CS420/686-2016S-04 Intro to 3D Math

04-0: Right-Handed vs. Left-Handed

e Hold out your left hand (really, do it!):
e Thumb to the right

e Index finder up

e Middle finger straight ahead

e This forms a basis for a 3D coordinate system

04-1: Right-Handed vs. Left-Handed

e Hold out your left hand (really, do it!):

e Thumb to the right (+ x)
e Index finder up (+y)
e Middle finger straight ahead (+ z)

e This forms a basis for a 3D coordinate system — Left-Handed Coordinate system

04-2: Right-Handed vs. Left-Handed

e Now, Hold out your right hand (yes, really do it!):

e Thumb to the left (+ x)
e Index finder up (+y)
e Middle finger straight ahead (+ z)

e This forms the other basis for 3D coordinate system — Right-Handed Coordinate system

04-3: Right-Handed vs. Left-Handed

e Any basis can be rotated to be either left-handed or right-handed
e Swap between systems by flipping any one axis
e Flipping two axes leaves handedness unchanged (why?)

e What about flipping all 3?
04-4: Right-Handed vs. Left-Handed
e Computer Graphics typically uses Left-Handed coordinate system
e Book does, too

e “Pure” linear algebra often uses Right-Handed coordiate system

e Ogre also uses a Right-Handed coordinate system

e Easy transformation, just invert the sign of one axis

04-5: Multiple Cooridinate Systems

e OK, so we’ve decided on a right-handed coordinate system (given Ogre), with y pointing “Up”
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e Pick an arbitrary location for the origin

e Often in the middle of the world

e Can place it off in some corner
e Not quite done — can use multiple coordinate systems!
04-6: Multiple Cooridinate Systems
e World Space
e Object Space
e Camera Space (Special case of Object Space)
o Intertial Space
04-7: World Space
e Assume that the origin of the world is the middle of the field between SI and K Hall

e 2130 Fulton, the official University address is there
e +x is East (along Fulton), +y is straight up, +z is North

e What direction is “forward” from me in world space?
e What is the point 5 feet in front of me in world space?
e What if I rotate 15 deg. to the left?
04-8: Object Space
e Define a new coordinate system
e Origin is at my center
e +X to my right
e +y is up through my head
e +7 is straight ahead
04-9: Object Space
e In my object space, finding a point right ahead of me is trivial
e Given a coordinate in my object space, determining where I have to look (to aim, for instance) is trivial
e Of course, we will need a way to translate between world space and object space
e Say tuned!
e Define an “Object Space” for each object in our world

04-10: Camera Space

e Camera Space is a special case of object space

e Object is the camera
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o We’ll use left-handed coordinates (+z into the screen), swapping to right-hand is easy (invert Z)

e Why is camera space useful?

ty

04-11: Camera Space X

04-12: Camera Space
e [s an object within the camera’s frustum?
e [s object A in front of object B, or vice-versa?
e [s an object close enough to the camera to render?
e .. efc
04-13: Intertial Space
e Halfway betwen object space and world space
e Axes parallel to world space

e Origin same as object space
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04-16: Inertial Space

e Each object needs to be oriented in world space

e That is, the axes for the local space of the object need to be oriented in world space.
e We could use a different object’s local space instead of global space
e Easiest to see with an example
04-18: Nested Coordinate Spaces

e Assume that we have a dog, which has a head and ears

e The head can wag back and forth (in relation to the body)

e The ears can flap up and down (in relation to the head)
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e We don’t want to decribe the position of the ears in world space, or even in dog space

e Head space is much more convienent
04-19: Nested Coordinate Spaces

e Dog’s ears are described in head space

e Up and down in relation to the head
e Dog’s head is described in dog space

e Back and forth in relation to the dog

e Dog’s position is described in world space
04-20: Nested Coordinate Spaces

e To render the dog (with ears!)

e Translate the ear location from head space to dog space
e Translate the ear location (and the head location) from do space to world space
e Translate all the dog from world space to camera space

e Project the objects from 3-space to a plane
04-21: Nested Coordinate Spaces

e The Head space is a child of the Dog space

e The Dog space is the parent of the Head space
e The Ear space is a child of the head space

e The Head space is the parent of the ear space

e We could also dynamically parent and unparent objects
04-22: Changing Coordinate Spaces

e Our character is wearing a red hat

e The hat is at position (0,100) in object space

e What is the position of the hat in world space?

e To make life easier, we will think about rotating the axes, instead of moving the objects
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04-26: Changing Coordinate Spaces

04-27: Changing Coordinate Spaces

e Rotate axes to the right 45 degrees

e Hat rotates the the left 45 degrees, from (0,100) to (-70, 70)

e Translate axes to the left 150, and down 50

e Hat rotates to the right 150 and up 50, to (80, 120)

e We’ll see how to do those rotations using matrices later ...

04-28: Changing Coordinate Spaces

Basics

e A Vector is a displacement

ty

(80, 120) worl d space

A (0, 100) pbj ect space

X

+X

Worl d Space

e Vector has both direction and length

04-29: Back to
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e Can also think of a vector as a position (just a displacement from the origin)
e Can be written as a row or column vector
e Differnence can be important for multiplication
04-30: Vector Operations
e Multiplying by a scalar

e To multiply a vector v by a scalar s, multiply each component of the vector by s

e Effect is scaling the vector — multiplying by 2 maintains the direction of the vector, but makes the length
twice as long

e Works the same for 2D and 3D vectors (and highter dimemsion vectors, too, for that matter)
04-31: Vector Operations
e Multiplying by a scalar

e Multiplying a vector by -1 flips the direction of the vector
e Works for 2D and 3D
e Multiplying a vector by -2 both flips the direction, and scales the vector

04-32: Scaling a Vector

V 2V

_\/

(1/2)V

04-33: Length

e Vector has both direction and length

\( Di rection

04-34: Length
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e Vector has both direction and length

&

B

\
\Lkl Direction

(Two angl es)

04-35: Length

e Vector v = [v1,va, ... Uy

e Length of v:

\ a2+ b2
b

a a

04-36: Normalizing a Vector
e Normalize a vector by setting its length to 1, but maintining its direction.

e Multiply by 1/length

_ Vv
® Viorm = |_H

v
e Of course, v can’t be the zero vector

e Zero vector is the only vector without a direction
04-37: Vector Addition

e Add two vectors by adding their components

o [uy,uz,us] + [v1,va, v3] = [ug + v1,us + v2, uz + v + 3|
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04-38: Vector Subtraction

e Vector subtraction is the same as multiplying by -1 and adding
e vi — Vg is the displacement from the point at v, to the point at vy

e not the displacement from vy to va

04-39: Vector Subtraction

V2 1

vli-v2

vli-v2
V2

vl

04-40: Point Distance
e We can use subtraction and length to find the distance between two points
e Represent points as vectors — displacement from the origin
e Distance from v touis ||v — u|| = ||ju — v||
e Where ||v|| is the length of the vector v.
04-41: Dot Product
e a=[a,as,...,an]
o b=1[b1,ba,...,by,]
e a-b=>3" ab;
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® VU = [Ilaylazl]aUQ = [$27y2,22]
® V1 V2 =12 + Y1Y2 + 2122

04-42: Dot Product
a-b=||al| % ||b]| x cos 6

a\ 0

b

04-43: Dot Product

()
0 = arccos [ ———
[lall[[0]]

0 = arccos (a - b)

If a and b are unit vectors:

04-44: Dot Product

e If we don’t need the exact angle, we can just use the sign
e If 0 <90, cosf >0
e If 0 =90, cosf =0
e If90 < 0 < 180, cosf < 0

e Since a - b = ||a||||b]| cos 6:

o Ifa-b>0,0<90(5)

e Ifa-b=0,0=90(F)

e Ifa-0<0,90 <60 <180
e IO

04-45: Projecting Vectors
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04-46: Projecting Vectors

e Given a vector v and n, we want to decompose v into two vectors, v|| (parallel to n) and v, (perpendicular to n)

oyl
[[nl

OUH:TL

e So all we need is ||v) ]|

cosd ||yl
[[v]]
gl = cosbv]|
04-47: Projecting Vectors
_ vyl
® U =g
o [Jvyl| = cosO[v]]
o = ol
” [In]
_cosO|[v]]
[In]]

cos 0[v|||n]]
[In]?
v-n
p
[In]?

04-48: Projecting Vectors

e Once we have ||, finding v is easy, since v = v+ vy
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UH—&-UJ_ = v
v, = v—v”
v-n
N TIIE

04-49: Cross Product

® V1 = [16173/1,21], V2 = [$2,y2,22]
® Ul X Uy = [y122 — Z1Y2, 212 — 122, T1Y2 — Y1T2]

e Cross product of two vectors is a new vector perpendicular to the other two vectors

04-50: Cross Product

axb a a

b axb|l ™ b

04-51: Cross Product

e Which way does the cross product a x b point?
e It depends upon your coordinate system — right-handed vs. left-handed

e For right-handed coordinate systems, take your right hand, move your fingers from a to b — thumb points along
axb

e For left-handed coordinate systems, take your right hand, move your fingers from a to b — thumb points along

axb
04-52: Cross Product
e Magnitude of cross product:
e [lax bl = lall|[b]| sin®

e Same as the area of the parallelogram defined by a and b

-y
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04-53: Cross Product
W W

A/ |h h

D

e Area of parallelogram = w * h

o w=|[b

e sinf = h/|lal], h = ||a||sin @

o wxh =||al|||b]|sinf = ||a x b||
04-54: Matrices

e A 4x3 matrix M:

mi1  Mmiz2 M3
ma21  M22 MM23
mg3p M3z M33
My My 143

04-55: Matrices

e A Square matrix has the same width and height

mi1  Mmi2 MMi13
M= | mao1 ma2 mo3
m31  Mm32 133

e A diagonal matrix is a square matrix with non-diagonal elements equal to zero

mi1 0 0
M = 0 Mmoo 0
0 0 mss

04-56: Matrices

e The Identity Matrix is a diagonal matrix with all diagonal elements = 1

[
w
|
S O =
O = O
= o O

04-57: Matrices

e Matrices and vectors
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e Vectors are a special case of matrices

e Row vectors (as we’ve seen so far) [z, y,
x

e Column vectors: | y
z

04-58: Matrices
e Transpose

e Written MT

e Exchange rows and colums

S Qe
>N o
~ S 0

04-59: Transpose

Z]

e The transpose of a row vector is a column vector

e For any matrix M, (M™)T = M
e For a diagonal matrix D, DT =?

04-60: Transpose

e The transpose of a row vector is a column vector

e For any matrix M, (MT)T = M

e For a diagonal matrix D, DT = D

o o Q

S~ 0
SRS

e True for any matrix that is symmetric along the diagonal

04-61: Matrix Multiplication

e Multiplying a Matrix by a scalar

e Multiply each element in the Matrix by the scalar

o Just like multiplying a vector by a scalar

mi1 Mmi2
m m
EM =k | 20
m31  MM32
Mma1  MMyg2

04-62: Matrix Multiplication

e Multiplying two matrices A and B

e A dimensions n x m, B dimensions m X p

ma3
mss3
M43

kmu
km21
kmgl
km41

— .

kmu
kaQ
kmgg
km42

kmlg
km23
km33
km43
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e C=AB

e C dimensions n X p

04-63: Matrix Multiplication

all a'12 a13

a'21 a'22 a23

04-64: Matrix Multiplication

a‘ll a'12 a13

a'21 a'22 a'23

b12 _ Cll
b22 B C21
b32
b12 _ Cll
b22 B C21
b32

Cui= a11b11 T a,, b21 ta,, b31

04-65: Matrix Multiplication

a‘ll a12 a'13

a‘21 a‘22 a23

b12 Cll
b22 C21
b,

C21: a21b11 + a22 b21 +a23 b31
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04-66: Matrix Multiplication

all a'12 a13 bll b12 Cll

a'21 a'22 a'23 b21 b22 C21

Cr= a11b12 T a,, bzz ta,, b32

04-67: Matrix Multiplication

all a'12 a13 bll b12 Cll

a'21 a'22 a'23 b21 b22 C21

C,,= a21b12 T a,, bzz Ta,, b32
04-68: Matrix Multiplication

e Vectors are special cases of matrices
e Multiplying a vector and a matrix is just like multiplying two matrices

m11  miz  mis
[« v = ]| may omaos may | =
m31 m3s mas

[ @mqq + ymay + 2m3; xmi + yma2 + 2mgzgo zmy3 + yma3 + zm33z |

04-69: Matrix Multiplication

e Vectors are special cases of matrices

e Multiplying a vector and a matrix is just like multiplying two matrices

mi1  miz  m13 z zmyy +ymiz + zm13
mg1  m23  m23 y | = | zm21 +ymaz + zma3
xmgq + ymgy + zm33

ms3q ms39 m33

04-70: Matrix Multiplication
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e Note that the following multiplications are not legal:

x mi11 mi12 mi13
Y m21 m22 m23
z

m31 m32 m33

mi1 miz  miz
ma1  maz  mo3z | [z oy oz ]
m31  m3z  m33

04-71: Matrix Multiplication

e Matrix Multiplicaton is not commutative: AB # BA (at least not for all A and B — is it true for at least one A
and B?)

e Matrix Multiplication is associative: (AB)C = A(BC')
e Transposing product is the same as the product of the transpose, in reverse order: (AB)T = BT AT

mi1 miz  mig
vy |#[ x vy =z ]| ma1 ma2 mag
z '77131 m32 '77133

m21 m22 m23

mip mi2 M13][2
m31  m3z  m33

04-72: Matrix Multiplication

e Matrix Multiplicaton is not commutative: AB # BA (at least not for all A and B — is it true for at least one A
and B?)

e Matrix Multiplication is associative: (AB)C = A(BC')

e Transposing product is the same as the product of the transpose, in reverse order: (AB)T = BT AT

mi11 mi2  mi3 © T mi11  ma1  m31
ma1  m22  mag y =l 2 wy =z ]| mi2 ma m3
z

m31 m32 m33 m13 m23 m33
04-73: Matrix Multiplication
e Identity Matrix I:

e AJl = A (for appropriate I)
e [A = A (for appropriate I)

my1 mo1 mgy 1 0 0
mio moo ms3o 0 1 0

mi3 mo3 msas3 0 0 1
[ 1 0 0 :| [ miy maoq m3y :|
0 1 0 mi9 ma2 m32
0 0 1 mi13 mo3 ms3s3
04-74: Matrix Multiplication
o Identity Matrix I:

e Al = A (for appropriate 1)
e [A = A (for appropriate I)

04-75: Matrix Multiplication

o Identity Matrix I:
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e Al = A (for appropriate 1)
e [A = A (for appropriate I)
{ 1 0 o0 ] { x ]
o 1 o y
9 0 1 z
04-76: Matrix Multiplication
e Identity Matrix I:
e Al = A (for appropriate 1)
e [A = A (for appropriate I)
[1]l= v =]

04-77: Row vs. Column Vectors

e A vector can be reresented as a row vector or a column vector

e This makes a difference when using matrices

e Row: vA, Column Av

e [t gets even more fun when using matrices to do several transformations of a vector:

e Row vABC, Column CBAv (note that to get the same transformation, you need to take the transpose of

A, B, and C when swapping between row and column vectors

04-78: Row vs. Column Vectors

=[ az 4 by + cz de + ey + fz gr + hy + iz |

04-79: Row vs. Column Vectors

[ (za+ye)e + (zb+ yd)g

04-80: Row vs. Column Vectors
e DirectX and the text use row vectors

e OpenGL and Ogre use column vectors

]
<
n
—
o

[ 5
[

[

S0
[E—
—
R
[E—
Il
—

d g
e h
fooi

o)

sl @)y
el et )=

e(aw + cy) + glaw + cv)
£az + cy) + hlaz + yd)

g h

ax + by + cz
dx + ey + fz
gz + hy + iz

s s ]
[ za+ ye zb+yd]{

(za + ye) f + (zb + yd)h |

}
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e Ogre has a back end for both OpenGL and Direct3D

e Ogre transposes matrices before sending them to D3D libraries
e Lecture will use both

e This is on purpose

e [ want you to really understand what’s going on, not just memorize formulas

04-81: More Matrices

e Consider the vector [z, y, 2]

T T 0 0
V=ly|=]10|+|y|+]0
z 0 0 z
e Rewrite as:
T 1 0 0
V=|ly |=2|0|+y| 1 |+2]|0
z 0 0 1

04-82: More Matrices
e let p, q, r be unit vectors for +x, +y and +z
e V=2p-+yq+ 2r
e We have defined v as a linear combination of p, q and r.

® D, q, and r are basis vectors

y

L X
04-83: Basis Vectors 04-84: Basis
Vectors

e D, q, and r are unit vectors along the X, Y and Z axes — we’re used to seeing vectors decomposed this way
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e Technically, any 3 linearly-independent vectors could be used as basis vectors

e Typically, mutually perpendicular vertices are used as basis vectors

e Basis vectors not aligned with axes: Object space rotated from world space

y

04-85: Non-Perpendicular Basis

y

04-86:

Vv v = 3/5p + 6/5¢

Perpendicular Basis 04-87: Marices
& Basis

e Look back at our basis vectors p, q and r.
e Create a 3x3 matrix M using p, q and r as rows:
P Pz Py D=

M = q = Gz 4qy gz
r Ty Ty Ts
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e Multiply a vector by this matrix:

04-88: Marices & Basis

[ v Z][

[ zpz + yaz + 272

04-89: Marices & Basis

e This is really cool. Why?

e Take a local space, defined by 3 basis vectors

e Rotation only (no translation)

T Ty Tz

Pz Py Pz
qax qy dz
T Ty T

Tpy + yay + 2Tz Tpz + yqz + 2Tz | =

Tp + yq + zr

e Create a matrix with these vectors as rows (or cols)

e Matrix transforms from local space into global space

y

X]

Coordinates in |ocal space
(X, ¥ )

Coordi nates in gl obal space
XIP+Yyq

Coordi nates in gl obal space

[X| Y|] p
q

04-90: Matrices & Basis
04-91: Matrices as Transforms

e A 3x3 matrix is a transform

e Transforms a vector

e Since a 3D model is just a series of points, can also transform a model

e Transforming each point in the model

e What does the transformation look like?

e Can you look at the matrix, and see what the transformation will be?

04-92: Matrices as Transforms

e Let’s look at what happens when we multiply the basis vectors [1,0,0],[0,1,0] and [0,0, 1] by an arbitrary

matrix:
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04-93: Matrices as Transforms

[ m11  miz  miz |
[1 0 o0 ]| ma1 moy ma3 |=[ miy my2 mi3 ]
L m31 m3z2 m33 |

[ m11 mi2  miz |
[0 1 0 ]| ma1 mgy ma3 | =[ ma maa ma3 ]
L mz1  m32  m3az |

[ m11 miz  miz |
[0 0 1 ]| mg1 mgy ma3 | =[ mg1 m3z m3z3 ]
L mz1  m32 m3az |

04-94: Matrices as Transforms

e Each row of the matrix is a basis vector after transformation

e (Or each column of the matrix, if we’re using column vectors)

]

e What happens when we transform a vector (or a 2D polgon) using this matrix?

e Let’s look at an example in 2D:

e Assume row vectors for the moment ...

04-95: Matrices as Transforms

\ 4

04-96: Matrices as Transforms
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04-97: Matrices as Transforms

04-98: Matrices as Transforms
04-99: Matrices as Transforms

e The matrix:

both scaled and rotated a 2D image

e Itis possible, of course for a matrix to just scale, or just rotate an image as well
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o2l

04-100: Matrices as Transforms

y y

“lo2]

00

04-101: Matrices as Transforms
04-102: Matrices as Transforms

e Can a matrix do something other than scale and rotate?
04-103: Matrices as Transforms
e Can a matrix do something other than scale and rotate?

e Yes!

e What would a matrix that did something other than scale or rotate look like? (stay 2D, for the moment)
04-104: Matrices as Transforms

e Can a matrix do something other than scale and rotate?
e Yes!
e What would a matrix that did something other than scale or rotate look like? (stay 2D, for the moment)

e “Basis vectors” in matrix non-orthogonal
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04-105: Matrices as Transforms

¢
(QQ

04-106: Matrices as Transforms
04-107: Matrices as Transforms

e This translates (reasonably) easily into 3D

e Instead of stretching, rotating, or skewing part of a plane, stretch, rotate, or skew a cube

OO =
o = O
— o O

No transformation (or identity transformation)
04-108: Matrices as Transforms

e This translates (reasonably) easily into 3D

e Instead of stretching, rotating, or skewing part of a plane, stretch, rotate, or skew a cube

o o
o = O
o O =
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What is this? 04-109: Matrices as Transforms

0 0
0 1 0
-1 0

04-110: Matrices as Transforms

0 0 1
0 1 0
-1 0 0

04-111: Matrices as Transforms

o This translates (reasonably) easily into 3D

e Instead of stretching, rotating, or skewing part of a plane, stretch, rotate, or skew a cube

0 0 1
0 1 0
-1 0 0

Rotation about the Y axis, Z (90 degrees)



