Exchange rows and colums

_ T
a b c -
d e f _Zj
g h 1 _
okl o

. O




04-59: Transpose

® The transpose of a row vector is a column vector
® For any matrix M, (M*)' = M
® For a diagonal matrix D, D' = ?




04-60: Transpose

® The transpose of a row vector is a column vector
® For any matrix M, (M*)' = M

® For a diagonal matrix D, D! = D

* True for any matrix that is symmetric along the
diagonal




0s-61: Matrix Multiplication

® Multiplying a Matrix by a scalar

e Multiply each element in the Matrix by the
scalar

* Just like multiplying a vector by a scalar

mip My M3 kmy kmas kmas

M = k Moy Mg TNo3 _ kmoy kmay  kmios
m3; Mgy 133 kmsg, kmsy kmss

| Ty Mg TTl43 | L kg kmyy  kmys




0s-62: Matrix Multiplication

® Multiplying two matrices A and B
® A dimensions n X m, B dimensions m X p
e C=AB

e Cdimensionsn X p

m
Cij = E ik Or;
|




04-63: Matrix Multiplication

all a12 a‘13

a21 a22 a23

o O O

8
=

N
=

o O O

w
N

=
N

N
N

Cll C12

C21 C22




0s-64: Matrix Multiplication

all alZ a13 bll b12 Cll
a21 a22 a23 b21 b22 C21
b31 b32

1= a11b11 + a, b21 td,, b31




04-65: Matrix Multiplication

all alZ a13 bll b12 Cll
a21 a22 a23 b21 b22 C21
b31 b32

01 = a21b11 T a,, b21 T d,, b31




0s-66: Matrix Multiplication

all alZ a13 bll b12 Cll
a21 a22 a23 b21 b22 C21
b31 b32

10 = a11b12 + a, b22 td,, b32




0s-67: Matrix Multiplication

all alZ a13 bll b12 Cll
a21 a22 a23 b21 b22 C21
b31 b32

00 = a21b12 T a,, b22 T d,, b32




0s-68: Matrix Multiplication

® \ectors are special cases of matrices

® Multiplying a vector and a matrix is just like
multiplying two matrices

mii mi2 mi13

[90 Y Z] ma21 ma22  MM23 —

| m31 m32 Mm33

[ Irmi1 + ymsai + z2m31 TmMig + Yymoo + 2ms32  TMi13 + Yym3 + 21mM33 }




0s-69: Matrix Multiplication

® \ectors are special cases of matrices

® Multiplying a vector and a matrix is just like
multiplying two matrices

mi1  Mmi2 Mmis T Tmi1 +ymiz + 2mi3

mo1  M22  M23 Y — Tma1 + ymsa2 + 2ma3

| m31 m32 m33 | | 2 | | TM31 + Yym32 + 2m33 |




0s-70: Matrix Multiplication

® Note that the following multiplications are not legal:

x mii1 mi2 Mmi3

Yy ma21 m22 23

| m31  m32 Mm33

mi1 mi2 mi3

ma21  MM22  M23 [90 Yy Z]

| M31 Mm32 M33




0s-71: Matrix Multiplication

® Matrix Multiplicaton is not commutative: AB # BA
(at least not for all A and B —is it true for at least
one A and B?)

® Matrix Multiplication is associative:
(AB)C = A(BC)

® Transposing product is the same as the product of
the transpose, in reverse order: (AB)! = BT A"

mii1 mi2 mi13 x mii mi2 mi13

mo1 Moz  M23 Y 75[1‘ Y Z] mo1 Moz  M23

| m31 m32 Mm33 | | 2 | | m31 m32 Mm33 |




0s-72: Matrix Multiplication

® Matrix Multiplicaton is not commutative: AB # BA
(at least not for all A and B —is it true for at least
one A and B?)

® Matrix Multiplication is associative:
(AB)C = A(BC)

® Transposing product is the same as the product of
the transpose, in reverse order: (AB)! = BT A"

- - T _
mi1 mi2 mi13 X mi1 mai m3i

mo21 M2  M23 Yy :[x Yy Z} mi2 M22 M32

| m31 m32 Mm33 | | 2 | | mi13  m23 Mm33 |




04-73: Matrix Multiplication

® |dentity Matrix /:
e A] = A (for appropriate )
e /A = A (for appropriate I)

mi1 ma2i ma31

mi2 ma22 ma32

o O =
o =~ O
— O O

| mi13 m23 m33 | |

mii ma21i ma3i

mi2 ma22 m32

o O =
o = O
= O O

| mi13 m23 Mm33 |




0s-7a: Matrix Multiplication
® |dentity Matrix /:

e A] = A (for appropriate )
e /A = A (for appropriate I)

[« +]

o O =
o~ O
— O O




04-75: Matrix Multiplication

® |dentity Matrix /:
e A] = A (for appropriate )
e /A = A (for appropriate I)

x

Y

o O =
o = O
= O O

1 I




0s-76: Matrix Multiplication

® |dentity Matrix /:

e A] = A (for appropriate )
e /A = A (for appropriate I)

(1= v =]

xZ

Y

1]




04-77: Row vs. Column Vectors

® A vector can be reresented as a row vector or a
column vector

® This makes a difference when using matrices
e Row: vA, Column Av

® |t gets even more fun when using matrices to do
several transformations of a vector:

e Row vABC, Column CBAv (note that to get
the same transformation, you need to take the
transpose of A, B, and C' when swapping
between row and column vectors




04-78: Row vs. Column Vectors

a b c [ ] —ax—|—by—|—cz-
d e f y | = | de +ey+ fz
g h 1 | gz +hy+iz

~ 0O &
= S Q

a
[zcyz]b
c

= { ar +by+cz der+ey+ fz gx—+ hy+iz ]




04-79: Row vs. Column Vectors

[zca—l—yc zL’b—I—yd}[Z ;:]_

[ (za+yc)e+ (zb+yd)g (za+yc)f + (zb+ yd)h ]
e g a ¢ T | _
f h b d y

e f ar + cy
g h bx + dy

[ e(az + cy) + glaz + cy)

flax + cy) + h(azx + yd)




04-80: Row vs. Column Vectors

® DirectX and the text use row vectors

® OpenGL and Ogre use column vectors

* Ogre has a back end for both OpenGL and
Direct3D

e Ogre transposes matrices before sending them
to D3D libraries
® | ecture will use both
e This is on purpose
e | want you to really understand what’s going on,
not just memorize formulas




0s-81: More Matrices

® Consider the vector |z, v, z]

v:

® Rewrite as:

N

x
Y

N

X




0s-82: More Matrices

® |let p, q,r be unit vectors for +z, +y and +z

® v=-2xp-+yq-+2zr

® We have defined v as a linear combination of p, q
and r.

* p, q, and r are basis vectors




04-83: Basis Vectors

y




04-84: Basis Vectors

® D, q, and r are unit vectors along the X, Y and Z
axes — we're used to seeing vectors decomposed
this way

® Technically, any 3 linearly-independent vectors
could be used as basis vectors

® Typically, mutually perpendicular vertices are used
as basis vectors

® Basis vectors not aligned with axes: Object space
rotated from world space




0s-85: Non-Perpendicular Basis

y




0s-86: Perpendicular Basis

y

Y v = 3/5p + 6/ 59

N




0s-87: Marices & Basis

® | ook back at our basis vectors p,q and r.
® Create a 3x3 matrix M using p,q and r as rows:

p Pz Py P:
\Y e q — 4 4y {4
i r | i T Ty T j

® Multiply a vector by this matrix:

Px DPy Pz
oy 2| @ @ o | =

Ty Ty Tz




0s-88: Marices & Basis

Px Py Dz
[CU Yy Z] dx 4y gz —

Ty Ty Tz

[ TPz + Yqo + 2Tz TPy + Yqy + 2Tz TPz + Yq= + 272 ] =

rp + yq + 2r




04-89: Marices & Basis

® This is really cool. Why?

e Take a local space, defined by 3 basis vectors
- Rotation only (no translation)

* Create a matrix with these vectors as rows (or
cols)

e Matrix transforms from local space into global
space




0s-90: Matrices & Basis

y

Coordi nates 1 n | ocal

(Xp. yp )

Coordi nates i1 n gl obal

X P+ Y9

Coordi nates I n gl obal

P

g

space

space

space




0s-91: Matrices as Transforms

® A 3x3 matrix is a transform
e Transforms a vector

e Since a 3D model is just a series of points, can
also transform a model
- Transforming each point in the model

® \What does the transformation look like?

® Can you look at the matrix, and see what the
transformation will be?




04-92: Matrices as Transforms

® | et’s look at what happens when we multiply the
basis vectors [1,0, 0], |0,1,0] and |0,0, 1| by an
arbitrary matrix:




04-93: Matrices as Transforms

mii

m2i1

| M3

mii

m2i1

| m31

mii1

ma2i

| ma31

mi2
ma22

m32

mi2
ma22

m32

mi2
ma22

m32

mi3

ma23

m33 |

mi3

ma23

m3s3 |

mi3

m23

ms33 |

[

[

:[m31

mi2 MMmi3 ]

m22 123 }

ma32 ma33 :|




0s-94: Matrices as Transforms

® Fach row of the matrix is a basis vector after
transformation

e (Or each column of the matrix, if we're using
column vectors)

® | et's look at an example in 2D:

® What happens when we transform a vector (or a
2D polgon) using this matrix?

® Assume row vectors for the moment ...




0s-95: Matrices as Transforms

EOIEH




0s-96: Matrices as Transforms

y




0s-97: Matrices as Transforms

y




0s-98: Matrices as Transforms

y y




04-99: Matrices as Transforms

® The matrix:

2 1
—1 2

both scaled and rotated a 2D image

® |t is possible, of course for a matrix to just scale, or
just rotate an image as well




0s-100: Matrices as Transforms

y

di3




0s-101: Matrices as Transforms

y

Loz

0 0




04-102: Matrices as Transforms

® Can a matrix do something other than scale and
rotate?




04-103: Matrices as Transforms

® Can a matrix do something other than scale and
rotate?

e Yes!

® What would a matrix that did something other than
scale or rotate look like? (stay 2D, for the moment)




0s-104: Matrices as Transforms

® Can a matrix do something other than scale and
rotate?

* Yes!
® What would a matrix that did something other than
scale or rotate look like? (stay 2D, for the moment)
e “Basis vectors” in matrix non-orthogonal




04-105: Matrices as Transforms




0s-106: Matrices as Transforms

/.

<Y




0s-107: Matrices as Transforms

® This translates (reasonably) easily into 3D

® |nstead of stretching, rotating, or skewing part of a
plane, stretch, rotate, or skew a cube

1
0
00

No transformation (or identity transformation)

0
0
|




0s-108: Matrices as Transforms

® This translates (reasonably) easily into 3D

® |nstead of stretching, rotating, or skewing part of a
plane, stretch, rotate, or skew a cube

o O
S e
O G

What is this?




0s-109: Matrices as Transforms

0 0
0 1
10
y
! VA
=
/ N
X

‘OOH




0s-110: Matrices as Transforms

0 0 1
0 1 O
1 0 O




04-111: Matrices as Transforms

® This translates (reasonably) easily into 3D

® |nstead of stretching, rotating, or skewing part of a
plane, stretch, rotate, or skew a cube

0 01
0 10
-1 0 0
Rotation about the Y axis, 7 (90 degrees)
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