
CS662-2008F-11 Informtion Retrieval 1

11-0: Processing text

• Now that we know a little bit about how to consider and comparedifferent states, we’ll think about a problem
with a harder representation.

• English-language text

• Specifically, webpages

• We’ll look at several different approaches to automatically summarizing and understanding documents.

11-1: Difficulties

• What makes working with natural language hard?

11-2: Difficulties

• What makes working with natural language hard?

• Nonunique parses

• Synonyms and multiple meanings

• Slang and technical terms

• Analogy and metaphor

• Misspelling and incorrect grammar

11-3: Information Retrieval

• Information retrieval deals with the storage, retrieval, organization of, and access to information items

• Overlaps with:

• Databases (more of a focus on content)

• AI

• Search engines

11-4: Needs and queries

• A user typically has aninformation need.

• The job of an IR system is to translate that need into a query language and then find documents that satisfy that
need.

• What are some sorts of query languages?

11-5: Query Languages

• What are some sorts of query languages?

• Keyword - Google, Yahoo!, etc.

• Natural language - Ask.com

• SQL-style

• Similar item - Netflix, Amazon

CS662-2008F-11 Informtion Retrieval 2

• Multimedia - Flickr

11-6: User tasks

• We’ll also distinguish between different types of user tasks.

• The most common aresearchingandbrowsing.

• Searching - the user has a specific information need, and wants a document that meets that need.

• “Find me an explanation of the re module in Python”

• Browsing - the user has a broadly defined set of interests, andwants information that satisfies his/her
interests.

• “Find me interesting pages about Python”

• Different modes have different models of success.

11-7: User tasks

• Searching and browsing are bothpull tasks.

• User is actively fetching information from a repository.

• We can also think aboutpushtasks, where selected data is delivered to a client as it is made available.

• This is calledfiltering

• RSS readers are an example of this, as is Google News.

11-8: Modeling a Document

• In order to match a query to a document, an IR system must have amodelof the document.

• This might be:

• A category or description (as in a library)

• A set of extracted phrases or keywords

• The full text of the document

• Full text with filtering

11-9: “Bag of words” model

• The techniques we’ll look at today treat a document as abag of words.

• Order is discarded; we just count how often each word appears.

• No semantics involved

• Intuition: Frequently-appearing words give an indicationof subject matter.

• Advantage: No need to parse, computationally tractable forlarge collections.

• Disadvantage: Contextual information and meaning is lost.

11-10:Data cleaning

• When preparing a document such as a webpage for an IR system, the data must typically becleanedfirst.

• HTML, Javascript removed.

CS662-2008F-11 Informtion Retrieval 3

• (Links and structural information might be kept separately)

• Non-words removed.

• Converted to lower case

• stopwordsremoved. These are words that have little or no semantic content. (a, an, the, he, she, their,
among, etc)

11-11:Data Cleaning

• Stemmingmight also be performed.

• Word suffixes, such as pluralization, past tense, -ing are removed.

• run, runs, running, runner all become run.

• Advantages: If we’re just counting words, this lets us correctly count different forms of a word.

• Disadvantages: dealing with abnormal forms (person/people, run/ran), potential misgrouping (university, uni-
versal)

• The stemmer can be tuned to minimize eitherfalse positives(accidentally stemming a word it shouldn’t) orfalse
negatives(not stemming a word it should.)

• There’s some debate in the research community about the effectiveness of stemming.

11-12: “Bag of Words”

• Once a document has been cleaned, the simplest model just counts how many times each word occurs in the
document.

• This is typically represented as a dictionary.

• You built this in assignment 1.

11-13:Evaluating an IR System

• Our prototypical use case is this:

• The user submits a query to the system

• Some documents are returned

• How can we evaluate performance?

11-14:Precision and Recall

• Precision measures how well returned documents match a query.

• precision = matchingDocs

totalDocsReturned

• Recall measures the fraction of relevant documents returned.

• recall = relevantDocsReturned
totalRelevantDocs

• When might we want high precision? High recall?

• Often, we can trade precision against recall.

11-15:Boolean Queries

CS662-2008F-11 Informtion Retrieval 4

• Boolean queries are simple, but not very practical.

• User provides a set of keywords.

• Possibly also OR terms

• All documents containing all keywords are returned.

• This is the sort of query model that databases use

11-16:Boolean Queries

• Weaknesses:

• No concept of partial match, or ability to rank results

• Low recall

• Boolean queries are awkward for users

11-17:Probabilistic Queries

• A simple extension is to allow partial matches on queries

• Score documents according to the fraction of query terms matched

• Return documents according to score

• Example: Document contains “cat cat dog bunny fish”

• Query is “cat dog (bunny OR snake) bird”

• Score is 3/4.

11-18:Probabilistic Queries

• Weaknesses:

• Still requires logical queries

• Doesn’t deal with word frequency

• Dependent on query length - short queries will have a hard time getting differentiated scores.

• The average Google query is only three words long!

11-19:Dealing with Word Frequency

• Intuitively, some words in a document should matter more than others.

• The word “aardvark” occurring 10 times in a document is probably more meaningful than the word “date”
occurring 10 times.

• We want to weight words such that words which are rare in general, but common in a document, are more highly
considered.

11-20:Building a corpus

• To measure how frequently words occur in general, we must construct a corpus.

• This is a large collection of documents

• Must be careful to ensure that we select documents of the appropriate style

CS662-2008F-11 Informtion Retrieval 5

• Different types of documents have different word frequencies

• New York Times vs Livejournal

• The statistical distribution of words in a corpus is called alanguage model.

11-21:Building a corpus

• We begin by cleaning the data as before

• Construct a dictionary that maps words to the number of pagesthey occur in.

• Don’t worry about multiple occurrences within a document

• The result is referred to asdocument frequency

11-22:TFIDF

• We can now weight each word to indicate its importance in the language model.

• The most common weighting scheme is TF-IDF: term frequency -inverse document frequency.

• TFIDF (word) = TF (word) ∗ log(|corpus|
DF (word))

• TF (word) is how frequently the word occurs in the search query (or a specific document)

• DF (word) is the number of pages in the corpus that contain the word.

11-23:TFIDF

• Think about extrema:

• What happens if a word occurs in exactly one document in the corpus?

• What happens if a word occurs in every document in the corpus?

• We want to favor words that discriminate interesting pages from non-interesting pages

11-24:Word Weighting

• We can now process each document and assign a weight to each word.

• We could use this to improve the performance of the probabilistic scorer.

• More interestingly, we can use it to determine how similar two documents are.

• This gives us another way for users to search

• “Find more documents like this”

11-25:Documents as vectors

• At this point, each document can be represented as a dictionary of words and TFIDF scores

{cat: 4.33; dog: 2.1 ; bunny: 8.2; fish: 0.33}

• Conceptually, these documents can be thought of as ann-dimensional vector, wheren is the number of words
in the lexicon (all words in all documents) and the value of v[n] is the TFIDF score for that word.

• Many elements of the vector are zero, since those words don’tappear in that specific document.

CS662-2008F-11 Informtion Retrieval 6

11-26:Comparing vectors

• We can now use well-known techniques from geometry to compare these vectors.

• We could measure the angle between the vectors.

• The scale is not convenient, and the calculation is complicated.

• Easier is to measure the cosine of this angle.

• Identical docuents have a cosine of 1, and completely dissimilar documents have a cosine of zero.

11-27:Computing cosine similarity

• The formula for the cosine of the angle between two vectors is: a·b
||a||||b||

• This is the dot product of the two vectors, divided by the product of their magnitudes.

• The dot product is computed by summing the product of the respective elements of each vector:

•
∑

i v1[i] ∗ v2[i]

• The magnitudes are computed by calculating the square root of the sum of the squares of each component. (this
is Pythagoras’ rule)

•
√

∑

i v[i]2

11-28:Computing cosine similarity

• The entire formula, in terms of words in documents, looks like this:

cos(d1, d2) =
P

word∈d1∩d2
d1[word]∗d2[word]

√
P

word∈d1
d1[word]2∗

√
P

word∈d2
d2[word]2

• This is a very powerful and useful technique for comparing documents.

• It can also be used to compare a query to a document.

• We’ll return to it when we study clustering.

11-29:Putting it together

• To use a vector model:

• Collect and clean a corpus and compute document frequencies.

• For each document in the collection, clean and compute document frequencies.

• For a query or sample document, compute TFIDF scores.

• Compute cosine similarity for each document in the collection and return results from highest to lowest.

11-30:Summary

• Searching vs browsing

• “bag of words” model

• Precision and Recall

• Boolean and Probabilistic Queries

• Term Weighting

• Vector Models and cosine similarity

