07-0: **Representing Polygons**

- We want to represent a simple polygon
 - Triangle, rectangle, square, etc
 - Assume for the moment our game only uses these simple shapes
 - No curves for the moment ...
- How could we represent one of those polygons?

07-1: **Representing Polygons**

- We want to represent a simple polygon
 - Triangle, rectangle, square, etc
 - Assume for the moment our game only uses these simple shapes
 - No curves for the moment ...
- How could we represent one of those polygons?
 - List of points, starting with some arbitrary point, moving “clockwise” around the polygon

07-2: **Representing Polygons**

```
(1,1), (1,-1), (-1,-1), (-1,1)
```

07-3: **Representing Polygons**

- How could we represent a simple circle?

07-4: **Representing Polygons**

- How could we represent a simple circle?
 - Center position (Vector)
 - Radius (scalar)
07-5: **Modifying Polygons**

- What if we wanted to modify a polygon
 - Translation, rotation, scaling, etc
- Start with an easy one – how can we translate (move) a polygon?

07-6: **Translating Polygon**

- To translate a polygon, all we need to do is translate each one of its points
 - Move a polygon over 1 unit, up 0.5 units
 - Add (1, 0.5) to each point
 - Points are just translations from origin

07-7: **Translating Polygon**

(1,1), (1,-1), (-1,-1), (-1,1)
Translate over 1, up 0.5
Add (1,0.5) to each point in polygon
(2,1.5), (2,-0.5), (0,-.5), (-0,1.5)

07-8: **Rotation**

- Rotations are a bit tricky
- Start with a simnplier case
 - Rotate a point around the origin

07-9: **Rotation**
- Rotate the point $(0, x)$ counterclockwise around the origin by Θ degrees
- What is the new point?

07-10: **Rotation**

\[
\begin{align*}
\sin \Theta &= \frac{y}{l} & y &= l \sin \Theta \\
\cos \Theta &= \frac{x}{l} & x &= l \cos \Theta
\end{align*}
\]

- Rotate the point $(0, x)$ counterclockwise around the origin by Θ degrees
- What is the new point?

07-11: **Rotation**

- Original point is at $(x, 1)$
 - distance from the origin $l = x$
- New x position $= x \cos \Theta$
- New y position $= x \sin \Theta$

Was easy because the distance from the origin l was easy to calculate. What if original point was not on an axis?

07-12: **Rotation**

- Rotating a point *not* on an axis
- Use polar coordinates!

07-13: **Rotation**

- Using polar coordinates for rotation sounds kind of like cheating
 - Of course it is easy to rotate in polar coordinates!
• Translation is harder though ...
• (Probably) don’t want to write all our game logic using polar coordinates
 • Depends on the game ...
• Transform into polar coordinates, do rotation, transform back. Hope everything simplifies nicely!

07-14: Rotation

Rotate point at \((r, \Theta_1)\) \(\Theta\) degrees counterclockwise

New point \((r, \Theta_2) = (r, \Theta_1 + \Theta)\)

07-15: Rotation

• Conversion from Polar coordinates to Cartesian coordinates
 • Given a point \((r, \Theta)\) in Polar coordinates, how can we create a point \((x, y)\) in Cartesian coordinates?

07-16: Polar \(\rightarrow\) Cartesian

\[y = r \sin \Theta \]
\[x = r \cos \Theta \]

07-17: Rotation

• Point \(p_1\) at \((r, \Theta_1)\), rotate \(p_1\) by \(\Theta\)
• New point \(p_2\) at \((r, \Theta_1 + \Theta)\)
• In Cartesian coordinates:

07-18: Rotation

• Point \(p_1\) at \((r, \Theta_1)\), rotate \(p_1\) by \(\Theta\)
• New point \(p_2\) at \((r, \Theta_1 + \Theta)\)
• In Cartesian coordinates:
\[x = r \cos(\Theta_1 + \Theta) \]
\[y = r \sin(\Theta_1 + \Theta) \]

- How do we compute \(\sin(\Theta_1 + \Theta) \)?

07-19: \(\sin(x+y) \)

\[
\sin(x+y) = \frac{AB + BC}{OA}
\]

07-20: \(\sin(x+y) \)

\[
\sin(x+y) = \frac{AB + BC}{OA}
\]

07-21: \(\cos(x+y) \)

\[
\sin(x+y) = \frac{AB + BC}{OA}
= \frac{AB + DE}{OA}
= \frac{AB}{OA} + \frac{DE}{OA}
\]

07-22: \(\sin(x+y) \)

\[
\sin(x+y) = \frac{AB + BC}{OA}
= \frac{AB + DE}{OA}
= \frac{AB}{OA} + \frac{DE}{OA}
= \frac{AB}{OA} \frac{AD}{AD} + \frac{DE}{OA} \frac{OD}{OD}
\]

07-23: \(\sin(x+y) \)
\[
\sin(x+y) = \frac{AB + BC}{OA} = \frac{AB + DE}{OA} = \frac{AB}{OA} + \frac{DE}{OA} = \frac{AB}{OA} \cdot \frac{AD}{AD} + \frac{DE}{OA} \cdot \frac{OD}{OD} = \frac{AB}{AD} \cdot \frac{AD}{OA} + \frac{DE}{OD} \cdot \frac{OD}{OA}
\]

07-24: \(\sin(x+y)\)

\[
\sin(x+y) = \frac{AB + BC}{OA} = \frac{AB + DE}{OA} = \frac{AB}{OA} + \frac{DE}{OA} = \frac{AB}{OA} \cdot \frac{AD}{AD} + \frac{DE}{OA} \cdot \frac{OD}{OD} = \frac{AB}{AD} \cdot \frac{AD}{OA} + \frac{DE}{OD} \cdot \frac{OD}{OA} = (\cos x)(\sin y) + (\sin x)(\cos y)
\]

07-25: \(\cos(x+y)\)

\[
\cos(x+y) = \frac{OC}{OA}
\]

07-26: \(\cos(x+y)\)

\[
\cos(x+y) = \frac{OC}{OA} = \frac{OE - CE}{OA}
\]

07-27: \(\cos(x+y)\)

\[
\cos(x+y) = \frac{OC}{OA} = \frac{OE - CE}{OA}
\]
07-28: \(\cos(x+y)\)

\[
\cos(x+y) = \frac{OC}{OA} = \frac{(OE - CE)}{OA} = \frac{(OE - BD)}{OA}
\]

07-29: \(\cos(x+y)\)

\[
\cos(x+y) = \frac{OC}{OA} = \frac{(OE - CE)}{OA} = \frac{(OE - BD)}{OA} = \frac{OE}{OA} - \frac{BD}{OA} = \frac{(OE/OA)(OD/OD)}{(BD/OA)(AD/AD)} = \frac{(OE/OD)(OD/OA)}{(BD/AD)(AD/OA)}
\]

07-30: \(\cos(x+y)\)

\[
\cos(x+y) = \frac{OC}{OA} = \frac{(OE - CE)}{OA} = \frac{(OE - BD)}{OA} = \frac{OE}{OA} - \frac{BD}{OA} = \frac{(OE/OA)(OD/OD)}{(BD/OA)(AD/AD)} = \frac{(OE/OD)(OD/OA)}{(BD/AD)(AD/OA)} = (\cos x)(\cos y) - (\sin x)(\sin y)
\]

07-31: \(\cos(x+y)\)

\[
\cos(x+y) = \frac{OC}{OA} = \frac{(OE - CE)}{OA} = \frac{(OE - BD)}{OA} = \frac{OE}{OA} - \frac{BD}{OA} = \frac{(OE/OA)(OD/OD)}{(BD/OA)(AD/AD)} = \frac{(OE/OD)(OD/OA)}{(BD/AD)(AD/OA)} = (\cos x)(\cos y) - (\sin x)(\sin y)
\]

07-32: **Back to Rotation!**

- \(x_{new} = r \cos(\Theta_1 + \Theta)\)
- \(x_{new} = r((\cos \Theta_1)(\cos \Theta) - (\sin \Theta_1)(\sin \Theta))\)

07-33: **Back to Rotation!**

- \(x_{new} = r \cos(\Theta_1 + \Theta)\)
- \(x_{new} = r((\cos \Theta_1)(\cos \Theta) - (\sin \Theta_1)(\sin \Theta))\)
• $x_{\text{new}} = (r \cos \Theta_1) \cos \Theta - (r \sin \Theta_1) \sin \Theta$

07-34: **Back to Rotation!**

• $x_{\text{new}} = r \cos(\Theta_1 + \Theta)$
• $x_{\text{new}} = r((\cos \Theta_1)(\cos \Theta) - (\sin \Theta_1)(\sin \Theta))$
• $x_{\text{new}} = (r \cos \Theta_1) \cos \Theta - (r \sin \Theta_1) \sin \Theta$
• $x_{\text{new}} = x \cos \Theta - y \sin \Theta$

07-35: **Back to Rotation!**

• $y_{\text{new}} = r \sin(\Theta_1 + \Theta)$
• $y_{\text{new}} = r((\cos \Theta_1)(\sin \Theta) + (\sin \Theta_1)(\cos \Theta))$

07-36: **Back to Rotation!**

• $y_{\text{new}} = r \sin(\Theta_1 + \Theta)$
• $y_{\text{new}} = r((\cos \Theta_1)(\sin \Theta) + (\sin \Theta_1)(\cos \Theta))$
• $y_{\text{new}} = (r \cos \Theta_1) \sin \Theta + (r \sin \Theta_1) \cos \Theta$

07-37: **Back to Rotation!**

• $y_{\text{new}} = r \sin(\Theta_1 + \Theta)$
• $y_{\text{new}} = r((\cos \Theta_1)(\sin \Theta) + (\sin \Theta_1)(\cos \Theta))$
• $y_{\text{new}} = (r \cos \Theta_1) \sin \Theta + (r \sin \Theta_1) \cos \Theta$
• $y_{\text{new}} = x \sin \Theta + y \cos \Theta$

07-38: **Back to Rotation!**

• Given a point (x, y), we can rotate it around the origin as follows:
 • $x_{\text{new}} = x \cos \Theta - y \sin \Theta$
 • $y_{\text{new}} = x \sin \Theta + y \cos \Theta$
• We can do this with a matrix multiplication

07-39: **Back to Rotation!**

$$
\begin{bmatrix} x, y \end{bmatrix} = \begin{bmatrix} \cos \Theta & \sin \Theta \\ -\sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \cos \Theta - y \sin \Theta, x \sin \Theta + y \cos \Theta \end{bmatrix}
$$

07-40: **Rotating Objects**

• Polygon, consisting of a list of points
• Rotate the polygon by angle Θ around origin
07-41: **Rotating Objects**

- Polygon, consisting of a list of points
- Rotate the polygon by angle Θ around origin
- Rotate each point individually around the origin
 - Done with a matrix multiplication

07-42: **Rotating Objects**

- Original Polygon: $p_0, p_1 \ldots p_n$
- New Polygon: $p_0M, p_1M, \ldots p_nM$
 - where $M = \begin{bmatrix} \cos \Theta & \sin \Theta \\ -\sin \Theta & \cos \Theta \end{bmatrix}$

07-43: **Rotating Objects**

07-44: **Rotating Objects**

07-45: **Rotating Objects**
07-46: Rotating Objects

- How can we rotate an object around some point other than the origin?

07-47: Rotating Objects

- How can we rotate an object around some point other than the origin?
 - Translate to the origin
 - Rotate
 - Translate back

07-48: Rotating Objects
Rotate $\pi/4$ around (1,0)

Translate to origin, Rotate $\pi/4$ around (0,0), Translate back

07-49: Multiple Coordinate Systems

- World Space
 - Define an origin for your world
 - Could be in the middle of your world, in one corner, etc
 - Define each object’s position in the world as an offset from this point

07-50: World Space

- Camera (Screen) Space
- Inertial Space
- Object Space

07-51: Camera (screen) Space

- Position that object appears on the screen
- Not always the same as world space!
 - Could have a much larger world, that screen scrolls across
 - “zoom in”

07-52: Camera (screen) Space
World Space

Screen Space

07-53: Camera (screen) Space

World Space

Screen Space

Position (20, 50) in Screen Space

Position (30, 75) in World Space

07-54: Camera (screen) Space

- You could calculate everything in Camera space ...
 - Moving camera becomes difficult – need to move all objects in the world along with the camera
 - Objects are moving on their own, need to combine movements
 - Zooming in becomes problematic

07-55: Object Space

- New Coordinate system based on the object
- Origin is at the base (or center) of the object
- Axes are nicely aligned

07-56: Inertial Space
• Halfway between object space and world space
• Axes parallel to world space
• Origin same as object space

Inertial Space

Object Space

Inertial Space

World Space

07-57: Inertial Space

07-59: Inertial Space

07-58: Inertial Space

07-60: Changing Coordinate Spaces

• Our character is wearing a red hat
• The hat is at position (0,100) in object space
• What is the position of the hat in world space?
• To make life easier, we will think about rotating the axes, instead of moving the objects
07-61: Changing Coordinate Spaces

07-62: Changing Coordinate Spaces

07-63: Changing Coordinate Spaces
Spaces

07-65: Changing Coordinate Spaces

- Rotate axes to the left 45 degrees
 - Hat rotates the right 45 degrees, from (0,100) to (-70, 70)
- Translate axes to the left 150, and down 50
 - Hat rotates to the right 150 and up 50, to (80, 120)

07-66: Changing Coordinate Spaces

Objects

- More complicated object – made of multiple elements
 - Several polygons, circles
- Define in Object Space – origin the center of the object
Poly1: (-30,30), (30,30), (30,20), (-30,20)
Poly2: (-5,20), (5,20), (5,-20), (-5,-20)
Poly3: (-30,-20), (30,-20), (30,-30), (-30,-30)

- We store the rotation and translation of entire object
- When we want to know the points of any sub-object in world space
 - Doing collision, for instance
 - Rotate and then translate the points of the subobject

- Want to know the position of the 4 points of the blue rectangle in world space
- Local space positions are \(p_1, p_2, p_3, p_4 \)
- World space positions are:

- Want to know the position of the 4 points of the blue rectangle in world space
- Local space positions are \(p_1, p_2, p_3, p_4 \)
• World space positions are:

\[\text{new } p_1 = p_1 \begin{bmatrix} \cos(-45) & \sin(-45) \\ -\sin(-45) & \cos(-45) \end{bmatrix} + [150, 150] \]

\[\text{new } p_2 = p_2 \begin{bmatrix} \cos(-45) & \sin(-45) \\ -\sin(-45) & \cos(-45) \end{bmatrix} + [150, 150] \]

\[\text{new } p_3 = p_3 \begin{bmatrix} \cos(-45) & \sin(-45) \\ -\sin(-45) & \cos(-45) \end{bmatrix} + [150, 150] \]

... etc

07-73: Other Transformations

Transform with:

\[
\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
\]

07-74: Other Transformations

Transform with:

\[
\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
\]

07-75: Other Transformations

Transform with:

\[
\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
\]

07-76: Other Transformations

Transform with:

\[
\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
\]
07-77: **Uniform Scaling**

- A matrix of the form:

\[
\begin{bmatrix}
k & 0 \\
0 & k
\end{bmatrix}
\]

will uniformly scale an object. What happens if \(k = 1 \)? \(k > 1 \)? \(0 < k < 1 \)?

07-78: **Nonuniform Scaling**

- A matrix can also be used to scale in different amounts on different axes.
- Object will be stretched / distorted

07-79: **Nonuniform Scaling**

Transform with:

\[
\begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}
\]

07-80: **Nonuniform Scaling**

Transform with:

\[
\begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}
\]

07-81: **Nonuniform Scaling**

Transform with:

\[
\begin{bmatrix}
3 & 0 \\
0 & 2
\end{bmatrix}
\]

07-82: **Nonuniform Scaling**
07-83: Combining Transforms

- What would happen to a point that was transformed twice?

\[
\begin{bmatrix}
 x, y
\end{bmatrix}
\begin{bmatrix}
 \cos \Theta_1 & \sin \Theta_1 \\
 -\sin \Theta_1 & \cos \Theta_1
\end{bmatrix}
\begin{bmatrix}
 \cos \Theta_2 & \sin \Theta_2 \\
 -\sin \Theta_2 & \cos \Theta_2
\end{bmatrix}
\]

07-84: Combining Transforms

- What would happen to a point that was transformed twice?

\[
\begin{bmatrix}
 x, y
\end{bmatrix}
\mathbf{A}_1
\mathbf{A}_2
\]

07-85: Combining Transforms

\[
\begin{bmatrix}
 \cos \Theta_1 & \sin \Theta_1 \\
 -\sin \Theta_1 & \cos \Theta_1
\end{bmatrix}
\begin{bmatrix}
 \cos \Theta_2 & \sin \Theta_2 \\
 -\sin \Theta_2 & \cos \Theta_2
\end{bmatrix}
=
\begin{bmatrix}
 \cos \Theta_1 \cos \Theta_2 - \sin \Theta_1 \sin \Theta_2 & \cos \Theta_1 \sin \Theta_2 + \sin \Theta_1 \cos \Theta_2 \\
 -\sin \Theta_1 \cos \Theta_2 - \cos \Theta_1 \sin \Theta_2 & -\sin \Theta_1 \sin \Theta_2 + \cos \Theta_1 \cos \Theta_2
\end{bmatrix}
\]

07-86: Combining Transforms

\[
\begin{bmatrix}
 \cos \Theta_1 & \sin \Theta_1 \\
 -\sin \Theta_1 & \cos \Theta_1
\end{bmatrix}
\begin{bmatrix}
 \cos \Theta_2 & \sin \Theta_2 \\
 -\sin \Theta_2 & \cos \Theta_2
\end{bmatrix}
=
\begin{bmatrix}
 \cos \Theta_1 \cos \Theta_2 - \sin \Theta_1 \sin \Theta_2 & \cos \Theta_1 \sin \Theta_2 + \sin \Theta_1 \cos \Theta_2 \\
 -\sin \Theta_1 \cos \Theta_2 - \cos \Theta_1 \sin \Theta_2 & -\sin \Theta_1 \sin \Theta_2 + \cos \Theta_1 \cos \Theta_2
\end{bmatrix}
\]

07-87: Combining Transforms

- We can also combine scaling and rotating

\[
\begin{bmatrix}
 x, y
\end{bmatrix}
\begin{bmatrix}
 \cos \Theta & \sin \Theta \\
 -\sin \Theta & \cos \Theta
\end{bmatrix}
\begin{bmatrix}
 k & 0 \\
 0 & k
\end{bmatrix}
\]

- With uniform scaling, we get the same result if we scale, then rotate as if we rotated, and then scaled.
07-88: Combining Transforms

\[
\begin{bmatrix}
\cos \Theta & \sin \Theta \\
-\sin \Theta & \cos \Theta
\end{bmatrix}
\begin{bmatrix}
k \\
k
\end{bmatrix}
= \begin{bmatrix}
\cos \Theta & \sin \Theta \\
-\sin \Theta & \cos \Theta
\end{bmatrix}
\begin{bmatrix}
k \\
0
\end{bmatrix}
= \begin{bmatrix}
k \cos \Theta & k \sin \Theta \\
-k \sin \Theta & k \cos \Theta
\end{bmatrix}
\]

07-89: Combining Transforms

Transform with:

\[
\begin{bmatrix}
2 & 0 \\
0 & 2
\end{bmatrix}
\begin{bmatrix}
\cos 45 & \sin 45 \\
-\sin 45 & \cos 45
\end{bmatrix}
\]

Transform with:

\[
\begin{bmatrix}
\cos 45 & \sin 45 \\
-\sin 45 & \cos 45
\end{bmatrix}
\begin{bmatrix}
2 & 0 \\
0 & 2
\end{bmatrix}
\]

07-90: Non-Uniform Scale, Rotate

\[
\begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}
\begin{bmatrix}
\cos 45 & \sin 45 \\
-\sin 45 & \cos 45
\end{bmatrix}
\]

07-91: Non-Uniform Scale, Rotate

\[
\begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}
\begin{bmatrix}
\cos 45 & \sin 45 \\
-\sin 45 & \cos 45
\end{bmatrix}
\]

07-92: Non-Uniform Scale, Rotate
07-93: **Non-Uniform Scale, Rotate**

\[
\begin{bmatrix}
\cos 45 & \sin 45 \\
-sin 45 & \cos 45
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}
\]

07-94: **Other Transformations**

- How would the following matrix transform an object?

\[
\begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}
\]

07-95: **Reflection**

- Reflecting an object twice around the same axis brings the object back to its original state.

07-96: **Reflection**

- Reflecting around the y-axis and then reflecting around the x-axis is the same as ...
07-98: Reflection

07-99: Reflection

- How could we reflect an object around its own center line, instead of around the x- or y-axis?

07-100: Reflection

- How could we reflect an object around its own center line, instead of around the x- or y-axis?
 - Translate and rotate the object so that its own center line is the same as the x- or y-axis
 - Reflect
 - Translate, rotate back

- If the centerline of an object is either the x- or y-axis in object space, this is easier ...

07-101: Shearing

- How would the following matrix transform an object?

\[
\begin{bmatrix}
1 & 0 \\
1 & 1
\end{bmatrix}
\]

07-102: Shearing

07-103: Shearing
07-104: **Shearing**

- Shearing an object is the same as:
 - Rotating the object
 - Non-uniform scale
 - Rotating back (not by the same angle)

Rotate clockwise 45

![Diagram showing rotate clockwise 45 degrees](image)

Non-uniform scale

(stretch x, shrink y)

Rotate counter-clockwise (~32)

![Diagram showing rotate counter-clockwise (~32) degrees](image)

07-105: **Shearing**

07-106: **Linear Transforms**

- Matrix operations represent linear transformation of objects
- Number of points in in a line before the transformation, still be in a line after the transformation
 - Line may be stretched and rotated, still be a line

07-107: **Linear Transforms**

- This gives us a handy way of seeing how a matrix will transform an object
 - See how the matrix will transform the axes [1,0], [0,1]
 - Object will be transformed in the same way
How will this transform an object

\[
\begin{bmatrix}
\sqrt{2}/2 & \sqrt{2}/2 \\
-\sqrt{2}/2 & \sqrt{2}/2
\end{bmatrix}
\]

07-108: Linear Transforms

How will this transform an object

How will this transform an object

07-109: Linear Transforms

How will this transform an object

07-110: Linear Transforms
How will this transform an object

\[
\begin{bmatrix}
\sqrt{2} & \sqrt{2} \\
-\sqrt{2} & \sqrt{2} \\
\frac{1}{2} & \frac{1}{2}
\end{bmatrix}
\]

07-111: Linear Transforms

How will this transform an object

\[
\begin{bmatrix}
\sqrt{2} & \sqrt{2} \\
-\sqrt{2} & \sqrt{2} \\
\frac{1}{2} & \frac{1}{2}
\end{bmatrix}
\]

x-axis

y-axis

07-112: Linear Transforms

How will this transform an object

\[
\begin{bmatrix}
1 & 0.1 \\
0.1 & 1
\end{bmatrix}
\]

07-113: Linear Transforms
How will this transform an object

\[\begin{bmatrix}
 1 & 0.1 \\
 0.1 & 1
\end{bmatrix} \]

x-axis

y-axis

07-114: **Linear Transforms**

07-115: **Determinant**

- Determinant of 2x2 matrix:

 \[
 \begin{vmatrix}
 a & b \\
 c & d
 \end{vmatrix} = ad - cb
 \]

\[
\begin{vmatrix}
 p_1^x & p_1^y \\
 p_2^x & p_2^y
\end{vmatrix} = \text{Area of Parallelogram}
\]

07-116: **Determinant**
07-117: **Determinant**

\[
\begin{vmatrix}
 p_1^x & p_1^y \\
 p_2^x & p_2^y \\
\end{vmatrix} = - \text{(Area of Parallelogram)}
\]

- Signed area of parallelogram
- If transformation includes a reflection, then ...

07-118: **Determinant**

- Signed area of parallelogram
 - If transformation includes a reflection, then
 - Determinant is negative

07-119: **Determinant**

- Signed area of parallelogram
 - If transformation includes a reflection, then
 - Determinant is negative

07-120: **Determinant**

- Signed area of parallelogram
 - If is a pure rotation (no scale, no shear, no rotation) ...

07-121: **Determinant**

- Signed area of parallelogram
 - If is a pure rotation (no scale, no shear, no rotation) ...
 - Determinant = 1
 - (Other direction is not always true..)

07-122: **Translation**

- We can implement rotation / scale / reflection / shearing using matrix operations
- What about translation?

07-123: **Translation**

- Can’t translate an object using a 2x2 matrix
Consider a point at the origin

- How will a point at the origin be modified by a matrix?

07-124: **Translation**

- Can’t translate an object using a 2x2 matrix
- Consider a point at the origin
 - How will a point at the origin be modified by a matrix?
 - Not changed by any matrix!

07-125: **Translation**

- Matrices can only do linear transformations
- Translation is not a linear transformation
 - Can’t use matrices to do translation
 - ... Unless we cheat a little!

07-126: **Translation**

- We can use matrices to do translation – as long as we use something different than 2x2 matrices
 - Add a dummy value to the end of all points (always 1)
 - Add a new row / column to matrix

\[
\begin{bmatrix}
 x, y, 1 \\
 0, 1, 0 \\
 0, 0, 1
\end{bmatrix}
= [x, y, 1]
\]

07-127: **Translation**

\[
[x, y, 1]
\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 \delta_x & \delta_y & 1
\end{bmatrix}
= [x + \delta_x, y + \delta_y, 1]
\]

07-128: **Translation**

\[
[x, y, 1]
\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 \delta_x & \delta_y & 1
\end{bmatrix}
= [x + \delta_x, y + \delta_y, 1]
\]

07-129: **Translation**

- Adding rotation

\[
[x, y]
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
= [xa + yc, xb + yd]
\]

\[
[x, y, 1]
\begin{bmatrix}
 a & b & 0 \\
 c & d & 0 \\
 \delta_x & \delta_y & 1
\end{bmatrix}
= [xa + yc, xb + yd, 1 + \delta_y]
\]

07-130: **Translation**

\[
[x, y, 1]
\begin{bmatrix}
 a & b & 0 \\
 c & d & 0 \\
 \delta_x & \delta_y & 1
\end{bmatrix}
= [xa + yc + \delta_x, xb + yd + \delta_y, 1]
\]
• So, we can use a matrix to do both rotation and translation

07-131: **Translation**

\[
\begin{bmatrix}
\cos \Theta & \sin \Theta & 0 \\
-\sin \Theta & \cos \Theta & 0 \\
\delta_x & \delta_y & 1
\end{bmatrix}
\]

• First, rotate counter-clockwise by \(\Theta \)
• Then translate by \([\delta_x, \delta_y]\)

07-132: **Combining Transforms**

• Let’s look at an example
 • First rotate by \(\pi/2 \) (90 degrees) counterclockwise
 • Then translate \(x \) by +1

07-133: **Combining Transforms**

\[
\begin{bmatrix}
-\cos \Theta & \sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
-\cos \Theta & \sin \Theta & 0 \\
-\sin \Theta & \cos \Theta & 0 \\
1 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 1 & 1
\end{bmatrix}
\]

07-134: **Combining Transforms**

• Another example
 • First translate \(x \) by +1
 • Then rotate by \(\pi/2 \) (90 degrees) counterclockwise

07-135: **Combining Transforms**

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\cos \Theta & \sin \Theta & 0 \\
-\sin \Theta & \cos \Theta & 0 \\
\cos \Theta & \sin \Theta & 1
\end{bmatrix}
= \begin{bmatrix}
\cos \Theta & \sin \Theta & 0 \\
-\sin \Theta & \cos \Theta & 0 \\
\cos \Theta & \sin \Theta & 1
\end{bmatrix}
= \begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 1 & 1
\end{bmatrix}
\]

• Same as rotating, and then moving up \(+y\)
Combining Transforms

07-136:

- Rotating by $\pi/4$, then translating 1 unit +x

\[
\begin{bmatrix}
\cos \Theta & \sin \Theta & 0 \\
-\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 1 & 1
\end{bmatrix}
\]

07-137:

- Translating 1 unit +x, then rotating by $\pi/4$

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\cos \Theta & \sin \Theta & 0 \\
-\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 1 & 1
\end{bmatrix}
\]

- Same as rotating $\pi/4$ counterclockwise, and then translating over (+x) $1/\sqrt{2}$ and up (+y) $1/\sqrt{2}$

07-139: Non-Standard Axes

- We want to rotate around an axis that does not go through the origin
- Rotate around point at 1,0
- Create the appropriate 3x3 vector
Rotate $\pi/4$ around $(1,0)$

07-141: Non-Standard Axes

- First, translate to the origin
- Then, do the rotation
- Finally, translate back

07-142: Non-Standard Axes

- First, translate to the origin

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}$$

- Then, do the rotation
- Finally, translate back

07-143: Non-Standard Axes

- First, translate to the origin
- Then, do the rotation

$$\begin{bmatrix}
\cos \Theta & \sin \Theta & 0 \\
-\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1/\sqrt{2} & 1/\sqrt{2} & 0 \\
-1/\sqrt{2} & 1/\sqrt{2} & 0 \\
0 & 0 & 1
\end{bmatrix}$$

- Finally, translate back

07-144: Non-Standard Axes

- First, translate to the origin
- Then, do the rotation
• Finally, translate back

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}
\]

07-145: Non-Standard Axes

• Final matrix:

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1/\sqrt{2} & 1/\sqrt{2} & 0 \\
-1/\sqrt{2} & 1/\sqrt{2} & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1/\sqrt{2} & 1/\sqrt{2} & 0 \\
-1/\sqrt{2} & 1/\sqrt{2} & 0 \\
-1/\sqrt{2} & -1/\sqrt{2} & 1
\end{bmatrix}
\begin{bmatrix}
1/\sqrt{2} & 1/\sqrt{2} & 0 \\
-1/\sqrt{2} & 1/\sqrt{2} & 0 \\
1 - 1/\sqrt{2} & -1/\sqrt{2} & 1
\end{bmatrix}
\]

07-146: Non-Standard Axes

Rotate \(\pi/4 \) around (1,0)

Translate to origin, Rotate \(\pi/4 \) around (0,0), Translate back

07-147: Non-Standard Axes
Rotate $\pi/4$ around (1,0)

Rotate $\pi/4$ around (0,0), then translate over $1 - 1/\sqrt{2}$ and down $1/\sqrt{2}$

07-148: **Non-Standard Axes**

- Note that the rotation component (upper left 2x2 matrix) is the same as if we were rotating around the origin
- Only the position component is altered.
- In general, whenever we do a rotation and a number of translations, the rotation component will be unchanged

07-149: **Linear Transforms?**

- Matrices can only do linear transformations
- Translation is *not* a linear transform
- ... but we are using matrices to do translation
 - What’s up?

07-150: **Homogeneous Space**

- We are no longer working in 2D, we are now working in 3D
 - Extra 3rd parameter, that is always == 1
- We can extend our definition to allow the 3rd parameter to be some value other than 1
 - Need to be able to convert back to 2D space

07-151: **3D Homogeneous Space**

- To convert a point (x, y, w) in 3D Homogeneous space into 2D (x, y) space:
 - Place a plane at $w = 1$
 - (x, y, w) maps to the (x, y) position on the plane where the ray (x, y, w) intersects the plane
Converting from a point in 3D homogeneous space to 2D space is easy
- Divide the x and y coordinates by w
- What happens when $w = 0$?

“Point at infinity”
• Direction, but not a magnitude

07-156: **3D Homogeneous Space**

• For a given \((x, y, w)\) point in 3D Homogeneous space, there is a single corresponding point in “standard” 2D space

 • Though when \(w = 0\), we are in a bit of a special case

• For a single point in “standard” 2D space, there are an infinite number of corresponding points in 3D Homogeneous space

07-157: **Translation**

• We are still doing a linear transformation of the 3D vector

• We are *shearing* the 3D space

• The resulting projection back to 2D is seen as a translation

07-158: **Translation**

<table>
<thead>
<tr>
<th>2D Shape</th>
<th>Transform to 3D Homogenous Space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shear operation in 3D space

<table>
<thead>
<tr>
<th>3D</th>
<th>Back to 2D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

07-159: **Inverse**

• Finding inverse of 2x2 matrix

\[
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\]

\[
A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
\]

07-160: **Inverse**

• A matrix is singular if it does not have an inverse

 • determinant = 0
• Why does this make sense, geometrically?

07-161: Orthogonal Matrices

• A matrix M is orthogonal if:
 • \(MM^T = I \)
 • \(M^T = M^{-1} \)

• Orthogonal matrices are handy, because they are easy to invert

• Is there a geometric interpretation of orthogonality?

07-162: Orthogonal Matrices

\[
\begin{bmatrix}
 m_{11} & m_{12} \\
 m_{21} & m_{22}
\end{bmatrix}
\begin{bmatrix}
 m_{11} & m_{21} \\
 m_{12} & m_{22}
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 \\
 0 & 1
\end{bmatrix}
\]

Do all the multiplications ...

07-163: Orthogonal Matrices

\[
\begin{align*}
m_{11}m_{11} + m_{12}m_{12} &= 1 \\
m_{11}m_{21} + m_{12}m_{22} &= 0 \\
m_{21}m_{11} + m_{22}m_{12} &= 0 \\
m_{21}m_{21} + m_{22}m_{22} &= 1
\end{align*}
\]

• Hmmm... that doesn’t seem to help much

07-164: Orthogonal Matrices

• Recall that rows of matrix are basis after rotation
 • \(\mathbf{v}_x = [m_{11}, m_{12}] \)
 • \(\mathbf{v}_y = [m_{21}, m_{22}] \)

• Let’s rewrite the previous equations in terms of \(\mathbf{v}_x \) and \(\mathbf{v}_y \) ...

07-165: Orthogonal Matrices

\[
\begin{align*}
m_{11}m_{11} + m_{12}m_{12} &= 1 & \mathbf{v}_x \cdot \mathbf{v}_x &= 1 \\
m_{11}m_{21} + m_{12}m_{22} &= 0 & \mathbf{v}_x \cdot \mathbf{v}_y &= 0 \\
m_{21}m_{11} + m_{22}m_{12} &= 0 & \mathbf{v}_y \cdot \mathbf{v}_x &= 0 \\
m_{21}m_{21} + m_{22}m_{22} &= 1 & \mathbf{v}_y \cdot \mathbf{v}_y &= 1
\end{align*}
\]

07-166: Orthogonal Matrices

• What does it mean if \(\mathbf{u} \cdot \mathbf{v} = 0 \)?
• (assuming both \(u \) and \(v \) are non-zero)

• What does it mean if \(v \cdot v = 1 \)?

07-167: **Orthogonal Matrices**

• What does it mean if \(u \cdot v = 0 \)?

 • (assuming both \(u \) and \(v \) are non-zero)

 • \(u \) and \(v \) are perpendicular to each other (orthogonal)

• What does it mean if \(v \cdot v = 1 \)?

 • \(\|v\| = 1 \)

• So, transformed basis vectors must be mutually perpendicular unit vectors

07-168: **Orthogonal Matrices**

• If a transformation matrix is orthogonal,

 • Transformed basis vectors are mutually perpendicular unit vectors

• What kind of transformations are done by orthogonal matrices?

07-169: **Orthogonal Matrices**

• If a transformation matrix is orthogonal,

 • Transformed basis vectors are mutually perpendicular unit vectors

• What kind of transformations are done by orthogonal matrices?

• Rotations & Reflections

07-170: **Orthogonal Matrices**

• Sanity check: Rotational matrices are orthogonal:

\[
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
\]

\[
A = \begin{bmatrix} \cos \Theta & \sin \Theta \\ -\sin \Theta & \cos \Theta \end{bmatrix}, \quad A^{-1} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} = \begin{bmatrix} \cos(-\Theta) & \sin(-\Theta) \\ -\sin(-\Theta) & \cos(-\Theta) \end{bmatrix}
\]

07-171: **Examples**

• An object’s position has a rotational matrix \(M \) and a position \(p \). A point \(o_1 = [o_{1x}, o_{1y}] \) is in *object space* for the object, What is the position of the point in world space?
07-172: Examples

- An object’s position has a rotational matrix M and a position p. A point $o_1 = [o_{1x}, o_{1y}]$ is in object space for the object. What is the position of the point in world space?

Position in world space: $o_1M + p$

07-173: Examples

- An object’s position has a rotational matrix M and a position p. A point $w_1 = [w_{1x}, w_{1y}]$ is in world space. What is the position of the point in object space

07-174: Examples

- An object’s position has a rotational matrix M and a position p. A point $w_1 = [w_{1x}, w_{1y}]$ is in world space. What is the position of the point in object space
Position in object space: \((w_1 - p)M^T\)

07-175: **Examples**

- Origin of screen is at position \([c_x, c_y]\) in *world space*
- Object is a point \([p_x, p_y]\) in world space
- World has \(+x\) to right, \(+y\) up
- Screen has \(+x\) to right, \(+y\) down
- What is the position of \(p\) in screen space?

07-176: **Examples**

\([c_x, c_y]\)
07-178: Examples

\[
[p_x, p_y] - [c_x, c_y] \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
\]

07-179: Examples

- Coversion from +y up to +y down
 - Points and rectangles easy to convert
 - Sprites would require a reflection
 - Can use SpriteEffects to reflect sprites
 - Best to stay in “reflected” space

07-180: Objects with Sprites
• Center of the sprite is at \([\text{SpriteHalfWidth}, \text{SpriteHalfHeight}]\) from top left corner of sprite

07-183: **Objects with Sprites**

• Boundary box locations are stored as edge points of each rectangle (4 points per)

07-184: **Objects with Sprites**

• Object is located at position \([x, y]\) and has rotation \(\Theta\) *clockwise* (since +x is right, +y is down)
07-185: **Objects with Sprites**

- When dealing with the object in game logic (collisions, etc), we need to know the positions of each of the points of each rectangle in world space.

- If a vertex has position p in local (object) space, what is its position in world space?

\[
p = \begin{bmatrix}
\cos \Theta & \sin \Theta \\
-\sin \Theta & \cos \Theta
\end{bmatrix} + [x, y]
\]

07-186: **Objects with Sprites**

- When dealing with the object in game logic (collisions, etc), we need to know the positions of each of the points of each rectangle in world space.

- If a vertex has position p in local (object) space, what is its position in world space?

\[
p = \begin{bmatrix}
\cos \Theta & \sin \Theta \\
-\sin \Theta & \cos \Theta
\end{bmatrix} + [x, y]
\]

07-187: **Objects with Sprites**

- To draw the sprite on the screen:

```csharp
SpriteBatch sb;
Vector2 pos = new Vector2(x, y);
Vector2 center = new Vector2(SpriteHalfWidth, SpriteHalfHeight);
sb.Draw(texture, pos, null, Color.White, theta, center, 1.0f, SpriteEffects.None, 0.0f);
```

07-188: **Examples**

- Object1 has rotational matrix M_1 and position p_1

- Object2 has rotational matrix M_2 and position p_2

- Point q_1 is at position $[q_{1x}, q_{1y}]$ in the object space of Object1

- Point q_2 is at position $[q_{2x}, q_{2y}]$ in the object space of Object2

- What is the vector from q_1 to q_2 in the object space of q_1?

07-189: **Examples**
Examples

First, find the position of point q_2 in the local space of Object 1.

What’s the best way to do this?

First, find the position of point q_2 in the local space of Object 1.

What’s the best way to do this?

- Go through the world space
- Find the position of q_2 in world space, translate to object space

Position of q_2 in world space:

$q_2M_2 + p_2$

Position of q_2 in Object 1’s local space

$(q_2(g) - p_1)M_1^T = (q_2M_2 + p_2 - p_1)M_1^T$

Vector from q_1 to q_2 in local space of Object 1:

$(q_2M_2 + p_2 - p_1)M_1^T - q_1$
07-195: **Examples**

- Given a transformation matrix

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\]

- How can we determine if this is a “pure rotation” – no scale, shear, reflection

07-196: **Examples**

- Matrix is pure rotation if:

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\]

- \(a = d\)
- \(-c = b\)
- \(\sin(\arccos(a)) = b\)
- What if we don’t have access to \(\arccos, \sin\)?

07-197: **Examples**

- Matrix is pure rotation if:

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\]

- \(ac + bd = 0\) \([a,b]\) and \([c,d]\) are perpendicular
- \(a*a + b*b = 1\) \([a,b]\) is unit vector
- \(c*c + d*d = 1\) \([c,d]\) is unit vector
- \(a*d - c*b = 1\) No reflection

07-198: **Examples**

- Spaceship, in local space looks down x axis
- Position \([p_x, p_y]\)
- Orientation: \[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\]
- Place an enemy 10 units directly in front of spaceship, pointing straight back at it
- What is position and orientation of the new spaceship?

07-199: **Examples**

- Spaceship, in local space looks down x axis
- Position \([p_x, p_y]\)
• Orientation: \[
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix}
\]

• Place an enemy 10 units directly in front of spaceship, pointing straight back at it

• What is position and orientation of the new spaceship?
 • Position = \([p_x, p_y] + 10 \times [a, b]\)
 • Orientation: \[
 \begin{bmatrix}
 -a & -b \\
 -c & -d \\
 \end{bmatrix}
 \]

07-200: **Examples**