
CS420/686-2016S-04 Intro to 3D Math 1

04-0: Right-Handed vs. Left-Handed

• Hold out your left hand (really, do it!):

• Thumb to the right

• Index finder up

• Middle finger straight ahead

• This forms a basis for a 3D coordinate system

04-1: Right-Handed vs. Left-Handed

• Hold out your left hand (really, do it!):

• Thumb to the right (+ x)

• Index finder up (+ y)

• Middle finger straight ahead (+ z)

• This forms a basis for a 3D coordinate system – Left-Handed Coordinate system

04-2: Right-Handed vs. Left-Handed

• Now, Hold out your right hand (yes, really do it!):

• Thumb to the left (+ x)

• Index finder up (+ y)

• Middle finger straight ahead (+ z)

• This forms the other basis for 3D coordinate system – Right-Handed Coordinate system

04-3: Right-Handed vs. Left-Handed

• Any basis can be rotated to be either left-handed or right-handed

• Swap between systems by flipping any one axis

• Flipping two axes leaves handedness unchanged (why?)

• What about flipping all 3?

04-4: Right-Handed vs. Left-Handed

• Computer Graphics typically uses Left-Handed coordinate system

• Book does, too

• “Pure” linear algebra often uses Right-Handed coordiate system

• Ogre also uses a Right-Handed coordinate system

• Easy transformation, just invert the sign of one axis

04-5: Multiple Cooridinate Systems

• OK, so we’ve decided on a right-handed coordinate system (given Ogre), with y pointing “Up”

CS420/686-2016S-04 Intro to 3D Math 2

• Pick an arbitrary location for the origin

• Often in the middle of the world

• Can place it off in some corner

• Not quite done – can use multiple coordinate systems!

04-6: Multiple Cooridinate Systems

• World Space

• Object Space

• Camera Space (Special case of Object Space)

• Intertial Space

04-7: World Space

• Assume that the origin of the world is the middle of the field between SI and K Hall

• 2130 Fulton, the official University address is there

• +x is East (along Fulton), +y is straight up, +z is North

• What direction is “forward” from me in world space?

• What is the point 5 feet in front of me in world space?

• What if I rotate 15 deg. to the left?

04-8: Object Space

• Define a new coordinate system

• Origin is at my center

• +x to my right

• +y is up through my head

• +z is straight ahead

04-9: Object Space

• In my object space, finding a point right ahead of me is trivial

• Given a coordinate in my object space, determining where I have to look (to aim, for instance) is trivial

• Of course, we will need a way to translate between world space and object space

• Say tuned!

• Define an “Object Space” for each object in our world

04-10: Camera Space

• Camera Space is a special case of object space

• Object is the camera

CS420/686-2016S-04 Intro to 3D Math 3

• We’ll use left-handed coordinates (+z into the screen), swapping to right-hand is easy (invert Z)

• Why is camera space useful?

04-11: Camera Space +x

+y

+z

04-12: Camera Space

• Is an object within the camera’s frustum?

• Is object A in front of object B, or vice-versa?

• Is an object close enough to the camera to render?

• ... etc

04-13: Intertial Space

• Halfway betwen object space and world space

• Axes parallel to world space

• Origin same as object space

CS420/686-2016S-04 Intro to 3D Math 4

04-14: Inertial Space
Object Space

+x

+y

04-15: Inertial Space

+y

World Space

Ob
je
ct
 S
pa
ce

+y

04-16: Inertial Space

+x

+y

World Space

Ob
je
ct
 S
pa
ce

+x

+y

Inertial Space

+x

+y

04-17: Nested Coordinate Spaces

• Each object needs to be oriented in world space

• That is, the axes for the local space of the object need to be oriented in world space.

• We could use a different object’s local space instead of global space

• Easiest to see with an example

04-18: Nested Coordinate Spaces

• Assume that we have a dog, which has a head and ears

• The head can wag back and forth (in relation to the body)

• The ears can flap up and down (in relation to the head)

CS420/686-2016S-04 Intro to 3D Math 5

• We don’t want to decribe the position of the ears in world space, or even in dog space

• Head space is much more convienent

04-19: Nested Coordinate Spaces

• Dog’s ears are described in head space

• Up and down in relation to the head

• Dog’s head is described in dog space

• Back and forth in relation to the dog

• Dog’s position is described in world space

04-20: Nested Coordinate Spaces

• To render the dog (with ears!)

• Translate the ear location from head space to dog space

• Translate the ear location (and the head location) from do space to world space

• Translate all the dog from world space to camera space

• Project the objects from 3-space to a plane

04-21: Nested Coordinate Spaces

• The Head space is a child of the Dog space

• The Dog space is the parent of the Head space

• The Ear space is a child of the head space

• The Head space is the parent of the ear space

• We could also dynamically parent and unparent objects

04-22: Changing Coordinate Spaces

• Our character is wearing a red hat

• The hat is at position (0,100) in object space

• What is the position of the hat in world space?

• To make life easier, we will think about rotating the axes, instead of moving the objects

CS420/686-2016S-04 Intro to 3D Math 6

04-23: Changing Coordinate Spaces

+x

+y

World Space

Ob
je
ct
 S
pa
ce

+x

+y

04-24: Chang-

ing Coordinate Spaces

+x

+y

World Space

Ob
je
ct
 S
pa
ce

+x

+y

Rotate axis clockwise 45 degrees

04-25: Changing Coordinate

CS420/686-2016S-04 Intro to 3D Math 7

Spaces

+x

+y

World Space

Object Space
(now Inertial Space)

+x

+yTranslate axes
to the left & down

04-26: Changing Coordinate Spaces

+y

World Space

Object Space
(now World Space)

+x

+y

04-27: Changing Coordinate Spaces

• Rotate axes to the right 45 degrees

• Hat rotates the the left 45 degrees, from (0,100) to (-70, 70)

• Translate axes to the left 150, and down 50

• Hat rotates to the right 150 and up 50, to (80, 120)

• We’ll see how to do those rotations using matrices later ...

04-28: Changing Coordinate Spaces

+x

+y

World Space

Ob
je
ct
 S
pa
ce

+x

+y
(0,100) Object space

(80,120) world space

04-29: Back to

Basics

• A Vector is a displacement

• Vector has both direction and length

CS420/686-2016S-04 Intro to 3D Math 8

• Can also think of a vector as a position (just a displacement from the origin)

• Can be written as a row or column vector

• Differnence can be important for multiplication

04-30: Vector Operations

• Multiplying by a scalar

• To multiply a vector v by a scalar s, multiply each component of the vector by s

• Effect is scaling the vector – multiplying by 2 maintains the direction of the vector, but makes the length

twice as long

• Works the same for 2D and 3D vectors (and highter dimemsion vectors, too, for that matter)

04-31: Vector Operations

• Multiplying by a scalar

• Multiplying a vector by -1 flips the direction of the vector

• Works for 2D and 3D

• Multiplying a vector by -2 both flips the direction, and scales the vector

04-32: Scaling a Vector

V 2V

(1/2)V
-V

04-33: Length

• Vector has both direction and length

Direction

Le
ng
th

04-34: Length

CS420/686-2016S-04 Intro to 3D Math 9

• Vector has both direction and length

Direction
(Two angles)

Le
ng
th

04-35: Length

• Vector v = [v1, v2, . . . vn]

• Length of v:

||v|| =

√

√

√

√

n
∑

i=1

v2i

a

b
a + b
2 2

a

b

c

a + b + c2 2 2

04-36: Normalizing a Vector

• Normalize a vector by setting its length to 1, but maintining its direction.

• Multiply by 1/length

• vnorm = v

||v||

• Of course, v can’t be the zero vector

• Zero vector is the only vector without a direction

04-37: Vector Addition

• Add two vectors by adding their components

• [u1, u2, u3] + [v1, v2, v3] = [u1 + v1, u2 + v2, u3 + v + 3]

CS420/686-2016S-04 Intro to 3D Math 10

v2

v1

v2

v1

v1+v2

04-38: Vector Subtraction

• Vector subtraction is the same as multiplying by -1 and adding

• v1 − v2 is the displacement from the point at v2 to the point at v1

• not the displacement from v1 to v2

04-39: Vector Subtraction

v2

v1 -v2
v1

v1-v2

v2

v1

v1-v2

04-40: Point Distance

• We can use subtraction and length to find the distance between two points

• Represent points as vectors – displacement from the origin

• Distance from v to u is ||v − u|| = ||u− v||

• Where ||v|| is the length of the vector v.

04-41: Dot Product

• a = [a1, a2, . . . , an]

• b = [b1, b2, . . . , bn]

• a · b =
∑n

i=1
aibi

CS420/686-2016S-04 Intro to 3D Math 11

• v1 = [x1, y1, z1], v2 = [x2, y2, z2]

• v1 · v2 = x1x2 + y1y2 + z1z2

04-42: Dot Product

a · b = ||a|| ∗ ||b|| ∗ cos θ

θa

b
04-43: Dot Product

θ = arccos

(

a · b

||a||||b||

)

If a and b are unit vectors:

θ = arccos (a · b)

04-44: Dot Product

• If we don’t need the exact angle, we can just use the sign

• If θ < 90, cos θ > 0

• If θ = 90, cos θ = 0

• If 90 < θ < 180, cos θ < 0

• Since a · b = ||a||||b|| cos θ:

• If a · b > 0, θ < 90(π
2
)

• If a · b = 0, θ = 90(π
2
)

• If a · b < 0, 90 < θ < 180

• π
2
< θ < π

04-45: Projecting Vectors

CS420/686-2016S-04 Intro to 3D Math 12

v

n

v

n

v

vv

04-46: Projecting Vectors

• Given a vector v and n, we want to decompose v into two vectors, v‖ (parallel to n) and v⊥ (perpendicular to n)

• v‖ = n
||v‖||

||n||

• So all we need is ||v‖||

cos θ =
||v‖||

||v||

||v‖|| = cos θ||v||

04-47: Projecting Vectors

• v‖ = n
||v‖||

||n||

• ||v‖|| = cos θ||v||

v‖ = n
||v‖||

||n||

= n
cos θ||v||

||n||

= n
cos θ||v||||n||

||n||2

= n
v · n

||n||2

04-48: Projecting Vectors

• Once we have v‖, finding v⊥ is easy, since v = v‖ + v⊥

CS420/686-2016S-04 Intro to 3D Math 13

v‖ + v⊥ = v

v⊥ = v − v‖

v⊥ = v − n
v · n

||n||2

04-49: Cross Product

• v1 = [x1, y1, z1], v2 = [x2, y2, z2]

• v1 × v2 = [y1z2 − z1y2, z1x2 − x1z2, x1y2 − y1x2]

• Cross product of two vectors is a new vector perpendicular to the other two vectors

04-50: Cross Product

a

b

a b a

ba b

04-51: Cross Product

• Which way does the cross product a× b point?

• It depends upon your coordinate system – right-handed vs. left-handed

• For right-handed coordinate systems, take your right hand, move your fingers from a to b – thumb points along

a× b

• For left-handed coordinate systems, take your right hand, move your fingers from a to b – thumb points along

a× b

04-52: Cross Product

• Magnitude of cross product:

• ||a× b|| = ||a||||b|| sin θ

• Same as the area of the parallelogram defined by a and b

b

a

CS420/686-2016S-04 Intro to 3D Math 14

04-53: Cross Product

b

a h

w

h

w

θ

• Area of parallelogram = w ∗ h

• w = ||b||

• sin θ = h/||a||, h = ||a|| sin θ

• w ∗ h = ||a||||b|| sin θ = ||a× b||

04-54: Matrices

• A 4x3 matrix M :

M =









m11 m12 m13

m21 m22 m23

m31 m32 m33

m41 m42 m43









04-55: Matrices

• A Square matrix has the same width and height

M =





m11 m12 m13

m21 m22 m23

m31 m32 m33





• A diagonal matrix is a square matrix with non-diagonal elements equal to zero

M =





m11 0 0
0 m22 0
0 0 m33





04-56: Matrices

• The Identity Matrix is a diagonal matrix with all diagonal elements = 1

I3 =





1 0 0
0 1 0
0 0 1





04-57: Matrices

• Matrices and vectors

CS420/686-2016S-04 Intro to 3D Math 15

• Vectors are a special case of matrices

• Row vectors (as we’ve seen so far) [x, y, z]

• Column vectors :





x
y
z





04-58: Matrices

• Transpose

• Written MT

• Exchange rows and colums









a b c
d e f
g h i
j k l









T

=





a d g j
b e h k
c f i l





04-59: Transpose

• The transpose of a row vector is a column vector

• For any matrix M , (MT)T = M

• For a diagonal matrix D, DT = ?

04-60: Transpose

• The transpose of a row vector is a column vector

• For any matrix M , (MT)T = M

• For a diagonal matrix D, DT = D

• True for any matrix that is symmetric along the diagonal

04-61: Matrix Multiplication

• Multiplying a Matrix by a scalar

• Multiply each element in the Matrix by the scalar

• Just like multiplying a vector by a scalar

kM = k









m11 m12 m13

m21 m22 m23

m31 m32 m33

m41 m42 m43









=









km11 km12 km13

km21 km22 km23

km31 km32 km33

km41 km42 km43









04-62: Matrix Multiplication

• Multiplying two matrices A and B

• A dimensions n×m, B dimensions m× p

CS420/686-2016S-04 Intro to 3D Math 16

• C = AB

• C dimensions n× p

cij =

m
∑

k=1

aikbkj

04-63: Matrix Multiplication

a a a11 12 13

a a a21 22 23

b b11 12

b b21 22

b b31 32

c c11 12

c c21 22

=

04-64: Matrix Multiplication

a a a11 12 13

a a a21 22 23

b b11 12

b b21 22

b b31 32

c c11 12

c c21 22

=

c11 a11= b11 + a12 b21 +a13 b31

04-65: Matrix Multiplication

a a a11 12 13

a a a21 22 23

b b11 12

b b21 22

b b31 32

c c11 12

c c21 22

=

c21 a21= b11 + a22 b21 +a23 b31

CS420/686-2016S-04 Intro to 3D Math 17

04-66: Matrix Multiplication

a a a11 12 13

a a a21 22 23

b b11 12

b b21 22

b b31 32

c c11 12

c c21 22

=

c12 a11= b12 + a12 b22 +a13 b32

04-67: Matrix Multiplication

a a a11 12 13

a a a21 22 23

b b11 12

b b21 22

b b31 32

c c11 12

c c21 22

=

c22 a21= b12 + a22 b22 +a23 b32

04-68: Matrix Multiplication

• Vectors are special cases of matrices

• Multiplying a vector and a matrix is just like multiplying two matrices

[

x y z
]





m11 m12 m13
m21 m22 m23
m31 m32 m33



 =

[

xm11 + ym21 + zm31 xm12 + ym22 + zm32 xm13 + ym23 + zm33
]

04-69: Matrix Multiplication

• Vectors are special cases of matrices

• Multiplying a vector and a matrix is just like multiplying two matrices





m11 m12 m13
m21 m22 m23
m31 m32 m33









x

y

z



 =





xm11 + ym12 + zm13
xm21 + ym22 + zm23
xm31 + ym32 + zm33





04-70: Matrix Multiplication

CS420/686-2016S-04 Intro to 3D Math 18

• Note that the following multiplications are not legal:





x

y

z









m11 m12 m13
m21 m22 m23
m31 m32 m33









m11 m12 m13
m21 m22 m23
m31 m32 m33





[

x y z
]

04-71: Matrix Multiplication

• Matrix Multiplicaton is not commutative: AB 6= BA (at least not for all A and B – is it true for at least one A
and B?)

• Matrix Multiplication is associative: (AB)C = A(BC)

• Transposing product is the same as the product of the transpose, in reverse order: (AB)T = BTAT





m11 m12 m13
m21 m22 m23
m31 m32 m33









x

y

z



 6=
[

x y z
]





m11 m12 m13
m21 m22 m23
m31 m32 m33





04-72: Matrix Multiplication

• Matrix Multiplicaton is not commutative: AB 6= BA (at least not for all A and B – is it true for at least one A
and B?)

• Matrix Multiplication is associative: (AB)C = A(BC)

• Transposing product is the same as the product of the transpose, in reverse order: (AB)T = BTAT









m11 m12 m13
m21 m22 m23
m31 m32 m33









x

y

z









T

=
[

x y z
]





m11 m21 m31
m12 m22 m32
m13 m23 m33





04-73: Matrix Multiplication

• Identity Matrix I:

• AI = A (for appropriate I)

• IA = A (for appropriate I)




m11 m21 m31
m12 m22 m32
m13 m23 m33









1 0 0
0 1 0
0 0 1









1 0 0
0 1 0
0 0 1









m11 m21 m31
m12 m22 m32
m13 m23 m33





04-74: Matrix Multiplication

• Identity Matrix I:

• AI = A (for appropriate I)

• IA = A (for appropriate I)

[

x y z
]





1 0 0
0 1 0
0 0 1





04-75: Matrix Multiplication

• Identity Matrix I:

CS420/686-2016S-04 Intro to 3D Math 19

• AI = A (for appropriate I)

• IA = A (for appropriate I)




1 0 0
0 1 0
0 0 1









x

y

z





04-76: Matrix Multiplication

• Identity Matrix I:

• AI = A (for appropriate I)

• IA = A (for appropriate I)
[

1
] [

x y z
]





x

y

z





[

1
]

04-77: Row vs. Column Vectors

• A vector can be reresented as a row vector or a column vector

• This makes a difference when using matrices

• Row: vA, Column Av

• It gets even more fun when using matrices to do several transformations of a vector:

• Row vABC, Column CBAv (note that to get the same transformation, you need to take the transpose of

A, B, and C when swapping between row and column vectors

04-78: Row vs. Column Vectors




a b c

d e f

g h i









x

y

z



 =





ax + by + cz

dx + ey + fz

gx + hy + iz





[

x y z
]





a d g

b e h

c f i





=
[

ax + by + cz dx + ey + fz gx + hy + iz
]

04-79: Row vs. Column Vectors

[

x y
]

[

a b

c d

] [

e f

g h

]

=

[

xa + yc xb + yd
]

[

e f

g h

]

=

[

(xa + yc)e + (xb + yd)g (xa + yc)f + (xb + yd)h
]

[

e g

f h

] [

a c

b d

] [

x

y

]

=

[

e f

g h

] [

ax + cy

bx + dy

]

=

[

e(ax + cy) + g(ax + cy)
f(ax + cy) + h(ax + yd)

]

04-80: Row vs. Column Vectors

• DirectX and the text use row vectors

• OpenGL and Ogre use column vectors

CS420/686-2016S-04 Intro to 3D Math 20

• Ogre has a back end for both OpenGL and Direct3D

• Ogre transposes matrices before sending them to D3D libraries

• Lecture will use both

• This is on purpose

• I want you to really understand what’s going on, not just memorize formulas

04-81: More Matrices

• Consider the vector [x, y, z]

V =





x
y
z



 =





x
0
0



+





0
y
0



+





0
0
z





• Rewrite as:

V =





x
y
z



 = x





1
0
0



+ y





0
1
0



+ z





0
0
1





04-82: More Matrices

• let p,q, r be unit vectors for +x,+y and +z

• v = xp+ yq+ zr

• We have defined v as a linear combination of p,q and r.

• p, q, and r are basis vectors

04-83: Basis Vectors

x

y

z

x

y

z

04-84: Basis

Vectors

• p, q, and r are unit vectors along the X,Y and Z axes – we’re used to seeing vectors decomposed this way

CS420/686-2016S-04 Intro to 3D Math 21

• Technically, any 3 linearly-independent vectors could be used as basis vectors

• Typically, mutually perpendicular vertices are used as basis vectors

• Basis vectors not aligned with axes: Object space rotated from world space

04-85: Non-Perpendicular Basis

x

y

p

q

v v = 2p - q

04-86:

Perpendicular Basis

x

y

q
p

v v = 3/5p + 6/5q

04-87: Marices

& Basis

• Look back at our basis vectors p,q and r.

• Create a 3x3 matrix M using p,q and r as rows:

M =





p

q

r



 =





px py pz
qx qy qz
rx ry rz





CS420/686-2016S-04 Intro to 3D Math 22

• Multiply a vector by this matrix:
[

x y z
]





px py pz
qx qy qz
rx ry rz



 =

04-88: Marices & Basis
[

x y z
]





px py pz
qx qy qz
rx ry rz



 =

[

xpx + yqx + zrx xpy + yqy + zrz xpz + yqz + zrz
]

=

xp + yq + zr

04-89: Marices & Basis

• This is really cool. Why?

• Take a local space, defined by 3 basis vectors

• Rotation only (no translation)

• Create a matrix with these vectors as rows (or cols)

• Matrix transforms from local space into global space

04-90: Matrices & Basis

p q

x

y

q
p

v

Coordinates in local space
(x , y)l l

y

xl

l

Coordinates in global space
x l + yl

Coordinates in global space

[x y]l l
p

q

04-91: Matrices as Transforms

• A 3x3 matrix is a transform

• Transforms a vector

• Since a 3D model is just a series of points, can also transform a model

• Transforming each point in the model

• What does the transformation look like?

• Can you look at the matrix, and see what the transformation will be?

04-92: Matrices as Transforms

• Let’s look at what happens when we multiply the basis vectors [1, 0, 0], [0, 1, 0] and [0, 0, 1] by an arbitrary

matrix:

CS420/686-2016S-04 Intro to 3D Math 23

04-93: Matrices as Transforms

[

1 0 0
]





m11 m12 m13
m21 m22 m23
m31 m32 m33



 =
[

m11 m12 m13
]

[

0 1 0
]





m11 m12 m13
m21 m22 m23
m31 m32 m33



 =
[

m21 m22 m23
]

[

0 0 1
]





m11 m12 m13
m21 m22 m23
m31 m32 m33



 =
[

m31 m32 m33
]

04-94: Matrices as Transforms

• Each row of the matrix is a basis vector after transformation

• (Or each column of the matrix, if we’re using column vectors)

• Let’s look at an example in 2D:

[

2 1
−1 2

]

• What happens when we transform a vector (or a 2D polgon) using this matrix?

• Assume row vectors for the moment ...

04-95: Matrices as Transforms

[

1 0
]

[

2 1
−1 2

]

=
[

2 1
]

[

0 1
]

[

2 1
−1 2

]

=
[

−1 2
]

[

1 1
]

[

2 1
−1 2

]

=
[

1 3
]

04-96: Matrices as Transforms
x

y

x

y

CS420/686-2016S-04 Intro to 3D Math 24

04-97: Matrices as Transforms
x

y

x

y

04-98: Matrices as Transforms

x

y

x

y

04-99: Matrices as Transforms

• The matrix:

[

2 1
−1 2

]

both scaled and rotated a 2D image

• It is possible, of course for a matrix to just scale, or just rotate an image as well

CS420/686-2016S-04 Intro to 3D Math 25

04-100: Matrices as Transforms
x

y

x

y

2
0

0
2

04-101: Matrices as Transforms
x

y

x

y

1
0

0
2

04-102: Matrices as Transforms

• Can a matrix do something other than scale and rotate?

04-103: Matrices as Transforms

• Can a matrix do something other than scale and rotate?

• Yes!

• What would a matrix that did something other than scale or rotate look like? (stay 2D, for the moment)

04-104: Matrices as Transforms

• Can a matrix do something other than scale and rotate?

• Yes!

• What would a matrix that did something other than scale or rotate look like? (stay 2D, for the moment)

• “Basis vectors” in matrix non-orthogonal

CS420/686-2016S-04 Intro to 3D Math 26

04-105: Matrices as Transforms
x

y

x

y

1
1

0
1

04-106: Matrices as Transforms
x

y

x

y

1
1
0
1

04-107: Matrices as Transforms

• This translates (reasonably) easily into 3D

• Instead of stretching, rotating, or skewing part of a plane, stretch, rotate, or skew a cube





1 0 0
0 1 0
0 0 1





No transformation (or identity transformation)

04-108: Matrices as Transforms

• This translates (reasonably) easily into 3D

• Instead of stretching, rotating, or skewing part of a plane, stretch, rotate, or skew a cube





0 0 1
0 1 0
−1 0 0





CS420/686-2016S-04 Intro to 3D Math 27

What is this? 04-109: Matrices as Transforms

x

y
z

 0 0 1
 0 1 0
-1 0 0

04-110: Matrices as Transforms

x

y
z

 0 0 1
 0 1 0
-1 0 0

x

y
z

04-111: Matrices as Transforms

• This translates (reasonably) easily into 3D

• Instead of stretching, rotating, or skewing part of a plane, stretch, rotate, or skew a cube





0 0 1
0 1 0
−1 0 0





Rotation about the Y axis, π
2

(90 degrees)

