
AI Programming
CS662-2013S-10

First Order Logic

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles


10-0: Representation

Propositional Logic has several nice features

Lets us easily express disjunction and negation
“There is a pit in (1,1) or in (2,2)”
“There is not a pit in (1,1)”
This is hard to do in C/Java/Python -
variables can only take on a single value.
There’s no obvious way to assign x the value
“3 or 4” or “some value less than 10”.

Separates declarative knowledge from
inference procedures

Compositional
The meaning of a sentence is a function of
the meaning of its parts.



10-1: Review of Propositional Logic

Sentences are composed of atomic terms
conjoined by operators

P1,1 ∧ B1,2

¬B2,2 ∨ ¬P1,2

Terms are either true or false.

A model is an assignment of values to terms.

The set of possible worlds that make a
sentence true

A model satisfies a sentence if the sentence is true
given the assignments in the model.



10-2: Resolution

Inference can be done using DeMorgan’s, Modus

Ponens, And-elimination, etc

Sound, but not necessarily complete.

Also, search can be inefficient: there might be many

operators that can be applied in a particular state.

Luckily, there is a complete rule for inference that uses a

single operator.

This is called resolution.

A ∨ B and ¬A ∨C allows us to conclude B ∨C.

A is either true or not true. If A is true, then C must be

true.

if A is false, then B must be true.

This can be generalized to clauses of any length.



10-3: Conjunctive Normal Form

Resolution works with disjunctions.

This means that our knowledge base needs to be
in this form.

Conjunctive Normal Form is a conjunction of
clauses that are disjunctions.

(A ∨ B ∨C) ∧ (D ∨ E ∨ F) ∧ (G ∨ H ∨ I) ∧ ...

Every propositional logic sentence can be
converted to CNF.



10-4: CNF Recipe

1. Eliminate equivalence

A⇔ B becomes A⇒ B ∧ B⇒ A

2. Eliminate implication

A⇒ B becomes ¬A ∨ B

3. Move ¬ inwards using double negation and
DeMorgan’s

¬(¬A) becomes A

¬(A ∧ B) becomes (¬A ∨ ¬B)

4. Distribute nested clauses

(A ∨ (B ∧C)) becomes (A ∨ B) ∧ (A ∨C)



10-5: Example

B1,1 ⇔ (P1,2 ∨ P2,1)

Eliminating equivalence produces:

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1)⇒ B1,1)

Removing implication gives us:

(¬B1,1 ∨ (P1,2 ∨ P2,1)) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)



10-6: Example

We then use DeMorgan’s rule to move negation
inwards:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

Finally, we distribute OR over AND:

(¬B1,1 ∨ P1,2 ∨ P2,1)∧ (¬P1,2 ∨ B1,1)∧ (¬P2,1 ∨ B1,1)

Now we have clauses that can be plugged into a
resolution theorem prover. (can break ANDs into
separate sentences)

They’re less readable by a human, but more
computationally useful.



10-7: Proof By Refutation

Once your KB is in CNF, you can do resolution by
refutation.

In math, this is called proof by contradiction

Basic idea: we want to show that sentence A is
true.

Insert ¬A into the KB and try to derive a
contradiction.



10-8: Example

Notation:

R1: Robot1 is on.

R2: Robot 2 is on.

ChR1: Robot 1 is at the charger.

ChR2: Robot 2 is at the charger.

lowR1: Robot 1 has low power.

lowR2: Robot 2 has low power.

moveChR1: Robot 1 should move onto the
charger.

moveChR2: Robot 2 should move onto the
charger.



10-9: Example

Encode Convert to CNF:

If robot 1 is off, then robot 2 is off.

If robot 2 is off, then it will be located on the charger,

and if it is not off, then robot 2 will not be located on

the charger.

If robot 1 is off, then it will be located on the charger,

and if it is not off, then robot 1 will not be located on

the charger.

If Robot 1 is on, and its power is low, then it should

move to the charger.

Robot 1’s power is low.

Robot 2 is on.

Use resolution with refutation to prove that Robot 1



10-10: Expressivity

We would like the sorts of structures that are
useful in programming languages. In particular, we
would like:

Objects: Wumpi, pits, gold, vacuum cleaners,
etc.

Variables: how do we talk about objects without
knowing their names?



10-11: Expressivity

We would like the sorts of structures that are
useful in programming languages. In particular, we
would like:

Relations: These can include:
Unary relations (or properties):
smelly(wumpus), shiny(gold),
sleepy(student), etc.
Binary relations: brother-of(bart, lisa),
holding(agent, gold), after(Tuesday, Monday)
n-ary relations: simpsons(homer, marge,
bart, lisa)
These are sometimes called predicates

Functions: father-of(bart) = homer,
fall-classes(student) = AI, etc.

First-order logic gives us all of this.



10-12: Models in first-order logic

Recall that a model is the set of “possible worlds” for a

collection of sentences.

In propositional logic, this meant truth assignments to

facts.

In FOL, models have objects in them.

The domain of a model is the set of objects in that world.

For example, the Simpsons model might have the domain

{Marge, Homer, Lisa, Bart, Maggie}

We can then specify relations and functions between

these objects

married-to(marge, homer), baby(maggie), father(bart)

= homer



10-13: Terms and sentences

A term is an expression that refers to a single
object.

Bart, Lisa, Homer

We can also use functions as terms -
Saxophone(Lisa) refers to the object that is
Lisa’s saxophone

An atomic sentence consists of a predicate applied
to terms

Brother-of(Lisa, Bart), Married(Homer, Marge),
Married(Mother(Lisa), Father(Bart))

Plays(Lisa, Saxophone(Lisa))



10-14: Terms and sentences

A Complex sentence uses logical connectives
¬,∨,∧,⇒,⇔ to join atomic sentences.

¬BrotherO f (Homer, Bart),

MotherO f (Lisa,Marge)⇒

MotherO f (Bart,Marge)

Oldest(Bart) ∨ Oldest(Lisa)

We can also use equality to relate objects:
homer = f ather(Bart)



10-15: Quantifiers and variables

Often, it’s not enough to make a statement about
particular objects. Instead, we want to make a
statement about some or all objects.

“All of the Simpsons are yellow.”

“At least one of the Simpsons is a baby.”

Quantifiers allow us to do this.

∀ is the symbol for universal quantification
It means that a sentence holds for every
object in the domain.
∀xS impson(x)⇒ yellow(x)



10-16: Quantifiers and variables

∃ is the symbol for existential quantification

It means that the sentence is true for at least
one element in the domain.

∃x f emale(x) ∧ playsS axophone(x)

What would happen if I said
∃x f emale(x)⇒ playsS axophone(x)?



10-17: Quantifiers

In general,⇒ makes sense with ∀ (∧ is usually too
strong).

∧ makes sense with ∃ (⇒ is generally too weak.)

Some examples:

One of the Simpsons works at a nuclear plant.

All of the Simpsons are cartoon characters.

There is a Simpson with blue hair and a green
dress.

There is a Simpson who doesn’t have hair.



10-18: Nesting quantifiers

Often, we’ll want to express more complex
quantifications. For example, “every person has a
mother”

∀x∃ymother(x, y)

Notice the scope - for each x, a different y is
(potentially) chosen.

What if we said ∃y∀xmother(x, y)?



10-19: Nesting quantifiers

Nesting quantifies is not a problem when nesting
quantifiers of the same type.

∀x∀y brotherO f (x, y)⇒ siblingO f (x, y) and
∀y∀x brotherO f (x, y)⇒ siblingO f (x, y) are
equivalent.

We often write that as
∀x, y brotherO f (x, y)⇒ siblingO f (x, y)



10-20: Negation

We can negate quantifiers

¬∀x yellow(x) says that it is not true that
everyone is yellow.

∃x ¬yellow(x) has the same meaning - there is
someone who is not yellow.

¬∃x daughterO f (Bart, x) says that there does
not exist anyone who is Bart’s daughter.

∀x ¬daughterO f (Bart, x) says that for all
individuals they are not Bart’s daughter.

In fact, we can use DeMorgan’s rules with
quantifiers just like with ∧ and ∨.



10-21: More examples

A husband is a male spouse

∀x, y husband(x, y)⇔ spouse(x, y) ∧ male(x)

Two siblings have a parent in common

∀x, y sibling(x, y)⇔

¬(x = y) ∧ ∃pParent(x, p) ∧ Parent(y, p)

Everyone who goes to Moe’s likes either Homer or
Barney (but not both)

∀x goesTo(moes, x)⇒

(Likes(x,Homer)⇔ ¬Likes(x, Barney))



10-22: More examples

Everyone knows someone who is angry at Homer.

∀x∃y knows(x, y) ∧ angryAt(y, homer)

Everyone who works at the power plant is scared
of Mr. Burns

∀x worksAt(PowerPlant, x)⇒ scaredO f (x, burns)



10-23: Audience Participation

Everyone likes Lisa.

Someone who works at the power plant doesn’t
like Homer. (both ways)

Bart, Lisa, and Maggie are Marge’s only children.

People who go to Moe’s are depressed.

There is someone in Springfield who is taller than
everyone else.

When a person is fired from the power plant, they
go to Moe’s

Everyone loves Krusty except Sideshow Bob

Only Bart skateboards to school

Someone with large feet robbed the Quickie-mart.



10-24: Repr. Knowledge in FOL

We can use FOL to represent class/subclass
information, causality, existence, and disjoint sets.

Example: Let’s suppose we are interested in
building an agent that can help recommend music.

We want it to be able to reason about musical
artists, songs, albums, and genres.

It would be tedious to enter every bit of information
about every artist; instead, we’ll enter some rules
and let our agent derive entailed knowledge.



10-25: Music example

∀x genre(x, Punk)→ genre(x,Rock) - subclass: all
Punk songs are Rock songs.

member(JohnLennon, Beatles) ∧

member(PaulMcCartney, Beatles) ∧

member(GeorgeHarrison, Beatles) ∧

member(RingoS tarr, Beatles) ∧

∀x member(x, Beatles)→ x ∈

{John, Paul,George,Ringo} - exclusive membership:
John, Paul, George, and Ringo are the Beatles.



10-26: Music example

per f ormedBy(Beatles,WhiteAlbum) The WhiteAlbum
is a Beatles album

∀x, y, z member(x, y) ∧ per f ormedBy(y, z)→

playedOn(x, z) if someone is a member of a group,
and that group performed an album, then that
person played on that album.



10-27: Music example

genre(HolidaysInTheS un, Punk) - “Holidays in the
Sun” is a Punk song.

∀x genre(x,Rock)→ likes(Bob, x) Bob likes all rock
songs.

We should be able to infer that Bob will like
“Holidays in the Sun”

∀w, x, y, z likes(x, y) ∧ member(z, y) ∧

per f ormedBy(z,w)→ likes(x,w) - If someone likes
albums by a band Y, and Z is a member of band Y,
then that person will like albums by person Z.



10-28: Inference in Prop. logic

We talked about two basic mechanisms for
performing inference in propositional logic:

Forward chaining: Begin with the facts in your
KB. Apply inference rules until no more
conclusions can be drawn.

Backward chaining: Begin with a fact (or its
negation) that you wish to prove. Find facts that
will justify this fact. Work backwards until you
find facts in your KB that support (contradict)
the fact you wish to prove.



10-29: Inference in FOL

Can we do the same sorts of inference with
First-order logic that we do with propositional
logic?

Yes, with some extra details.

Need to keep track of variable bindings
(substitution)



10-30: Inference in FOL

As with propositional logic, we’ll need to convert
our knowledge base into a canonical form.

In the simplest approach, we can convert our FOL
sentences to propositional sentences. We do this
by removing quantification.

we leave in predicates for readability, but
remove all variables.



10-31: Removing quantifiers

Universal Instantiation: we can always substitute a
ground term for a variable.

This will typically be a term that occurs in some
other sentence of interest.

Choose a substitution for x that helps us with our
proof.

∀xLivesIn(x, S pring f ield)⇒ knows(x,Homer)

Since this is true for all x, we can substitute
{x = Bart}

LivesIn(Bart, S pring f ield)⇒ knows(Bart,Homer)



10-32: Removing quantifiers

Existential Instantiation: we can give a name to the
object that satisfies a sentence.

∃xLivesIn(x, S pring f ield) ∧ knows(x,Homer)

We know this must hold for at least one object.
Let’s call that object K.

LivesIn(K, S pring f ield) ∧ knows(K,Homer)

K is called a Skolem constant.

K must be unused - gives us a way of referring
to an existential object.

Once we’ve removed quantifiers, we can use
propositional inference rules.



10-33: Skolemization

Existential Instantiation: we can give a name to the
object that satisfies a sentence.

Everybody loves someone

∀x∃yLoves(x, y)

Replace the existential variable with e skolem
constant, does it mean what we want?

∀xLoves(x, A)

What does this mean?



10-34: Skolemization

If an existential quantifier is within the scope of a
universal quantifier, we need to replace the
existential variable with a function of the universal
variable

∀x∃yLoves(x, y)

∀x, Loves(x, F(x))

What does this mean? Is it what we want?



10-35: Skolemization

What about a Universal Quantifier within an
existential quantifier?

There is someone whom everyone loves

∃x,∀yLoves(y, x)



10-36: Skolemization

What about a Universal Quantifier within an
existential quantifier?

There is someone whom everyone loves

∃x,∀yLoves(y, x)

f orallyLoves(y, K)

No need for a Skolem function, skolem constant
works just fine



10-37: Propositionalization

We can replace every existential sentence with a
Skolemized version.

For universally quantified sentences, substitute in
every possible substitution.

This will (in theory) allow us to use propositional
inference rules.

Problem: very inefficient!

This was the state of the art until about 1960.

Unification of variables is much more efficient.



10-38: Unification

The key to unification is that we only want to make
substitutions for those sentences that help us
prove things.

For example, if we know:

∀xLivesIn(x, S pring f ield) ∧

WorksAt(x, PowerPlant)⇒ knows(x,Homer)

∀yLivesIn(y, S pring f ield)

WorksAt(MrS mithers, PowerPlant)

We should be able to conclude
knows(MrS mithers,Homer) directly.

Substitution: {x/MrS mithers, y/MrS mithers}



10-39: Generalized Modus Ponens

This reasoning is a generalized form of Modus
Ponens.

Basic idea: Let’s say we have:

An implication of the form P1 ∧ P2 ∧ ... ∧ Pi ⇒ Q

Sentences P′
1
, P′

2
, ..., P′

i

a set of substitutions such that
P1 = P′

1
, P2 = P′

2
, ..., P′n = Pn

We can then apply the substitution and apply
Modus Ponens to conclude Q.

this technique of using substitutions to pair up
sentences for inference is called unification.



10-40: Unification

Our inference process now becomes one of finding
substitutions that will allow us to derive new
sentences.

The Unify algorithm: takes two sentences, returns
a set of substitutions that unifies the sentences.

WorksAt(x, PowerPlant),WorksAt(Homer, PowerPlant) produces {x/Homer}.

WorksAt(x, PowerPlant),WorksAt(Homer, y) produces {x/Homer, y/PowerPlant}

WorksAt(x, PowerPlant),WorksAt(FatherO f (Bart), y) produces

{x/FatherO f (Bart), y/PowerPlant}

WorksAt(x, PowerPlant),WorksAt(Homer, x) fails - x can’t bind to both Homer and

PowerPlant.



10-41: Unification

This last sentence is a problem only because we
happened to use x in both sentences.

We can replace x with a unique variable (say x21) is
one sentence.

This is called standardizing apart.



10-42: Unification

What if there is more than one substitution that can
make two sentences look the same?

S ibling(Bart, x), S ibling(y, z)

can produce{Bart/y, x/z} or
{x/Bart, y/Bart, z/Bart}

the first unification is more general than the second
- it makes fewer commitments.

We want to find the most general unifier when
performing inference.

(This is the heuristic in our search.)



10-43: Unification Algorithm

To unify two sentences, proceed recursively.

If either sentence is a single variable, find a
unification that binds the variable to a constant.

Else, call unify in the first term, followed by the rest
of each sentence.

S ibling(x, Bart) and S ibling(Lisa, y)

We can unify S ibling(x, Bart) and S ibling(Lisa, y)

with {x/Lisa, y/Bart}



10-44: Forward Chaining

Basic idea: Begin with facts and rules
(implications)

Continually apply Modus Ponens until no new facts
can be derived.

Requires definite clauses

Implications with positive clauses in the
antecedent

Positive facts



10-45: Forward Chaining Algorithm

while (1) :

for rule in rules :

if (can_unify(rule, facts)) :

fire_rule(rule)

assert consequent facts

if (no rules fired) :

return



10-46: Example

The law says that it is a crime for an American to sell weapons to hostile nations. The country

of Nono, an enemy of America, has some missiles. All of its missiles were sold to it by

Colonel West, who is an American.

Prove that West is a criminal.
It is a crime for an American to sell weapons to hostile nations.

1.American(x) ∧Weapon(y) ∧ Hostile(z) ∧ S ells(x, y, z)⇒ Criminal(x)

Nono has missiles.

2.∃xOwns(Nono, x) ∧ Missile(x)

Use Existential Elimination to substitute M1 for x

3.Owns(Nono,M1), 4.Missile(M1)



10-47: Example

Prove that West is a criminal.
All Nono’s missiles were sold to it by Colonel West.

5.Missile(x) ∧ Owns(Nono, x)⇒ S ells(West, x,Nono)

Missiles are weapons.

6.Missile(x)⇒ Weapon(x)

An enemy of America is a hostile nation.

7.Enemy(x, America)⇒ Hostile(x)

West is American

8.American(West)

Nono is an enemy of America

9.Enemy(Nono, America)

We want to forward chain until we can show all
the antecedents of 1.



10-48: Example

Algorithm: Repeatedly fire all rules whose
antecedents are satisfied.

Rule 6 matches with Fact 4. {x/M1}. Add
Weapon(M1).

Rule 5 matches with 3 and 4. {x/M1}. Add
S ells(West,M1,Nono)

Rule 7 matches with 9. {x/Nono}. Add
Hostile(Nono)

Iterate again.

Now we can match rule 1 with
{x/West, y/M1, z/Nono} and conclude
Criminal(West).



10-49: Basic Forward Chaining

Forward chaining is sound, since it uses Modus
Ponens.

Forward chaining is complete for definite clauses.

Works much like BFS

This basic algorithm is not very efficient, though.

Finding all possible unifiers is expensive

Every rule is rechecked on every iteration.

Facts that do not lead to the goal are
generated.



10-50: Backward Chaining

Basic idea: work backward from the goal to the
facts that must be asserted for the goal to hold.

Uses Modus Ponens (in reverse) to focus search
on finding clauses that can lead to a goal.

Also uses definite clauses.

Search proceeds in a depth-first manner.



10-51: Backward Chaining Algorithm

BackwardChain(goals, subst)

if goals is empty, return True

goal = goals.dequeue

foreach sentence in KB

if (unify(consequent(sentence, goal)))

(giving new subst, subst’)

if (BackwardChain(antecedent(goal)+goals,

subst’)

return True

return False



10-52: Backward Chaining Example

1. American(x) ∧Weapon(x) ∧ Hostile(x) ∧ S ells(x, y, z)⇒

Criminal(x)

2. ⇒ Owns(Nono,M1)

3. ⇒ Missle(M1)

4. Missle(y) ∧ Owns(Nono, y)⇒ S ells(West, y,Nono)

5. Missle(z) ⇒ Weapon(z)

6. Enemy(x, America)⇒ Hostile(x)

7. ⇒ American(West)

8. ⇒ Enemy(Nono, America)



10-53: Analyzing Backward Chaining

Backward chaining uses depth-first search.

This means that it suffers from repeated states.

Also, it is not complete.

Can be very effective for query-based systems

Most backward chaining systems (esp. Prolog)
give the programmer control over the search
process, including backtracking.



10-54: Resolution

Recall Resolution in Propositional Logic:

(A ∨C) ∧ (¬A ∨ B)⇒ (B ∨C)

Resolution in FOL works similarly.

Requires that sentences be in CNF.



10-55: Conversion to CNF

The recipe for converting FOL sentences to CNF is
similar to propositional logic.

1. Eliminate Implications

2. Move ¬ inwards

3. Standardize apart

4. Skolemize Existential sentences

5. Drop universal quantifiers

6. Distribute ∧ over ∨



10-56: CNF conversion example

Sentence: Everyone who loves all animals is loved by someone.

Translation: ∀x(∀yAnimal(y) ⇒ loves(x, y))⇒ (∃yLoves(y, x))

Eliminate implication

∀x(¬∀y¬Animal(y) ∨ loves(x, y)) ∨ (∃yLoves(y, x))

Move negation inwards

∀x(∃y¬(¬Animal(y) ∨ Loves(x, y))) ∨ (∃yLoves(y, x))

∀x(∃y¬¬Animal(y) ∧ ¬Loves(x, y))) ∨ (∃yLoves(y, x))

∀x(∃yAnimal(y) ∧ ¬Loves(x, y))) ∨ (∃yLoves(y, x))

Standardize apart

∀x(∃yAnimal(y) ∧ ¬Loves(x, y))) ∨ (∃zLoves(z, x))



10-57: CNF conversion example

Skolemize. In this case we need a Skolem function, rather than a constant.

∀x(Animal(F(x)) ∧ ¬Loves(x, y))) ∨ (Loves((G(x), x))

Drop universals

(Animal(F(x)) ∧ ¬Loves(x, F(x)))) ∨ (Loves((G(x), x))

Distribute ∧ over ∨

(Animal(F(x)) ∨ Loves(G(x), x)) ∧ (¬Loves(x, F(x)))) ∨ (Loves((G(x), x))



10-58: Resolution Theorem Proving

Resolution proofs work by inserting the negated
form of the sentence to prove into the knowledge
base, and then attempting to derive a
contradiction.

A set of support is used to help guide search

These are facts that are likely to be helpful in
the proof.

This provides a heuristic.



10-59: Resolution Algorithm

sos = [useful facts]

usable = all facts in KB

do

fact = sos.pop

foreach fact in usable

resolve fact with usable

simplify clauses, remove duplicates and tautologies

if a clause has no literals :

return refutation found

until

sos = []



10-60: Resolution Example

1.¬American(x) ∨ ¬Weapon(y) ∨ ¬S ells(x, y, z) ∨ ¬Hostile(z) ∨ Criminal(x)

2.¬Missile(x) ∨ ¬Owns(Nono, x) ∨ S ells(west, x,Nono)

3.¬Enemy(x, America) ∨ Hostile(x)

4.¬Missile(x) ∨Weapon(x)

5.Owns(Nono,M1)

6.Missile(M1)

7.American(West)

8.Enemy(Nono, America)

9.¬Criminal(West) (added)



10-61: Resolution Example

Resolve 1 and 9. Add

10.¬American(West) ∨ ¬Weapon(y) ∨ ¬S ells(West, y, z) ∨ ¬Hostile(z)

Resolve 10 and 7. Add 11.¬Weapon(y) ∨ ¬S ells(West, y, z) ∨ ¬Hostile(z)

Resolve 11 and 4. Add 12.¬Missile(y) ∨ ¬S ells(West, y, z) ∨ ¬Hostile(z)

Resolve 12 and 6. Add 13.S ells(West,M1, z) ∨ ¬Hostile(z)

Resolve 13 and 2. Add 14.¬Missile(M1) ∨ ¬Owns(Nono,M1) ∨ Hostile(Nono)

Resolve 14 and 6. Add 15.¬Owns(Nono,M1) ∨ ¬Hostile(Nono)

Resolve 15 and 5. Add 16¬Hostile(Nono)

Resolve 16 and 3. Add 17.¬Enemy(Nono, America).

Resolve 17 and 8. Contradiction!



10-62: Analyzing Resolution

Resolution is refutation complete - if a sentences is
unsatisfiable, resolution will discover a
contradiction.

Cannot always derive all consequences from a set
of facts.

Can produce nonconstructive proofs for existential
goals.

Prove ∃xlikes(x,Homer) will be proven, but
without an answer for who x is.

Can use full FOL, rather than just definite clauses.


	{small lecturenumber -	heblocknumber :} Representationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Review of Propositional Logicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Resolutionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Conjunctive Normal Formaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} CNF Recipeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Proof By Refutationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Expressivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Expressivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Models in first-order logicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Terms and sentencesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Terms and sentencesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quantifiers and variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quantifiers and variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quantifiersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nesting quantifiersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nesting quantifiersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Negationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Audience Participationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Repr. Knowledge in FOLaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Music exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Music exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Music exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inference in Prop. logicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inference in FOLaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inference in FOLaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Removing quantifiersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Removing quantifiersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Skolemizationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Skolemizationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Skolemizationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Skolemizationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Propositionalizationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Unificationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Generalized Modus Ponensaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Unificationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Unificationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Unificationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Unification Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Forward Chainingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Forward Chaining Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Basic Forward Chainingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Backward Chainingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Backward Chaining Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Backward Chaining Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Analyzing Backward Chainingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Resolutionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Conversion to CNFaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} CNF conversion exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} CNF conversion exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Resolution Theorem Provingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Resolution Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Resolution Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Resolution Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Analyzing Resolutionaddtocounter {blocknumber}{1}

