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08-0: Orentation

® QOrientation is almost the direction that the model is
pointing.

® \We can describe the direction that a model is
pointing using two numbers, polar coordinattes




0s-1: Direction in Polar Cooridnates

® We can describe direction using two values (« and
5)

¢ What’s missing for orientation?




0s-2: Orientation

® QOrientaion needs at least 3 numbers to describe

/

e
Q \




0s-3: Absoulte Orientation?

® Recall vectors are actually a displacement, not a
position
* Need a reference point (origin) to get a position

* |f we think in terms of displacement instead of
absoulte position, multiple reference frames
easier to understand

® QOrientation is the same way

e Think of orentation as AOQOrientation instead of
absoulte

 Use A from a fixed reference frame (like origin)
to get absoulte orientation




os-4: Absoulte Orientation?

® Of course, if our orientation is a A, we need to be
careful about what kind of change

 Change from Object space to Inertial Space?
e Change from Inertial Space to Object Space?

® |[f we use Matrices, then one is the inverse of the
other

® Rotational matrices are orthoginal, finding inverse
IS easy — Transpose




0s-5: Matrices as Orientation

® We can represent orientation using 3x3 matrices
e Delta from Object Space to Inertial Space

M = o1 Moo TNog

e Delta from Inertial Space to Object Space

i1 Mgp M3y
M = 12 Moo 139
13 1Moz 1733




0s-6: 4xX4 Matricies

® We can completely describe the position and
orientation of an object using a 4x4 matrix

e Alternately, a 3x3 matrix and a 1x3 (or 3x1)
position vector

®* \When we use matrices, we are using Aorientation
and Aposition

® Fasily combine two matrices — just a matrix
multiplication




0s-7: Matrix Problems

® Matricies are great for describing orientation and
position
* Easy to combine
* How orientation is described within most
graphics engines, and by OpenGL and DirectX

® What are some drawbacks to using matrices for
orientation?




0s-8: Matrix Problems

® Requires 9 numbers instead of 3
e Uses more space

* Not all matrices are valid rotational matrices
- What happens when you use more values
that you have degrees of freedom
- Overconstraint problems




0s-9: Matrix Problems

® Requires 9 numbers instead of 3
e Consider a 3x3 matrix
* The z basis vector (3 numbers) gives the
direction

* x basis vector needs to be parallel to z —we
can describe the relative position of the x basis
vector given the z basis vector with a single
number (not 3!)

* Once we have r and z, y is completely
determined!




0s-10: Matrix Problems

® Only orthoginal matrices are valid rotational
matrices

* Matrices can become non-orthoginal via matrix
creep

e Data can be a little off if not cleaned up properly
(though the solution to that is to clean up your
data!)

e Can fix this problem by orthogonalizing
matrices (as per last lecture)




os-11: Matrix Problems

® (Go to your artist / animator

® Tell him / her that all angles need to be described
In terms of rotational matrices

® Duck as digitizing tablet is thrown at you
 Matrices aren’t exactly easily human readable




os-12: EUler Angles

® Describe rotation in terms of roll, pich, and yaw
e Roll is rotation around the z axis
e Pitch is rotation around the x axis
* Yaw Is rotation around the y axis




0s-13: EUler Angles
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os-14: EUler Angles

® We can describe any orientation using Euler
Angles

e Order is important!

e 30 degree roll followed by 10 degree pitch = 10
degree pitch followed by 30 degree roll!




0s-15: EUler Angles

® Standard order is
* Roll, pitch yaw

® Converting from object space to Inertial Space

® To convert from Inertial Space to Object space, go
INn reverse order




os-16: EUler Angles

® Object Space vs. World Space

* We can define roll/ptich/yaw in object space
- Rotate around the object’s z axis

- Rotate around the object’s x axis

- Rotate around the object’s y axis
e Examples, using model




0s-17: EUler Angles

® Object Space vs. World Space

* We can define roll/ptich/yaw in world space
- Rotate around the world’s z axis
- Rotate around the world’s x axis
- Rotate around the world’s y axis

e Examples, using model




os-18: EUler Angles

® So, what does Ogre use?
=Telig)
- If we call roll/pitch/yaw functions with a single
parameter, we rotate in object space (though
we can do world space, too, using a second

parameter)
- If we ask for the euler angles, we get them in

world space
e RPY in word space is the same as YPR in

object space




0s-19: EUler Angle Problems

® Some issues with Euler angles

* Any triple of angles describes a unique
orientaion (given an order of application)

e ... But the same orientation can be described
with more than one set of Euler Angles!
- Trivial example: Roll of 20 degrees is same
as roll of 380 degrees
- Can you think of a more complicated
example?




0s-20: EUler Angle Problems

® Aliasing Issues

e (Same orientation with different angles, using
object space or world space)

® Roll 90 degrees, Pitch 90 degrees, Yaw 90 degrees
® Pitch -90 degrees




0s-21: Gimbal Lock

® When using Euler angles, we always rotate in a set
order

* Roll, pitch, yaw
® What happens when the 2nd parameter is 90
degrees?
* Physical system
* In game engine




0s-22: Angle Interpoloation

® (Given two angles, we want to interpolate between
them

e Camera pointing at one object
* Want to rotate camera to point to another object
 Want to rotate a little bit each frame

® Find the “delta” between the angles, move along it
a little bit




0s-23: Angle Interpoloation

® Naive approach:
* Initial Angle: ©,, Final angle ©,

e Want to interpolate from ©, to ©,: attime t =0
be at angle ©,, attime ¢t = 1 be at angle 6,
- AO =0, — O,
« O, =0, +tAO

* When does this not “work” (that is, when does it
do what we don’t expect?)




0s-24: Angle Interpoloation

©, = 495

® AO =495 — 45




0s-25: Angle Interpoloation

® The naive approach spins all the way around (450
degrees), instead of just moving 45 degrees

® This is an aliasing problem

 We can fix it by insisting on canonical angles
- -180 < roll <180
-+ -90 < pich <90
- -180 < yaw < 180




0s-26: Angle Interpoloation

©, = 170

@1 — '170

* AO =—-170—-170
¢ O, =170 — 340¢




0s-27: Angle Interpoloation

® We can fix this by forcing A, © to be in the range
—180...180

e wrap(x) =x — 360 (x + 180)/360
e AO = wrap(©; — Oy)
e O, =0, +tABO

® Gimbal lock is still a problem, though

® Gimbal lock (or something analogous) will always
be a problem if we use 3 numbers to represent
angles (exactly why this is so is beyond the scope
of this course, however)




0s-28: EUler Angle Advantages

® Compact representation (3 numbers — matrices
take 9, and Quaternians (up next!) take 4)

® Any set of 3 angles represents a valid orentation
(not so with matricies — any 9 numbers are not a
valid rotational matrix!)

® Conceptually easy to understand




0s-29: EUler Angle Disadvantages

® Can’t combine rotations as easily as matrices
® Aliasing & Gimal Lock




0s-30: Quaternians

® Roating about any axis can be duplicaed by
rotations around the 3 cardinal axes

® (Goes the other way as well —

* Any set of roations around x, y, and z can be
duplicaed by a single rotation around an
arbitary axis




0s-31: Rotational Equivalence

~N

~

=




0s-32: Quatenrions

® When using Quaternions for rotation:
e Quaternion encodes an axis and an angle

* Represents rotation about that axis by an
amount specified by the angle

 Encoded in a slightly odd way — to understand
it, we need to talk about complex numbers




0s-33: Imaginary Numbers

® Definer =+/—1
® |maginary number is k * ¢ for some real number &

® Complex number has a real and an imaginary
component

e c=a-+0




0s-32: Complex Plane

® A complex number can be used to represent a
point (or a vector) on the complex plane

® “Real” axis and “Imaginary” axis

Imaginary




0s-35: Complex Numbers

® Complex numbers can be added, subtracted and

multiplied

* (a+bi)+ (cH

- di) = (a+¢) + (b + d)i

 (a+bi) — (c+di) = (a— ) + (b— d)
* (a+bi)(c+ di) = ac+ adi + bci + bdi* =

ac — bd

(ad

bc)i

® (Dividing is a wee bit more tricky ...)




0s-36: Complex Conjugate

® Complex number p =a + It
® Conjugate of p, p* = a — bz

® What happens when we multiply a number by its
conjugate?
* Think of the geometric interpretation ...




0s-37: Complex Conjugate

® Complex number p =a + It

® Conjugate of p, p* = a — bz

® What happens when we multiply a number by its
conjugate?

(a+bi)(a—bi) = a® + abi —abi — b*i°




0s-38: Complex Conjugate

® The magnitude of a complex number is the square
root of the product of its conjugate

® |Ip|| = /pp’

® What is the magnitude of a number with no
imaginary part?




0s-39: Complex Conjugate

® The conjugate of a complex number
handy because the product of a num
conjuate has no imaginary part.

IS also Is also
ber and it’s

* We can use this fact to do complex division

A+3i 0 (44 30)(3-

- 2i)

3-2  (3-2i)(3-
12 4+ 121 —

- 2i)
6

944
6+ 122

13
6 12,

(
13 13




0s-40: Complex Conjugate

® The conjugate of a complex number is also is also
handy because the product of a number and it's
conjuate has no imaginary part.

* We can use this fact to do complex division

a—+ b (a + bi)(c — di)

c+di (c+ di)(c — di)

ac + bd + (bc — ad)i
(¢ + )

ac + bd | bc — ad .

c2 4 d2 | CQ—I—dQZ




0s-41: Complex Rotations

® We can use complex numbers to represent
rotations

 We can create a “rotational” complex number rg

e Multiplying a complex number p by rg rotates p
© degrees counter-clockwise

e Similar to a rotational matrix in “standard” 2D
space




0s-22. Complex Rotations

® We can use complex numbers to represent
rotations

* ro = cosO + (sinO);
* p=(a+ bi)

pre = acosO + (asin®) + (bcosO)i — bsin O
= (acos©® — bsin®) + (asin O + bcos O)i

® Does this look at all familiar?




0s-43: Quaternions

® S0, we can use complex numbers to represent
points in 2D space, and rotations in 2D space

* How can we extend this to 3D space?

* Add an extra imaginary component for the 3rd
dimension?




0s-44: Quaternions

® S0, we can use complex numbers to represent
points in 2D space, and rotations in 2D space

* How can we extend this to 3D space?
* Add an extra imaginary component for the 3rd
dimension?
- Actually, we’'ll add two additional imaginary
components




0s-45: Quaternions

® A quaternion is a number with a real part and 4
Imaginary parts:
* p=a+bi+cj+ dk
® Where i, y and k are all different imaginary
numbers, with:
o i2:j2:k2:—1
ci1x )=~k jx1=—k
e /k=1,k)=—1
* ki1 = 9,1k = —)




0s-46: Quaternions

® Quaternions are often divided into a scalar part
(real part of the number) and a vector (complex
part of the number)
* p=w+xt+yj+ xk

*D= [?,U, (CE,y,Z)]
*Db= [w,V]




0s-47: Geometric Quaternions

® Complex numbers represent points/vectors in 2D
space, and rotations in 2D space

® Quaternions only represent rotations in 3D space
(Technically, you can use quaternions to represent
scale as well, but we’ll only do rotations in this
class)

e Can condier a quaternion to represent an
orientation as an offset from some given
orientation

e Just like a vector can represent a point at an
offset from the origin




0s-a8: Geometric Quaternions

® Quaternions represent rotation about an arbitrary
axis

® | et n represent an arbitary unit vector

® Rotation of © degrees around n (using the
appropriate handedness rule) is represented by
the quaternion:

q = |cos(©/2),sin(O/2)n]
= |cos(0©/2), (sin(©/2)n,,sin(©/2)n,,sin(60/2)n, )]

® S0, we can represent the position and orientation
of @ model as a vector and a quaternion
(displacement from the origin, and rotation from
initial orientation)




0s-49: Quaternion Negation

® Negate quaternions by negating each component
* —q= _[wv (CE, Y, Z)] — [_wv (—:Ij, —Y, _Z)]
* —q=—|w,v]=[-w,—V]
® What is the geometric meaning of negating a
guaternion?

® What happens to the orientation represented by a
qguaternion if it is negated?




0s-50: Quaternion Negation

® Recall: Rotation of © degress around n is
represented by

e q = [cos(O/2) 4 sin(O/2)n]
® \What happens if we add 360 degrees to O
* How does it change the rotation represented by
q?
* How does it change q?




0s-51: Quaternion Negation

® Each anglular displacement has two different
quaternion representations ¢, ¢’

®*qg=—¢

/




0s-52: Identity Quaternion

® |dentity Quaternion represents no anglular
displacement

e [1,0] =11,(0,0,0)]

® Rotation of O degrees around a vector n
e g =|cos0,sin0*v| = 11,0

® What about [—1, 0]?




0s-53: Identity Quaternion

® What about [—1, 0]?
* Also represents no angular displacement (think
rotation of 360 degrees)
* Geometrically equivalent to identity quaternion

* Not a frue identity
- ¢ and —q represent the same orientation, but
are different quaternions.




0s-54: Quaternion Magnitude

® Magnitude of a quaternion is defined as:

* 1l
*1d

® | et’'s take a

lw, v

w, (z,y, 2)]|| = Vw2 + 22 + y? + 2°
w, V|| = w? +||v]]?

00K a geometric interpretation:

= yJw?+|Iv|P
\/COSZ(@/Q) + (sin(©/2)||n||)?
V/c0s?(6/2) + sin*(©/2) ]

® |[f we restrict n to be a unit vector ...




0s-55: Quaternion Magnitude

llw,v]] = \Jw?+[|v]]
cos?(0/2) + (sin’(6/2)||n]])?

cos*(©/2) + sin”(6/2)]|n]|?

||
<. .

cos?(0/2) + sin*(0/2)

||
S

® All guaternions that represent orienation (using
normalized n) are unit quaternions




0s-56: Conjugate & Inverse

® The conjugate of a quaternion is very similar to the
complex conjugate
*q= [wv V] — [wv (QZ, Y, Z)]
* q = [wv _V] — [wv (_377 —Y, _Z)]
® The inverse of a quaternion is defined in terms of

the conjugate

* q' = L = ¢ (for unit quaternions)




0s-57: Quaternion Multiplication

® Quaternion Multiplication is just like complex
multiplication:

qiqz = (w1 +x1i+y1j+ z1k)(w2 + x28 + Y25 + 22k)
= wiw2 + w1zt + wiy) + wizek +
Tr1wot + x1x2i2 + x1y2t) + 122tk +
yiwaj + y1z2ji + y1y25° + y1225k +
ziwak + z1xokt + z1y2k) + zlek2 +

= wiwz +wiT2t + wiy2j + wizzk +
r1w2i + x122(—1) + x1y2(k) + x122(—7) +
yiwaj + y1x2(—k) + y1y2(—1) + y122¢ +
ziwzk + 21225 + z1y2(—1) + z122(—1) +




0s-58: Quaternion Multiplication

® Quaternion Multiplication is just like complex
multiplication:

qiqz2 = (w1 +x1i4+y1j+ z1k)(we + x2i + y27 + 22k)

= wiwz +wir2t + wiy2) + wizzk +
riw2t + x122(—1) + x1y2(k) + z122(—75) +
yiwaj + y1z2(—k) + y1y2(—1) + y1 221 +
ziwzk + 21727 + z1y2(—1) + 2122(=1) +

= W1wW2 —T1T2 — Y1Y2 — 2122 +
(wiz2 + x1w2 + Y122 — 21Y2)t +
(wiy2 + yiwz + z122 + x122)j +
(w1z2 + z1w2 + z1Y2 + y122)k




0s-59: Quaternion Multiplication

® Quaternion Multiplication is associative, but not
commutative

* (q192)q3 = q1(q2qs3)
* 4192 7# 92
® Mangnitude of product = product of magnitude

* llagll = llalllle]
 Result of multiplying two unit quaternions is a

unit quaternion




0s-50: Quaternion Multiplication

® (Given any two quaternions ¢; and gs:
1 —1_,—1

* (q1q2)”' =q; q;




0s-61: Quaternion Rotation

® We can use quaternions to rotate a vector around
an axis n by angle ©

e Let q be a quaternion |w, (x,y, z)] that
represents rotation about n by ©

e Let v be a “quaternion” version of the vector
(same vector part, real part zero)

* Rotated vector is: qvq ™!




0s-62: Quaternion Rotation

® How can we prove that the rotated version of v is
qvq '? Do the multiplication!

® Givenn, ©, and v = [v,,v,, .]:

® Create:
e q = [cos(0/2),sin(0/2)(n,,n,,n,)|
e q ' =[cos(0/2), —sin(O/2)(n,, n,,n.)]
°* V= [O, (Ua:a Uyavz)]

® Calculate qvq!




0s-63: Quaternion Rotation

® Calculate v = qvq™*
e ... Much ugly algebra later ...
e Vector portion of v’ is:

v =cos®O(v—(v-n)n)+sin®(n xv) + (v-n)n | |
Which is what we calculated earlier for rotation
of © degrees around an aritrary axis n




0s-64: Quaternion Rotation

® \What it we wanted to do more than one rotation?
* First rotate by ¢,, and then rotate by ¢,

® First, rotate by ¢;: qivg; :
® Next, rotate that quantity by ¢»: ¢.(q1vg; H) gy

®* q1vd; 4y = (Qq;)v(geqr) ™




0s-65: Quaternion “Difference”

® (Given two quaternions p and q, find the rotation
required to get from p to q

® That s, given p and g, find a d such that
*dp=gq
*d=qp"

® (Given two orientations p and q, we can generated
the angular displacement from one to another




0s-66: Quaternion Log and Exp

® We'll now define a few “helper” functions, that
aren’t useful in and of themselves, but they will
allow us to do a slerp, which is very useful

e Quaternion Log
e Quaternion Exp (“Anti-log”)




0s-67: Quaternion Log and Exp

® Define « = ©/2 (as a notational convenience)
e q = [cos a, (sin a)n]
* q = [cos a, (sin an,, sin an,, sinan,)|

® log q = log(|cos a, (sin a)n]| = |0, an]




0s-6s: Quaternion Log and Exp

® Given a quaternion p of the form:
e q=10,an| = |0, (an,, an,, an,)|

® exp(p) = exp(|0,n]) = [cos «, sin an|

® Note that exp(log(q)) = q




0s-60: Scalar Multipication

® Given any quaternion q = |w, (x, y, )| and scalar
a

® aq = qa = |aw, (ax, ay, az)]




0s-70: Quaternion Exponentiation

® ¢ is a quaternion that represents a rotation about
an axis

® Define ¢' such that:
e ¢' = identity quaternion
* q' =g
e ¢'/2 = half the rotation around the axis defined
by ¢

e ¢~ '/2 = half the rotation around the axis defined
by g, in the opposite direction




0s-71: Quaternion Exponentiation

® (' = identity quaternion
o ql p— q
® ¢° = twice half the rotation around the axis defined

by ¢
e Well, sort of.

e Displacement using the shortest possible arc

e Can’t use exponentiation to represent multiple
spins around the axis

e Compare (¢*)'/? to ¢%, when q represents 90
degrees ...




0s-72: Quaternion Exponentiation

® We can define quaternion exponentiation
mathematically:

* q' = exp(tlogq)
® Why does this work?
e Log function extracts n and O from ¢
e Multiply © by ¢
* “Undo” log operation




0s-73: Slerp

® Spherical Linear Interpolation

® |nput: Two orientations (quaternions) ¢; and gs,
andavalue0 <t <1
® Qutput: An orientation that is between ¢; and ¢,
e [f¢t =0, resultis ¢
e [ft =1, resultis g
e ift =1/2, resultis 1/2 way between them




0s-74: Slerp

e SIerD(Ql!QZ!t):
e Start with orientation ¢

* Find the difference between ¢; and g,
e Calcualte portion ¢ of the difference

® slerp(qi,q2,t) = 1(q; ')t




0s-75: Slerp

® Finding Slerp, version |l
e Let's say we had two 2-dimensional unit
vectors, and we wanted to interpolate between
them.
o All 2-dimensional unit vectors live on a circle

* Jo interpolate 30% between v; and v,, go 30%
of the way along the arc between them




0s-76: Slerp

e

vi

{=0.3




0s-77: Slerp

N2

vi

{=0.3




0s-78: Slerp

® Finding Slerp, version |l
e Let’s say we had two 3-dimensional unit
vectors, and we wanted to interpolate between
them.
e All 3-dimensional unit vectors live on a sphere

* Jo interpolate 30% between v; and v,, go 30%
of the way along the arc between them




0s-79: Slerp




0s-80: Slerp

{=0.3




0s-81: Slerp

{=0.3




0s-82: Slerp

® Finding Slerp, version |l

e Let's say we had two 4-dimensional unit
vectors, and we wanted to interpolate between
them.

e All 4-dimensional unit vectors live on a
hypersphere

* Jo interpolate 30% between v; and v,, go 30%
of the way along the arc between them




0s-83: Slerp

(Sorry, no 4D diagram)

sin(l—t)w | sin tw

¢ Slerp(q17 g2, t) — — d1 L q1
® . is the angle between ¢; and ¢, can get it using a
dot product

 We can get cos w easily using the dot product,
and can then get sin w from that




0s-84: Using Quaternions

® Qrientations in Ogre use quaternions
® Multiplication operator for multiplying a quaternion
and a vector is overloaded to do the “right thing”
* Jgre: :Quaternion q
e Jgre::Vector v;
e g*v returns v rotated by q




0s-85: Using Quaternions

® Tank example:
e Quaternion & Position vector for tank
e Quaternion & Position vector for barrel
e End of barrel is 3 units down barrel’s z axis

® Where is the end of the barrel in world space




0s-86: Using Quaternions

® Tank: Orientation q;, Position p;
® Barrel: Orientation q,, Position p,
® End of barrel in world space:

Qt(Qb[Oa 0, 3] =+ Pb) + P




0s-87: Change Representations

® We are not restricted to using just matrices, or just
euler angles, or just quaternions to represent
orientation

 We can go back and forth between
representations

e Given a set of Euler Angles, create a Rotational
Marix

e Given a Rotational Matrix, create a quaternion
o ... elc




0s-88: EUler Angles -> Matrix

® Given Euler angles in world space (as opposed to
object space), it is easy to create an equivalent
rotational matrix

® How?"?




0s-89: EUler Angles -> Matrix

® Fuler angles in world space represent a rotation
around each axis

® \We can create a matrix for each rotation, and
combine them

e Creating a rotational matrix for the cardinal
axes Is easy




0s-90: Euler Angles -> Matrix

® For the euler angles r,p, y, the matrix would be:

cos(r)
— sin(r)

0

sin(7)
cos(r)

0

0

[ 1

0

| 0

0

cos(p)
—sin(p)

0
sin(p)

cos(p) _

cos(y)
0

B sin(y)

0
1
0

cos T cos Yy + sinrsin psiny

cosrsinpsiny — sinr cosy

cos psiny

sin r cos p
COS T COS P

—sinp

sinr sinp cosy — cosrsiny

cosrsinpcosy + sinbsiny

COSpPCOSYy

— sin(y) ]
0]

cos(y) |




0s-91: Euler Angles -> Matrix

® What if your euler angles are in object space, and
not world space?

® Then how do you create the appropriate matrix?




0s-92: EUler Angles -> Matrix

® What if your euler angles are in object space, and
not world space?
® Then how do you create the appropriate matrix?
e Create the RPY matrices as before
* Multiply them in the reverse order




0s-93: Matrix -> Euler Angle

® \What if we have a matrix, and we want to create a
world-relative euler angle triple?

® | ittle more complicated than the other direction —
recall the definition of a martrix from euler angles

(we'll work backwards, kind of like a sudoku
puzzle)

mii mi2 mi13

ma2i ma22 ma23 —

| m31 m32 Mm33 |

cosrcosy +sinrsinpsiny sinrcosp sinrsinpcosy — CcosT siny

cosrsinpsiny —sinrcosy cosrcosp cosrsinpcosy + sinbsiny

cos psiny —sinp COS p COS Yy




0s-94: Matrix -> Euler Angle

® From the previous equation:
® M3y = —sSInP
e p = arcsin(—mss)

® So we have p — next up is y — once we have p, how
can we get y?

cosrcosy +sinrsinpsiny sinrcosp sinrsinpcosy — CosT siny

cosrsinpsiny —sinrcosy Ccosrcosp cosrsinpcosy + sinbsiny

cos psiny —sinp COS P COS Y




0s-95: Matrix -> Euler Angle

® Assume that cosp # 0 for the moment:
® Mg3; = COSPSINY
® siny = ms;/ cosp
e y = arcsin(ms;/ cosp)
e (can do this a litle more efficiently with atan2)




0s-96: Matrix -> Euler Angle

® Once we have p and y (again assuming cos p! = 0)
it is relatively easy to get 7:

® My = SINT COS P
e r = arcsin(m,/ cos p)




0s-97: Matrix -> Euler Angle

® What if cosp = 07
* That means that p = 90 degrees
e Gimbal lock case!
* Yaw, roll do the same operation!

* We need to make some assumptions about
how much to roll and yaw




os-98: Matrix -> Euler Angle

® What if cosp = 07
* p =90 degrees
 Assume no yaw (since roll does the same thing)
e cosp=0,sinp=1,y=0siny =0, cosy =1

cosrcosy +sinrsinpsiny sSinrcosp  SINTSINPCcosy — COoST siny

cosrsinpsiny —sinrsiny COSTCOSP COSTSsinpcosy + sinpsiny

cos psin y —sinp COS P COS Y

CoST 0 sinr
= —1sinr 0 0
0 —1 0




0s-99: Matrix -> Euler Angle

® m,; = cosr, and we're set!

e (We can use m, = sinr and atan2 for some
more efficiency)




os-100: Quaternion -> Matrix

® Since we can use quaternions to rotate vectors,
going from a quaternion to a matrix is easy.

® How?"?




os-101: Quaternion -> Matrix

® Rotational matrix == position of x, y, and z axes
after rotation

® So, all we need to do is rotation basis vectors
11,0,0], [0,1,0] and |0, 0, 1] by the quaternion!

* X, = ¢q[0,(1,0,0)]¢~* (just ¢[1,0,0] in ogre)

* Ynew = 40, (0,1,0)]g™" (just ¢[0, 1, 0] in ogre)

* Z.ew = q[0,(0,0,1)]¢g~" (just ¢[0,0, 1] in ogre)
® Combine these 3 vectors into a matrix




0s-102: Other conversions

® \We can do other conversions as well
e Matrix->Quaternion
e Euler->Quaternion
e Quaternion->Matrix
e .. efc

® Basic approach is the same, some of the math is a
little uglier
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