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08-0: Orentation

Orientation is almost the direction that the model is
pointing.

We can describe the direction that a model is
pointing using two numbers, polar coordinattes



08-1: Direction in Polar Cooridnates

We can describe direction using two values (α and
β)

What’s missing for orientation?

α
β

α

β



08-2: Orientation

Orientaion needs at least 3 numbers to describe



08-3: Absoulte Orientation?

Recall vectors are actually a displacement, not a
position

Need a reference point (origin) to get a position

If we think in terms of displacement instead of
absoulte position, multiple reference frames
easier to understand

Orientation is the same way

Think of orentation as ∆Orientation instead of
absoulte

Use ∆ from a fixed reference frame (like origin)
to get absoulte orientation



08-4: Absoulte Orientation?

Of course, if our orientation is a ∆, we need to be
careful about what kind of change

Change from Object space to Inertial Space?

Change from Inertial Space to Object Space?

If we use Matrices, then one is the inverse of the
other

Rotational matrices are orthoginal, finding inverse
is easy – Transpose



08-5: Matrices as Orientation

We can represent orientation using 3x3 matrices

Delta from Object Space to Inertial Space

M =







m11 m12 m13

m21 m22 m23

m31 m32 m33







Delta from Inertial Space to Object Space

M =







m11 m21 m31

m12 m22 m32

m13 m23 m33









08-6: 4x4 Matricies

We can completely describe the position and
orientation of an object using a 4x4 matrix

Alternately, a 3x3 matrix and a 1x3 (or 3x1)
position vector

When we use matrices, we are using ∆orientation
and ∆position

Easily combine two matrices – just a matrix
multiplication



08-7: Matrix Problems

Matricies are great for describing orientation and
position

Easy to combine

How orientation is described within most
graphics engines, and by OpenGL and DirectX

What are some drawbacks to using matrices for
orientation?



08-8: Matrix Problems

Requires 9 numbers instead of 3

Uses more space

Not all matrices are valid rotational matrices
What happens when you use more values
that you have degrees of freedom
Overconstraint problems



08-9: Matrix Problems

Requires 9 numbers instead of 3

Consider a 3x3 matrix

The z basis vector (3 numbers) gives the
direction

x basis vector needs to be parallel to z – we
can describe the relative position of the x basis
vector given the z basis vector with a single
number (not 3!)

Once we have x and z, y is completely
determined!



08-10: Matrix Problems

Only orthoginal matrices are valid rotational
matrices

Matrices can become non-orthoginal via matrix
creep

Data can be a little off if not cleaned up properly
(though the solution to that is to clean up your
data!)

Can fix this problem by orthogonalizing
matrices (as per last lecture)



08-11: Matrix Problems

Go to your artist / animator

Tell him / her that all angles need to be described
in terms of rotational matrices

Duck as digitizing tablet is thrown at you

Matrices aren’t exactly easily human readable



08-12: Euler Angles

Describe rotation in terms of roll, pich, and yaw

Roll is rotation around the z axis

Pitch is rotation around the x axis

Yaw is rotation around the y axis



08-13: Euler Angles

Z

X

Y

Z

X

Y

Pitch

Yaw

Roll

Roll

Pitch

Yaw



08-14: Euler Angles

We can describe any orientation using Euler
Angles

Order is important!

30 degree roll followed by 10 degree pitch 6= 10
degree pitch followed by 30 degree roll!



08-15: Euler Angles

Standard order is

Roll, pitch yaw

Converting from object space to Inertial Space

To convert from Inertial Space to Object space, go
in reverse order



08-16: Euler Angles

Object Space vs. World Space

We can define roll/ptich/yaw in object space
Rotate around the object’s z axis
Rotate around the object’s x axis
Rotate around the object’s y axis

Examples, using model



08-17: Euler Angles

Object Space vs. World Space

We can define roll/ptich/yaw in world space
Rotate around the world’s z axis
Rotate around the world’s x axis
Rotate around the world’s y axis

Examples, using model



08-18: Euler Angles

So, what does Ogre use?

Both!
If we call roll/pitch/yaw functions with a single
parameter, we rotate in object space (though
we can do world space, too, using a second
parameter)
If we ask for the euler angles, we get them in
world space
• RPY in word space is the same as YPR in

object space



08-19: Euler Angle Problems

Some issues with Euler angles

Any triple of angles describes a unique
orientaion (given an order of application)

... But the same orientation can be described
with more than one set of Euler Angles!

Trivial example: Roll of 20 degrees is same
as roll of 380 degrees
Can you think of a more complicated
example?



08-20: Euler Angle Problems

Aliasing Issues

(Same orientation with different angles, using
object space or world space)

Roll 90 degrees, Pitch 90 degrees, Yaw 90 degrees

Pitch -90 degrees



08-21: Gimbal Lock

When using Euler angles, we always rotate in a set
order

Roll, pitch, yaw

What happens when the 2nd parameter is 90
degrees?

Physical system

In game engine



08-22: Angle Interpoloation

Given two angles, we want to interpolate between
them

Camera pointing at one object

Want to rotate camera to point to another object

Want to rotate a little bit each frame

Find the “delta” between the angles, move along it
a little bit



08-23: Angle Interpoloation

Naive approach:

Initial Angle: Θ0, Final angle Θ1

Want to interpolate from Θ0 to Θ1: at time t = 0
be at angle Θ0, at time t = 1 be at angle Θ1

∆Θ = Θ1 −Θ0

Θt = Θ0 + t∆Θ

When does this not “work” (that is, when does it
do what we don’t expect?)



08-24: Angle Interpoloation

Θ  = 450

Θ  = 4951

∆Θ = 495− 45

Θt = 45 + 450t



08-25: Angle Interpoloation

The naive approach spins all the way around (450
degrees), instead of just moving 45 degrees

This is an aliasing problem

We can fix it by insisting on canonical angles
-180 ≤ roll ≤ 180
-90 ≤ pich ≤ 90
-180 ≤ yaw ≤ 180



08-26: Angle Interpoloation

Θ  = 1700

Θ  = -1701

∆Θ = −170− 170

Θt = 170− 340t



08-27: Angle Interpoloation

We can fix this by forcing ∆, Θ to be in the range
−180 . . . 180

wrap(x) = x− 360⌊(x + 180)/360⌋
∆Θ = wrap(Θ1 −Θ0)

Θt = Θ0 + t∆Θ

Gimbal lock is still a problem, though

Gimbal lock (or something analogous) will always
be a problem if we use 3 numbers to represent
angles (exactly why this is so is beyond the scope
of this course, however)



08-28: Euler Angle Advantages

Compact representation (3 numbers – matrices
take 9, and Quaternians (up next!) take 4)

Any set of 3 angles represents a valid orentation
(not so with matricies – any 9 numbers are not a
valid rotational matrix!)

Conceptually easy to understand



08-29: Euler Angle Disadvantages

Can’t combine rotations as easily as matrices

Aliasing & Gimal Lock



08-30: Quaternians

Roating about any axis can be duplicaed by
rotations around the 3 cardinal axes

Goes the other way as well –

Any set of roations around x, y, and z can be
duplicaed by a single rotation around an
arbitary axis



08-31: Rotational Equivalence



08-32: Quatenrions

When using Quaternions for rotation:

Quaternion encodes an axis and an angle

Represents rotation about that axis by an
amount specified by the angle

Encoded in a slightly odd way – to understand
it, we need to talk about complex numbers



08-33: Imaginary Numbers

Define i =
√
−1

Imaginary number is k ∗ i for some real number k

Complex number has a real and an imaginary
component

c = a+ bi



08-34: Complex Plane

A complex number can be used to represent a
point (or a vector) on the complex plane

“Real” axis and “Imaginary” axis

1 + i

(-1 - 2i)
(2 + i)

real

imaginary



08-35: Complex Numbers

Complex numbers can be added, subtracted and
multiplied

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi)− (c+ di) = (a− c) + (b− d)i

(a+ bi)(c+ di) = ac+ adi+ bci+ bdi2 =
ac− bd+ (ad + bc)i

(Dividing is a wee bit more tricky ...)



08-36: Complex Conjugate

Complex number p = a+ bi

Conjugate of p, p∗ = a− bi

What happens when we multiply a number by its
conjugate?

Think of the geometric interpretation ...



08-37: Complex Conjugate

Complex number p = a+ bi

Conjugate of p, p∗ = a− bi

What happens when we multiply a number by its
conjugate?

(a+ bi)(a− bi) = a2 + abi− abi− b2i2

= a2 + b2



08-38: Complex Conjugate

The magnitude of a complex number is the square
root of the product of its conjugate

||p|| = √
pp∗

What is the magnitude of a number with no
imaginary part?



08-39: Complex Conjugate

The conjugate of a complex number is also is also
handy because the product of a number and it’s
conjuate has no imaginary part.

We can use this fact to do complex division

4 + 3i

3− 2i
=

(4 + 3i)(3 + 2i)

(3− 2i)(3 + 2i)

=
12 + 12i− 6

9 + 4

=
6 + 12i

13

=
6

13
+

12

13
i



08-40: Complex Conjugate

The conjugate of a complex number is also is also
handy because the product of a number and it’s
conjuate has no imaginary part.

We can use this fact to do complex division

a+ bi

c+ di
=

(a+ bi)(c− di)

(c+ di)(c− di)

=
ac + bd+ (bc− ad)i

(c2 + d2)

=
ac + bd

c2 + d2
+

bc− ad

c2 + d2
i



08-41: Complex Rotations

We can use complex numbers to represent
rotations

We can create a “rotational” complex number rΘ
Multiplying a complex number p by rΘ rotates p
Θ degrees counter-clockwise

Similar to a rotational matrix in “standard” 2D
space



08-42: Complex Rotations

We can use complex numbers to represent
rotations

rΘ = cosΘ + (sinΘ)i

p = (a+ bi)

prΘ = a cosΘ + (a sinΘ) + (b cosΘ)i− b sinΘ

= (a cosΘ− b sinΘ) + (a sinΘ + b cosΘ)i

Does this look at all familiar?



08-43: Quaternions

So, we can use complex numbers to represent
points in 2D space, and rotations in 2D space

How can we extend this to 3D space?

Add an extra imaginary component for the 3rd
dimension?



08-44: Quaternions

So, we can use complex numbers to represent
points in 2D space, and rotations in 2D space

How can we extend this to 3D space?

Add an extra imaginary component for the 3rd
dimension?

Actually, we’ll add two additional imaginary
components



08-45: Quaternions

A quaternion is a number with a real part and 4
imaginary parts:

p = a+ bi+ cj + dk

Where i, j and k are all different imaginary
numbers, with:

i2 = j2 = k2 = −1

i ∗ j = k, j ∗ i = −k

jk = i, kj = −i

ki = j, ik = −j



08-46: Quaternions

Quaternions are often divided into a scalar part
(real part of the number) and a vector (complex
part of the number)

p = w + xi+ yj + xk

p = [w, (x, y, z)]

p = [w,v]



08-47: Geometric Quaternions

Complex numbers represent points/vectors in 2D
space, and rotations in 2D space

Quaternions only represent rotations in 3D space
(Technically, you can use quaternions to represent
scale as well, but we’ll only do rotations in this
class)

Can condier a quaternion to represent an
orientation as an offset from some given
orientation

Just like a vector can represent a point at an
offset from the origin



08-48: Geometric Quaternions

Quaternions represent rotation about an arbitrary
axis

Let n represent an arbitary unit vector

Rotation of Θ degrees around n (using the
appropriate handedness rule) is represented by
the quaternion:

q = [cos(Θ/2), sin(Θ/2)n]

= [cos(Θ/2), (sin(Θ/2)nx, sin(Θ/2)ny, sin(Θ/2)nz)]

So, we can represent the position and orientation
of a model as a vector and a quaternion
(displacement from the origin, and rotation from
initial orientation)



08-49: Quaternion Negation

Negate quaternions by negating each component

−q = −[w, (x, y, z)] = [−w, (−x,−y,−z)]

−q = −[w,v] = [−w,−v]

What is the geometric meaning of negating a
quaternion?

What happens to the orientation represented by a
quaternion if it is negated?



08-50: Quaternion Negation

Recall: Rotation of Θ degress around n is
represented by

q = [cos(Θ/2) + sin(Θ/2)n]

What happens if we add 360 degrees to Θ

How does it change the rotation represented by
q?

How does it change q?



08-51: Quaternion Negation

Each anglular displacement has two different
quaternion representations q, q′

q = −q′



08-52: Identity Quaternion

Identity Quaternion represents no anglular
displacement

[1,0] = [1, (0, 0, 0)]

Rotation of 0 degrees around a vector n

q = [cos 0, sin 0 ∗ v] = [1,0]

What about [−1,0]?



08-53: Identity Quaternion

What about [−1,0]?

Also represents no angular displacement (think
rotation of 360 degrees)

Geometrically equivalent to identity quaternion

Not a true identity
q and −q represent the same orientation, but
are different quaternions.



08-54: Quaternion Magnitude

Magnitude of a quaternion is defined as:

||q|| = ||[w, (x, y, z)]|| =
√
w2 + x2 + y2 + z2

||q|| = ||[w,v]|| =
√

w2 + ||v||2
Let’s take a look a geometric interpretation:

||[w,v|| =
√

w2 + ||v||2

=
√

cos2(Θ/2) + (sin(Θ/2)||n||)2

=
√

cos2(Θ/2) + sin2(Θ/2)||n||2

If we restrict n to be a unit vector ...



08-55: Quaternion Magnitude

||[w,v|| =
√

w2 + ||v||2

=
√

cos2(Θ/2) + (sin2(Θ/2)||n||)2

=
√

cos2(Θ/2) + sin2(Θ/2)||n||2

=
√

cos2(Θ/2) + sin2(Θ/2)

=
√
1

= 1

All quaternions that represent orienation (using
normalized n) are unit quaternions



08-56: Conjugate & Inverse

The conjugate of a quaternion is very similar to the
complex conjugate

q = [w,v] = [w, (x, y, z)]

q∗ = [w,−v] = [w, (−x,−y,−z)]

The inverse of a quaternion is defined in terms of
the conjugate

q−1 = q
∗

||q||
= q∗ (for unit quaternions)



08-57: Quaternion Multiplication

Quaternion Multiplication is just like complex
multiplication:

q1q2 = (w1 + x1i+ y1j + z1k)(w2 + x2i+ y2j + z2k)

= w1w2 + w1x2i+ w1y2j + w1z2k +

x1w2i+ x1x2i
2 + x1y2ij + x1z2ik +

y1w2j + y1x2ji+ y1y2j
2 + y1z2jk +

z1w2k + z1x2ki+ z1y2kj + z1z2k
2 +

= w1w2 + w1x2i+ w1y2j + w1z2k +

x1w2i+ x1x2(−1) + x1y2(k) + x1z2(−j) +

y1w2j + y1x2(−k) + y1y2(−1) + y1z2i+

z1w2k + z1x2j + z1y2(−i) + z1z2(−1) +



08-58: Quaternion Multiplication

Quaternion Multiplication is just like complex
multiplication:

q1q2 = (w1 + x1i+ y1j + z1k)(w2 + x2i+ y2j + z2k)

= . . .

= w1w2 + w1x2i+ w1y2j + w1z2k +

x1w2i+ x1x2(−1) + x1y2(k) + x1z2(−j) +

y1w2j + y1x2(−k) + y1y2(−1) + y1z2i+

z1w2k + z1x2j + z1y2(−i) + z1z2(−1) +

= w1w2 − x1x2 − y1y2 − z1z2 +

(w1x2 + x1w2 + y1z2 − z1y2)i+

(w1y2 + y1w2 + z1x2 + x1z2)j +

(w1z2 + z1w2 + x1y2 + y1x2)k



08-59: Quaternion Multiplication

Quaternion Multiplication is associative, but not
commutative

(q1q2)q3 = q1(q2q3)

q1q2 6= q2q1

Mangnitude of product = product of magnitude

||q1q2|| = ||q1||||q2||
Result of multiplying two unit quaternions is a
unit quaternion



08-60: Quaternion Multiplication

Given any two quaternions q1 and q2:

(q1q2)
−1 = q−1

2 q−1
1



08-61: Quaternion Rotation

We can use quaternions to rotate a vector around
an axis n by angle Θ

Let q be a quaternion [w, (x, y, z)] that
represents rotation about n by Θ

Let v be a “quaternion” version of the vector
(same vector part, real part zero)

Rotated vector is: qvq−1



08-62: Quaternion Rotation

How can we prove that the rotated version of v is

qvq−1? Do the multiplication!

Given n, Θ, and v = [vx, vy, vz]:

Create:

q = [cos(Θ/2), sin(Θ/2)(nx, ny, nz)]

q−1 = [cos(Θ/2),− sin(Θ/2)(nx, ny, nz)]

v = [0, (vx, vy, vz)]

Calculate qvq−1



08-63: Quaternion Rotation

Calculate v′ = qvq−1

... Much ugly algebra later ...

Vector portion of v′ is:
v
′ = cosΘ(v − (v · n)n) + sinΘ(n× v) + (v · n)n

Which is what we calculated earlier for rotation
of Θ degrees around an aritrary axis n



08-64: Quaternion Rotation

What it we wanted to do more than one rotation?

First rotate by q1, and then rotate by q2

First, rotate by q1: q1vq
−1
1

Next, rotate that quantity by q2: q2(q1vq
−1
1 )q−1

2

q2q1vq
−1
1 q−1

2 = (q2q1)v(q2q1)
−1



08-65: Quaternion “Difference”

Given two quaternions p and q, find the rotation
required to get from p to q

That is, given p and q, find a d such that

dp = q

d = qp−1

Given two orientations p and q, we can generated
the angular displacement from one to another



08-66: Quaternion Log and Exp

We’ll now define a few “helper” functions, that
aren’t useful in and of themselves, but they will
allow us to do a slerp, which is very useful

Quaternion Log

Quaternion Exp (“Anti-log”)



08-67: Quaternion Log and Exp

Define α = Θ/2 (as a notational convenience)

q = [cosα, (sinα)n]

q = [cosα, (sinαnx, sinαny, sinαnz)]

log q = log([cosα, (sinα)n] ≡ [0, αn]



08-68: Quaternion Log and Exp

Given a quaternion p of the form:

q = [0, αn] = [0, (αnx, αny, αnz)]

exp(p) = exp([0,n]) ≡ [cosα, sinαn]

Note that exp(log(q)) = q



08-69: Scalar Multipication

Given any quaternion q = [w, (x, y, z)] and scalar
a

aq = qa = [aw, (ax, ay, az)]



08-70: Quaternion Exponentiation

q is a quaternion that represents a rotation about
an axis

Define qt such that:

q0 = identity quaternion

q1 = q

q1/2 = half the rotation around the axis defined
by q

q−1/2 = half the rotation around the axis defined
by q, in the opposite direction



08-71: Quaternion Exponentiation

q0 = identity quaternion

q1 = q

q2 = twice half the rotation around the axis defined
by q

Well, sort of.

Displacement using the shortest possible arc

Can’t use exponentiation to represent multiple
spins around the axis

Compare (q4)1/2 to q2, when q represents 90
degrees ...



08-72: Quaternion Exponentiation

We can define quaternion exponentiation
mathematically:

qt = exp(t log q)

Why does this work?

Log function extracts n and Θ from q

Multiply Θ by t

“Undo” log operation



08-73: Slerp

Spherical Linear Interpolation

Input: Two orientations (quaternions) q1 and q2,
and a value 0 ≤ t ≤ 1

Output: An orientation that is between q1 and q2
If t = 0, result is q1
If t = 1, result is q2
if t = 1/2, result is 1/2 way between them



08-74: Slerp

slerp(q1,q2,t):

Start with orientation q1
Find the difference between q1 and q2
Calcualte portion t of the difference

slerp(q1,q2,t) = q1(q
−1
1 q2)

t



08-75: Slerp

Finding Slerp, version II

Let’s say we had two 2-dimensional unit
vectors, and we wanted to interpolate between
them.

All 2-dimensional unit vectors live on a circle

To interpolate 30% between v1 and v2, go 30%
of the way along the arc between them



08-76: Slerp

t= 0.3

v1
v2



08-77: Slerp

t= 0.3

v1
v2



08-78: Slerp

Finding Slerp, version II

Let’s say we had two 3-dimensional unit
vectors, and we wanted to interpolate between
them.

All 3-dimensional unit vectors live on a sphere

To interpolate 30% between v1 and v2, go 30%
of the way along the arc between them



08-79: Slerp

t= 0.3

v1
v2



08-80: Slerp

t= 0.3

v1
v2



08-81: Slerp

t= 0.3

v1
v2



08-82: Slerp

Finding Slerp, version II

Let’s say we had two 4-dimensional unit
vectors, and we wanted to interpolate between
them.

All 4-dimensional unit vectors live on a
hypersphere

To interpolate 30% between v1 and v2, go 30%
of the way along the arc between them



08-83: Slerp

(Sorry, no 4D diagram)

slerp(q1,q2, t) =
sin(1−t)ω

sinω
q1 +

sin tω
sinω

q1

ω is the angle between q1 and q2, can get it using a
dot product

We can get cosω easily using the dot product,
and can then get sinω from that



08-84: Using Quaternions

Orientations in Ogre use quaternions

Multiplication operator for multiplying a quaternion
and a vector is overloaded to do the “right thing”

Ogre::Quaternion q

Ogre::Vector v;

q*v returns v rotated by q



08-85: Using Quaternions

Tank example:

Quaternion & Position vector for tank

Quaternion & Position vector for barrel

End of barrel is 3 units down barrel’s z axis

Where is the end of the barrel in world space



08-86: Using Quaternions

Tank: Orientation qt, Position pt

Barrel: Orientation qb, Position pb

End of barrel in world space:

qt(qb[0, 0, 3] + pb) + pt



08-87: Change Representations

We are not restricted to using just matrices, or just
euler angles, or just quaternions to represent
orientation

We can go back and forth between
representations

Given a set of Euler Angles, create a Rotational
Marix

Given a Rotational Matrix, create a quaternion

... etc



08-88: Euler Angles -> Matrix

Given Euler angles in world space (as opposed to
object space), it is easy to create an equivalent
rotational matrix

How?



08-89: Euler Angles -> Matrix

Euler angles in world space represent a rotation
around each axis

We can create a matrix for each rotation, and
combine them

Creating a rotational matrix for the cardinal
axes is easy



08-90: Euler Angles -> Matrix

For the euler angles r,p, y, the matrix would be:









cos(r) sin(r) 0

− sin(r) cos(r) 0

0 0 1

















1 0 0

0 cos(p) sin(p)

0 −sin(p) cos(p)

















cos(y) 0 − sin(y)

0 1 0

sin(y) 0 cos(y)









=









cos r cos y + sin r sin p sin y sin r cos p sin r sin p cos y − cos r sin y

cos r sin p sin y − sin r cos y cos r cos p cos r sin p cos y + sin b sin y

cos p sin y − sin p cos p cos y











08-91: Euler Angles -> Matrix

What if your euler angles are in object space, and
not world space?

Then how do you create the appropriate matrix?



08-92: Euler Angles -> Matrix

What if your euler angles are in object space, and
not world space?

Then how do you create the appropriate matrix?

Create the RPY matrices as before

Multiply them in the reverse order



08-93: Matrix -> Euler Angle

What if we have a matrix, and we want to create a
world-relative euler angle triple?

Little more complicated than the other direction –
recall the definition of a martrix from euler angles
(we’ll work backwards, kind of like a sudoku
puzzle)









m11 m12 m13

m21 m22 m23

m31 m32 m33









=









cos r cos y + sin r sin p sin y sin r cos p sin r sin p cos y − cos r sin y

cos r sin p sin y − sin r cos y cos r cos p cos r sin p cos y + sin b sin y

cos p sin y − sin p cos p cos y











08-94: Matrix -> Euler Angle

From the previous equation:

m32 = − sin p

p = arcsin(−m32)

So we have p – next up is y – once we have p, how
can we get y?









cos r cos y + sin r sin p sin y sin r cos p sin r sin p cos y − cos r sin y

cos r sin p sin y − sin r cos y cos r cos p cos r sin p cos y + sin b sin y

cos p sin y − sin p cos p cos y











08-95: Matrix -> Euler Angle

Assume that cos p 6= 0 for the moment:

m31 = cos p sin y

sin y = m31/ cos p

y = arcsin(m31/ cos p)

(can do this a litle more efficiently with atan2)



08-96: Matrix -> Euler Angle

Once we have p and y (again assuming cos p! = 0)
it is relatively easy to get r:

m12 = sin r cos p

r = arcsin(m12/ cos p)



08-97: Matrix -> Euler Angle

What if cos p = 0?

That means that p = 90 degrees

Gimbal lock case!

Yaw, roll do the same operation!

We need to make some assumptions about
how much to roll and yaw



08-98: Matrix -> Euler Angle

What if cos p = 0?

p = 90 degrees

Assume no yaw (since roll does the same thing)

cos p = 0, sin p = 1, y = 0 sin y = 0, cos y = 1









cos r cos y + sin r sin p sin y sin r cos p sinr sin p cos y − cos r sin y

cos r sin p sin y − sin r sin y cos r cos p cos r sin p cos y + sin p sin y

cos p sin y − sin p cos p cos y









=









cos r 0 sin r

−1 sin r 0 0

0 −1 0











08-99: Matrix -> Euler Angle

m11 = cos r, and we’re set!

(We can use m12 = sin r and atan2 for some
more efficiency)



08-100: Quaternion -> Matrix

Since we can use quaternions to rotate vectors,
going from a quaternion to a matrix is easy.

How?



08-101: Quaternion -> Matrix

Rotational matrix == position of x, y, and z axes
after rotation

So, all we need to do is rotation basis vectors
[1, 0, 0], [0, 1, 0] and [0, 0, 1] by the quaternion!

xnew = q[0, (1, 0, 0)]q−1 (just q[1, 0, 0] in ogre)

ynew = q[0, (0, 1, 0)]q−1 (just q[0, 1, 0] in ogre)

znew = q[0, (0, 0, 1)]q−1 (just q[0, 0, 1] in ogre)

Combine these 3 vectors into a matrix



08-102: Other conversions

We can do other conversions as well

Matrix->Quaternion

Euler->Quaternion

Quaternion->Matrix

... etc

Basic approach is the same, some of the math is a
little uglier
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