
AI Programming
CS662-2008F-11

Informtion Retrieval
David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

11-0: Processing text

Now that we know a little bit about how to consider
and compare different states, we’ll think about a
problem with a harder representation.

English-language text
Specifically, webpages

We’ll look at several different approaches to
automatically summarizing and understanding
documents.

11-1: Difficulties

What makes working with natural language hard?

11-2: Difficulties

What makes working with natural language hard?

Nonunique parses

Synonyms and multiple meanings

Slang and technical terms

Analogy and metaphor

Misspelling and incorrect grammar

11-3: Information Retrieval

Information retrieval deals with the storage,
retrieval, organization of, and access to information
items

Overlaps with:
Databases (more of a focus on content)
AI
Search engines

11-4: Needs and queries

A user typically has an information need.

The job of an IR system is to translate that need
into a query language and then find documents
that satisfy that need.

What are some sorts of query languages?

11-5: Query Languages

What are some sorts of query languages?

Keyword - Google, Yahoo!, etc.

Natural language - Ask.com

SQL-style

Similar item - Netflix, Amazon

Multimedia - Flickr

11-6: User tasks

We’ll also distinguish between different types of
user tasks.

The most common are searching and browsing.
Searching - the user has a specific information
need, and wants a document that meets that
need.
“Find me an explanation of the re module in
Python”
Browsing - the user has a broadly defined set of
interests, and wants information that satisfies
his/her interests.
“Find me interesting pages about Python”

Different modes have different models of success.

11-7: User tasks

Searching and browsing are both pull tasks.
User is actively fetching information from a
repository.

We can also think about push tasks, where
selected data is delivered to a client as it is made
available.

This is called filtering
RSS readers are an example of this, as is
Google News.

11-8: Modeling a Document

In order to match a query to a document, an IR
system must have a model of the document.

This might be:
A category or description (as in a library)
A set of extracted phrases or keywords
The full text of the document
Full text with filtering

11-9: “Bag of words” model

The techniques we’ll look at today treat a
document as a bag of words.

Order is discarded; we just count how often each
word appears.

No semantics involved

Intuition: Frequently-appearing words give an
indication of subject matter.

Advantage: No need to parse, computationally
tractable for large collections.

Disadvantage: Contextual information and
meaning is lost.

11-10: Data cleaning

When preparing a document such as a webpage
for an IR system, the data must typically be
cleaned first.

HTML, Javascript removed.
(Links and structural information might be kept
separately)
Non-words removed.
Converted to lower case
stopwords removed. These are words that have
little or no semantic content. (a, an, the, he,
she, their, among, etc)

11-11: Data Cleaning

Stemming might also be performed.

Word suffixes, such as pluralization, past tense,
-ing are removed.

run, runs, running, runner all become run.

Advantages: If we’re just counting words, this lets
us correctly count different forms of a word.

Disadvantages: dealing with abnormal forms
(person/people, run/ran), potential misgrouping
(university, universal)

The stemmer can be tuned to minimize either false
positives (accidentally stemming a word it
shouldn’t) or false negatives (not stemming a word
it should.)

There’s some debate in the research community

11-12: “Bag of Words”

Once a document has been cleaned, the simplest
model just counts how many times each word
occurs in the document.

This is typically represented as a dictionary.

You built this in assignment 1.

11-13: Evaluating an IR System

Our prototypical use case is this:
The user submits a query to the system
Some documents are returned

How can we evaluate performance?

11-14: Precision and Recall

Precision measures how well returned documents
match a query.

precision = matchingDocs

totalDocsReturned

Recall measures the fraction of relevant
documents returned.

recall = relevantDocsReturned

totalRelevantDocs

When might we want high precision? High recall?

Often, we can trade precision against recall.

11-15: Boolean Queries

Boolean queries are simple, but not very practical.

User provides a set of keywords.
Possibly also OR terms

All documents containing all keywords are
returned.

This is the sort of query model that databases use

11-16: Boolean Queries

Weaknesses:
No concept of partial match, or ability to rank
results
Low recall
Boolean queries are awkward for users

11-17: Probabilistic Queries

A simple extension is to allow partial matches on
queries

Score documents according to the fraction of query
terms matched

Return documents according to score
Example: Document contains “cat cat dog
bunny fish”
Query is “cat dog (bunny OR snake) bird”
Score is 3/4.

11-18: Probabilistic Queries

Weaknesses:
Still requires logical queries
Doesn’t deal with word frequency
Dependent on query length - short queries will
have a hard time getting differentiated scores.
The average Google query is only three words
long!

11-19: Dealing with Word Frequency

Intuitively, some words in a document should
matter more than others.

The word “aardvark” occurring 10 times in a
document is probably more meaningful than the
word “date” occurring 10 times.

We want to weight words such that words which
are rare in general, but common in a document,
are more highly considered.

11-20: Building a corpus

To measure how frequently words occur in general,
we must construct a corpus.

This is a large collection of documents

Must be careful to ensure that we select
documents of the appropriate style

Different types of documents have different word
frequencies

New York Times vs Livejournal

The statistical distribution of words in a corpus is
called a language model.

11-21: Building a corpus

We begin by cleaning the data as before

Construct a dictionary that maps words to the
number of pages they occur in.

Don’t worry about multiple occurrences within a
document

The result is referred to as document frequency

11-22: TFIDF

We can now weight each word to indicate its
importance in the language model.

The most common weighting scheme is TF-IDF:
term frequency - inverse document frequency.

TFIDF (word) = TF (word) ∗ log(|corpus|

DF (word)
)

TF (word) is how frequently the word occurs in the
search query (or a specific document)

DF (word) is the number of pages in the corpus
that contain the word.

11-23: TFIDF

Think about extrema:
What happens if a word occurs in exactly one
document in the corpus?
What happens if a word occurs in every
document in the corpus?

We want to favor words that discriminate
interesting pages from non-interesting pages

11-24: Word Weighting

We can now process each document and assign a
weight to each word.

We could use this to improve the performance of
the probabilistic scorer.

More interestingly, we can use it to determine how
similar two documents are.

This gives us another way for users to search
“Find more documents like this”

11-25: Documents as vectors

At this point, each document can be represented
as a dictionary of words and TFIDF scores

{cat: 4.33; dog: 2.1 ; bunny: 8.2; fish: 0.33}

Conceptually, these documents can be thought of
as an n-dimensional vector, where n is the number
of words in the lexicon (all words in all documents)
and the value of v[n] is the TFIDF score for that
word.

Many elements of the vector are zero, since those
words don’t appear in that specific document.

11-26: Comparing vectors

We can now use well-known techniques from
geometry to compare these vectors.

We could measure the angle between the vectors.
The scale is not convenient, and the calculation
is complicated.

Easier is to measure the cosine of this angle.

Identical docuents have a cosine of 1, and
completely dissimilar documents have a cosine of
zero.

11-27: Computing cosine similarity

The formula for the cosine of the angle between
two vectors is: a·b

||a||||b||

This is the dot product of the two vectors, divided
by the product of their magnitudes.

The dot product is computed by summing the
product of the respective elements of each vector:
∑

i
v1[i] ∗ v2[i]

The magnitudes are computed by calculating the
square root of the sum of the squares of each
component. (this is Pythagoras’ rule)
√

∑

i
v[i]2

11-28: Computing cosine similarity

The entire formula, in terms of words in
documents, looks like this:

cos(d1, d2) =
P

word∈d1∩d2
d1[word]∗d2[word]

√
P

word∈d1
d1[word]2∗

√
P

word∈d2
d2[word]2

This is a very powerful and useful technique for
comparing documents.

It can also be used to compare a query to a
document.

We’ll return to it when we study clustering.

11-29: Putting it together

To use a vector model:
Collect and clean a corpus and compute
document frequencies.
For each document in the collection, clean and
compute document frequencies.
For a query or sample document, compute
TFIDF scores.
Compute cosine similarity for each document in
the collection and return results from highest to
lowest.

11-30: Summary

Searching vs browsing

“bag of words” model

Precision and Recall

Boolean and Probabilistic Queries

Term Weighting

Vector Models and cosine similarity

	{small lecturenumber -	heblocknumber :} Processing textaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Difficultiesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Difficultiesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Information Retrievaladdtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Needs and queriesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Query Languagesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} User tasksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} User tasksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Modeling a Documentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Bag of words'' modeladdtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Data cleaningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Data Cleaningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Bag of Words''addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Evaluating an IR Systemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Precision and Recalladdtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Boolean Queriesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Boolean Queriesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probabilistic Queriesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probabilistic Queriesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dealing with Word Frequencyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a corpusaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a corpusaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} TFIDFaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} TFIDFaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Word Weightingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Documents as vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Comparing vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Computing cosine similarityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Computing cosine similarityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Putting it togetheraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Summaryaddtocounter {blocknumber}{1}

