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04-0: Right-Handed vs. Left-Handed

Hold out your left hand (really, do it!):

Thumb to the right

Index finder up

Middle finger straight ahead

This forms a basis for a 3D coordinate system



04-1: Right-Handed vs. Left-Handed

Hold out your left hand (really, do it!):

Thumb to the right (+ x)

Index finder up (+ y)

Middle finger straight ahead (+ z)

This forms a basis for a 3D coordinate system –
Left-Handed Coordinate system



04-2: Right-Handed vs. Left-Handed

Now, Hold out your right hand (yes, really do it!):

Thumb to the left (+ x)

Index finder up (+ y)

Middle finger straight ahead (+ z)

This forms the other basis for 3D coordinate
system – Right-Handed Coordinate system



04-3: Right-Handed vs. Left-Handed

Any basis can be rotated to be either left-handed
or right-handed

Swap between systems by flipping any one axis

Flipping two axes leaves handedness unchanged
(why?)

What about flipping all 3?



04-4: Right-Handed vs. Left-Handed

Computer Graphics typically uses Left-Handed
coordinate system

Book does, too

“Pure” linear algebra often uses Right-Handed
coordiate system

Ogre also uses a Right-Handed coordinate
system

Easy transformation, just invert the sign of one
axis



04-5: Multiple Cooridinate Systems

OK, so we’ve decided on a right-handed coordinate
system (given Ogre), with y pointing “Up”

Pick an arbitrary location for the origin

Often in the middle of the world

Can place it off in some corner

Not quite done – can use multiple coordinate
systems!



04-6: Multiple Cooridinate Systems

World Space

Object Space

Camera Space (Special case of Object Space)

Intertial Space



04-7: World Space

Assume that the origin of the world is the middle of
the field between SI and K Hall

2130 Fulton, the official University address is
there

+x is East (along Fulton), +y is straight up, +z is
North

What direction is “forward” from me in world
space?

What is the point 5 feet in front of me in world
space?

What if I rotate 15 deg. to the left?



04-8: Object Space

Define a new coordinate system

Origin is at my center

+x to my right

+y is up through my head

+z is straight ahead



04-9: Object Space

In my object space, finding a point right ahead of
me is trivial

Given a coordinate in my object space, determining
where I have to look (to aim, for instance) is trivial

Of course, we will need a way to translate between
world space and object space

Say tuned!

Define an “Object Space” for each object in our
world



04-10: Camera Space

Camera Space is a special case of object space

Object is the camera

We’ll use left-handed coordinates (+z into the
screen), swapping to right-hand is easy (invert Z)

Why is camera space useful?



04-11: Camera Space

+x

+y

+z



04-12: Camera Space

Is an object within the camera’s frustum?

Is object A in front of object B, or vice-versa?

Is an object close enough to the camera to render?

... etc



04-13: Intertial Space

Halfway betwen object space and world space

Axes parallel to world space

Origin same as object space



04-14: Inertial Space

Object Space

+x

+y



04-15: Inertial Space

+x

+y

World Space

Ob
je

ct
 S

pa
ce

+x

+y



04-16: Inertial Space

+x

+y

World Space

Ob
je

ct
 S

pa
ce

+x

+y

Inertial Space

+x

+y



04-17: Nested Coordinate Spaces

Each object needs to be oriented in world space

That is, the axes for the local space of the object
need to be oriented in world space.

We could use a different object’s local space
instead of global space

Easiest to see with an example



04-18: Nested Coordinate Spaces

Assume that we have a dog, which has a head and
ears

The head can wag back and forth (in relation to
the body)

The ears can flap up and down (in relation to
the head)

We don’t want to decribe the position of the ears in
world space, or even in dog space

Head space is much more convienent



04-19: Nested Coordinate Spaces

Dog’s ears are described in head space

Up and down in relation to the head

Dog’s head is described in dog space

Back and forth in relation to the dog

Dog’s position is described in world space



04-20: Nested Coordinate Spaces

To render the dog (with ears!)

Translate the ear location from head space to
dog space

Translate the ear location (and the head
location) from do space to world space

Translate all the dog from world space to
camera space

Project the objects from 3-space to a plane



04-21: Nested Coordinate Spaces

The Head space is a child of the Dog space

The Dog space is the parent of the Head space

The Ear space is a child of the head space

The Head space is the parent of the ear space

We could also dynamically parent and unparent
objects



04-22: Changing Coordinate Spaces

Our character is wearing a red hat

The hat is at position (0,100) in object space

What is the position of the hat in world space?

To make life easier, we will think about rotating the
axes, instead of moving the objects



04-23: Changing Coordinate Spaces

+x

+y

World Space

Ob
je

ct
 S

pa
ce

+x

+y



04-24: Changing Coordinate Spaces

+x

+y

World Space

Ob
je

ct
 S

pa
ce

+x

+y

Rotate axis clockwise 45 degrees



04-25: Changing Coordinate Spaces

+x

+y

World Space

Object Space
(now Inertial Space)

+x

+yTranslate axes
to the left & down



04-26: Changing Coordinate Spaces

+x

+y

World Space

Object Space
(now World Space)

+x

+y



04-27: Changing Coordinate Spaces

Rotate axes to the right 45 degrees

Hat rotates the the left 45 degrees, from (0,100)
to (-70, 70)

Translate axes to the left 150, and down 50

Hat rotates to the right 150 and up 50, to (80,
120)

We’ll see how to do those rotations using matrices
later ...



04-28: Changing Coordinate Spaces

+x

+y

World Space

Ob
je

ct
 S

pa
ce

+x

+y

(0,100) Object space

(80,120) world space



04-29: Back to Basics

A Vector is a displacement

Vector has both direction and length

Can also think of a vector as a position (just a
displacement from the origin)

Can be written as a row or column vector

Differnence can be important for multiplication



04-30: Vector Operations

Multiplying by a scalar

To multiply a vector v by a scalar s, multiply
each component of the vector by s

Effect is scaling the vector – multiplying by 2
maintains the direction of the vector, but makes
the length twice as long

Works the same for 2D and 3D vectors (and
highter dimemsion vectors, too, for that matter)



04-31: Vector Operations

Multiplying by a scalar

Multiplying a vector by -1 flips the direction of
the vector

Works for 2D and 3D

Multiplying a vector by -2 both flips the
direction, and scales the vector



04-32: Scaling a Vector

V 2V

(1/2)V
-V



04-33: Length

Vector has both direction and length

Direction

Le
ng

th



04-34: Length

Vector has both direction and length

Direction
(Two angles)

Le
ng
th



04-35: Length

Vector v = [v1, v2, . . . vn]

Length of v:

||v|| =

√

√

√

√

n
∑

i=1

v2i

a

b
a + b
2 2

a

b

c

a + b + c2 2 2



04-36: Normalizing a Vector

Normalize a vector by setting its length to 1, but
maintining its direction.

Multiply by 1/length

vnorm = v

||v||

Of course, v can’t be the zero vector

Zero vector is the only vector without a direction



04-37: Vector Addition

Add two vectors by adding their components

[u1, u2, u3]+[v1, v2, v3] = [u1+v1, u2+v2, u3+v+3]

v2

v1

v2

v1

v1+v2



04-38: Vector Subtraction

Vector subtraction is the same as multiplying by -1
and adding

v1 − v2 is the displacement from the point at v2 to
the point at v1

not the displacement from v1 to v2



04-39: Vector Subtraction

v2

v1 -v2
v1

v1-v2

v2

v1

v1-v2



04-40: Point Distance

We can use subtraction and length to find the
distance between two points

Represent points as vectors – displacement from
the origin

Distance from v to u is ||v − u|| = ||u− v||

Where ||v|| is the length of the vector v.



04-41: Dot Product

a = [a1, a2, . . . , an]

b = [b1, b2, . . . , bn]

a · b =
∑n

i=1
aibi

v1 = [x1, y1, z1], v2 = [x2, y2, z2]

v1 · v2 = x1x2 + y1y2 + z1z2



04-42: Dot Product

a · b = ||a|| ∗ ||b|| ∗ cos θ

θa

b



04-43: Dot Product

θ = arccos

(

a · b

||a||||b||

)

If a and b are unit vectors:

θ = arccos (a · b)



04-44: Dot Product

If we don’t need the exact angle, we can just use
the sign

If θ < 90, cos θ > 0

If θ = 90, cos θ = 0

If 90 < θ < 180, cos θ < 0

Since a · b = ||a||||b|| cos θ:

If a · b > 0, θ < 90(π
2
)

If a · b = 0, θ = 90(π
2
)

If a · b < 0, 90 < θ < 180
π

2
< θ < π



04-45: Projecting Vectors

v

n

v

n

v

vv



04-46: Projecting Vectors

Given a vector v and n, we want to decompose v
into two vectors, v‖ (parallel to n) and v⊥
(perpendicular to n)

v‖ = n
||v‖||

||n||

So all we need is ||v‖||

cos θ =
||v‖||

||v||

||v‖|| = cos θ||v||



04-47: Projecting Vectors

v‖ = n
||v‖||

||n||

||v‖|| = cos θ||v||

v‖ = n
||v‖||

||n||

= n
cos θ||v||

||n||

= n
cos θ||v||||n||

||n||2

= n
v · n

||n||2



04-48: Projecting Vectors

Once we have v‖, finding v⊥ is easy, since
v = v‖ + v⊥

v‖ + v⊥ = v

v⊥ = v − v‖

v⊥ = v − n
v · n

||n||2



04-49: Cross Product

v1 = [x1, y1, z1], v2 = [x2, y2, z2]

v1 × v2 = [y1z2 − z1y2, z1x2 − x1z2, x1y2 − y1x2]

Cross product of two vectors is a new vector
perpendicular to the other two vectors



04-50: Cross Product

a

b

a b a

ba b



04-51: Cross Product

Which way does the cross product a× b point?

It depends upon your coordinate system –
right-handed vs. left-handed

For right-handed coordinate systems, take your
right hand, move your fingers from a to b – thumb
points along a× b

For left-handed coordinate systems, take your right
hand, move your fingers from a to b – thumb points
along a× b



04-52: Cross Product

Magnitude of cross product:

||a× b|| = ||a||||b|| sin θ

Same as the area of the parallelogram defined by
a and b

b

a



04-53: Cross Product

b

a h

w

h

w

θ

Area of parallelogram = w ∗ h

w = ||b||

sin θ = h/||a||, h = ||a|| sin θ

w ∗ h = ||a||||b|| sin θ = ||a× b||



04-54: Matrices

A 4x3 matrix M :

M =











m11 m12 m13

m21 m22 m23

m31 m32 m33

m41 m42 m43













04-55: Matrices

A Square matrix has the same width and height

M =







m11 m12 m13

m21 m22 m23

m31 m32 m33







A diagonal matrix is a square matrix with
non-diagonal elements equal to zero

M =







m11 0 0

0 m22 0

0 0 m33









04-56: Matrices

The Identity Matrix is a diagonal matrix with all
diagonal elements = 1

I3 =







1 0 0

0 1 0

0 0 1









04-57: Matrices

Matrices and vectors

Vectors are a special case of matrices

Row vectors (as we’ve seen so far) [x, y, z]

Column vectors :







x

y

z









04-58: Matrices

Transpose

Written MT

Exchange rows and colums











a b c

d e f

g h i

j k l











T

=







a d g j

b e h k

c f i l









04-59: Transpose

The transpose of a row vector is a column vector

For any matrix M , (MT )T = M

For a diagonal matrix D, DT = ?



04-60: Transpose

The transpose of a row vector is a column vector

For any matrix M , (MT )T = M

For a diagonal matrix D, DT = D

True for any matrix that is symmetric along the
diagonal



04-61: Matrix Multiplication

Multiplying a Matrix by a scalar

Multiply each element in the Matrix by the
scalar

Just like multiplying a vector by a scalar

kM = k











m11 m12 m13

m21 m22 m23

m31 m32 m33

m41 m42 m43











=











km11 km12 km13

km21 km22 km23

km31 km32 km33

km41 km42 km43













04-62: Matrix Multiplication

Multiplying two matrices A and B

A dimensions n×m, B dimensions m× p

C = AB

C dimensions n× p

cij =
m
∑

k=1

aikbkj



04-63: Matrix Multiplication

a a a11 12 13

a a a21 22 23

b b11 12

b b21 22

b b31 32

c c11 12

c c21 22

=



04-64: Matrix Multiplication

a a a11 12 13

a a a21 22 23

b b11 12

b b21 22

b b31 32

c c11 12

c c21 22

=

c11 a11= b11 + a12 b21 +a13 b31



04-65: Matrix Multiplication

a a a11 12 13

a a a21 22 23

b b11 12

b b21 22

b b31 32

c c11 12

c c21 22

=

c21 a21= b11 + a22 b21 +a23 b31



04-66: Matrix Multiplication

a a a11 12 13

a a a21 22 23

b b11 12

b b21 22

b b31 32

c c11 12

c c21 22

=

c12 a11= b12 + a12 b22 +a13 b32



04-67: Matrix Multiplication

a a a11 12 13

a a a21 22 23

b b11 12

b b21 22

b b31 32

c c11 12

c c21 22

=

c22 a21= b12 + a22 b22 +a23 b32



04-68: Matrix Multiplication

Vectors are special cases of matrices

Multiplying a vector and a matrix is just like
multiplying two matrices

[

x y z

]









m11 m12 m13

m21 m22 m23

m31 m32 m33









=

[

xm11 + ym21 + zm31 xm12 + ym22 + zm32 xm13 + ym23 + zm33

]



04-69: Matrix Multiplication

Vectors are special cases of matrices

Multiplying a vector and a matrix is just like
multiplying two matrices









m11 m12 m13

m21 m22 m23

m31 m32 m33

















x

y

z









=









xm11 + ym12 + zm13

xm21 + ym22 + zm23

xm31 + ym32 + zm33











04-70: Matrix Multiplication

Note that the following multiplications are not legal:









x

y

z

















m11 m12 m13

m21 m22 m23

m31 m32 m33

















m11 m12 m13

m21 m22 m23

m31 m32 m33









[

x y z

]



04-71: Matrix Multiplication

Matrix Multiplicaton is not commutative: AB 6= BA
(at least not for all A and B – is it true for at least
one A and B?)

Matrix Multiplication is associative:
(AB)C = A(BC)

Transposing product is the same as the product of

the transpose, in reverse order: (AB)T = BTAT









m11 m12 m13

m21 m22 m23

m31 m32 m33

















x

y

z









6=
[

x y z

]









m11 m12 m13

m21 m22 m23

m31 m32 m33











04-72: Matrix Multiplication

Matrix Multiplicaton is not commutative: AB 6= BA
(at least not for all A and B – is it true for at least
one A and B?)

Matrix Multiplication is associative:
(AB)C = A(BC)

Transposing product is the same as the product of

the transpose, in reverse order: (AB)T = BTAT

















m11 m12 m13

m21 m22 m23

m31 m32 m33

















x

y

z

















T

=
[

x y z

]









m11 m21 m31

m12 m22 m32

m13 m23 m33











04-73: Matrix Multiplication

Identity Matrix I:

AI = A (for appropriate I)

IA = A (for appropriate I)









m11 m21 m31

m12 m22 m32

m13 m23 m33

















1 0 0

0 1 0

0 0 1

















1 0 0

0 1 0

0 0 1

















m11 m21 m31

m12 m22 m32

m13 m23 m33











04-74: Matrix Multiplication

Identity Matrix I:

AI = A (for appropriate I)

IA = A (for appropriate I)

[

x y z

]









1 0 0

0 1 0

0 0 1











04-75: Matrix Multiplication

Identity Matrix I:

AI = A (for appropriate I)

IA = A (for appropriate I)









1 0 0

0 1 0

0 0 1

















x

y

z











04-76: Matrix Multiplication

Identity Matrix I:

AI = A (for appropriate I)

IA = A (for appropriate I)

[

1
] [

x y z

]









x

y

z









[

1
]



04-77: Row vs. Column Vectors

A vector can be reresented as a row vector or a
column vector

This makes a difference when using matrices

Row: vA, Column Av

It gets even more fun when using matrices to do
several transformations of a vector:

Row vABC, Column CBAv (note that to get
the same transformation, you need to take the
transpose of A, B, and C when swapping
between row and column vectors



04-78: Row vs. Column Vectors









a b c

d e f

g h i

















x

y

z









=









ax+ by + cz

dx+ ey + fz

gx+ hy + iz









[

x y z

]









a d g

b e h

c f i









=
[

ax+ by + cz dx+ ey + fz gx+ hy + iz

]



04-79: Row vs. Column Vectors

[

x y

]





a b

c d









e f

g h



 =

[

xa+ yc xb+ yd

]





e f

g h



 =

[

(xa+ yc)e+ (xb+ yd)g (xa+ yc)f + (xb+ yd)h
]





e g

f h









a c

b d









x

y



 =





e f

g h









ax+ cy

bx+ dy



 =





e(ax+ cy) + g(ax+ cy)

f(ax+ cy) + h(ax+ yd)







04-80: Row vs. Column Vectors

DirectX and the text use row vectors

OpenGL and Ogre use column vectors

Ogre has a back end for both OpenGL and
Direct3D

Ogre transposes matrices before sending them
to D3D libraries

Lecture will use both

This is on purpose

I want you to really understand what’s going on,
not just memorize formulas



04-81: More Matrices

Consider the vector [x, y, z]

V =







x

y

z






=







x

0

0






+







0

y

0






+







0

0

z







Rewrite as:

V =







x

y

z






= x







1

0

0






+ y







0

1

0






+ z







0

0

1









04-82: More Matrices

let p,q, r be unit vectors for +x,+y and +z

v = xp+ yq+ zr

We have defined v as a linear combination of p,q
and r.

p, q, and r are basis vectors



04-83: Basis Vectors

x

y

z

x

y

z



04-84: Basis Vectors

p, q, and r are unit vectors along the X,Y and Z
axes – we’re used to seeing vectors decomposed
this way

Technically, any 3 linearly-independent vectors
could be used as basis vectors

Typically, mutually perpendicular vertices are used
as basis vectors

Basis vectors not aligned with axes: Object space
rotated from world space



04-85: Non-Perpendicular Basis

x

y

p

q

v v = 2p - q



04-86: Perpendicular Basis

x

y

q
p

v v = 3/5p + 6/5q



04-87: Marices & Basis

Look back at our basis vectors p,q and r.

Create a 3x3 matrix M using p,q and r as rows:

M =







p

q

r






=







px py pz
qx qy qz
rx ry rz







Multiply a vector by this matrix:

[

x y z

]









px py pz

qx qy qz

rx ry rz









=



04-88: Marices & Basis

[

x y z

]









px py pz

qx qy qz

rx ry rz









=

[

xpx + yqx + zrx xpy + yqy + zrz xpz + yqz + zrz

]

=

xp+ yq+ zr



04-89: Marices & Basis

This is really cool. Why?

Take a local space, defined by 3 basis vectors
Rotation only (no translation)

Create a matrix with these vectors as rows (or
cols)

Matrix transforms from local space into global
space



04-90: Matrices & Basis

p q

x

y

q
p

v

Coordinates in local space
(x , y  )l l

y

xl

l

Coordinates in global space
x l + yl

Coordinates in global space

[x   y ]l l
p

q



04-91: Matrices as Transforms

A 3x3 matrix is a transform

Transforms a vector

Since a 3D model is just a series of points, can
also transform a model

Transforming each point in the model

What does the transformation look like?

Can you look at the matrix, and see what the
transformation will be?



04-92: Matrices as Transforms

Let’s look at what happens when we multiply the
basis vectors [1, 0, 0], [0, 1, 0] and [0, 0, 1] by an
arbitrary matrix:



04-93: Matrices as Transforms

[

1 0 0
]









m11 m12 m13

m21 m22 m23

m31 m32 m33









=
[

m11 m12 m13

]

[

0 1 0
]









m11 m12 m13

m21 m22 m23

m31 m32 m33









=
[

m21 m22 m23

]

[

0 0 1
]









m11 m12 m13

m21 m22 m23

m31 m32 m33









=
[

m31 m32 m33

]



04-94: Matrices as Transforms

Each row of the matrix is a basis vector after
transformation

(Or each column of the matrix, if we’re using
column vectors)

Let’s look at an example in 2D:

[

2 1

−1 2

]

What happens when we transform a vector (or a
2D polgon) using this matrix?

Assume row vectors for the moment ...



04-95: Matrices as Transforms

[

1 0
]

[

2 1

−1 2

]

=
[

2 1
]

[

0 1
]

[

2 1

−1 2

]

=
[

−1 2
]

[

1 1
]

[

2 1

−1 2

]

=
[

1 3
]



04-96: Matrices as Transforms

x
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y



04-97: Matrices as Transforms

x

y

x

y



04-98: Matrices as Transforms

x

y

x

y



04-99: Matrices as Transforms

The matrix:

[

2 1

−1 2

]

both scaled and rotated a 2D image

It is possible, of course for a matrix to just scale, or
just rotate an image as well



04-100: Matrices as Transforms

x

y

x

y

2
0
0
2



04-101: Matrices as Transforms

x

y

x

y

1
0
0
2



04-102: Matrices as Transforms

Can a matrix do something other than scale and
rotate?



04-103: Matrices as Transforms

Can a matrix do something other than scale and
rotate?

Yes!

What would a matrix that did something other than
scale or rotate look like? (stay 2D, for the moment)



04-104: Matrices as Transforms

Can a matrix do something other than scale and
rotate?

Yes!

What would a matrix that did something other than
scale or rotate look like? (stay 2D, for the moment)

“Basis vectors” in matrix non-orthogonal



04-105: Matrices as Transforms

x

y

x

y

1
1
0
1



04-106: Matrices as Transforms

x

y

x

y

1
1
0
1



04-107: Matrices as Transforms

This translates (reasonably) easily into 3D

Instead of stretching, rotating, or skewing part of a
plane, stretch, rotate, or skew a cube







1 0 0

0 1 0

0 0 1







No transformation (or identity transformation)



04-108: Matrices as Transforms

This translates (reasonably) easily into 3D

Instead of stretching, rotating, or skewing part of a
plane, stretch, rotate, or skew a cube







0 0 1

0 1 0

−1 0 0







What is this?



04-109: Matrices as Transforms

x

y
z

 0   0   1
 0   1   0
-1   0   0



04-110: Matrices as Transforms

x

y
z

 0   0   1
 0   1   0
-1   0   0

x

y
z



04-111: Matrices as Transforms

This translates (reasonably) easily into 3D

Instead of stretching, rotating, or skewing part of a
plane, stretch, rotate, or skew a cube







0 0 1

0 1 0

−1 0 0







Rotation about the Y axis, π

2
(90 degrees)
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