13-0: Outline

- n-grams
- Applications of n-grams
- review - Context-free grammars
- Probabilistic CFGs
- Information Extraction

13-1: Advantages of IR approaches

- Recall that IR-based approaches use the "bag of words" model.
- TFIDF is used to account for word frequency.
- Takes information about common words into account.
- Can deal with grammatically incorrect sentences.
- Gives us a "degree of correctness", rather than just yes or no.

13-2: Disadvantges of IR

- No use of structural information.
- Not even co-occurrence of words
- Can't deal with synonyms or dereferencing pronouns
- Very little semantic analysis.

13-3: Advantages of classical NLP

- Classical NLP approaches use a parser to generate a parse tree.
- This can then be used to transform knowledge into a form that can be reasoned with.
- Identifies sentence structure
- Easier to do semantic interpretation
- Can handle anaphora, synonyms, etc.

13-4: Disadvantages of class. NLP

- Doesn't take frequency into account
- No way to choose between different parses for a sentence
- Can't deal with incorrect grammar
- Requires a lexicon.
- Maybe we can incorporate both statistical information and structure.

13-5: n-grams

- The simplest way to add structure to our IR approach is to count the occurrence not only of single tokens, but of sequences of tokens.
- So far, we've considered words as tokens.
- A token is sometimes called a gram
- an n-gram model considers the probability that a sequence of n tokens occurs in a row.
- More precisely, it is the probability $P\left(\right.$ token $_{i} \mid$ token $_{i-1}$, token $_{i-2}, \ldots$, token $\left._{i-n}\right)$

13-6: n-grams

- We could also choose to count bigrams, or 2-grams.
- The sentence "Every good boy deserves fudge" contains the bigrams "every good", "good boy", "boy deserves", "deserves fudge"
- We could continue this approach to 3-grams, or 4-grams, or 5-grams.
- Longer n-grams give us more accurate information about content, since they include phrases rather than single words.
- What's the downside here?

13-7: Sampling theory

- We need to be able to estimate the probability of each n-gram occurring.
- We could do this by collecting a corpus and counting the distribution of words in the corpus.
- If the corpus is too small, these counts may not be reflective of an n-gram's true frequency.
- Many n-grams will not appear at all in our corpus.
- For example, if we have a lexicon of 20,000 words, there are:
- $20,000^{2}=400$ million distinct bigrams
- $20,000^{3}=8$ trillion distinct trigrams
- $20,000^{4}=1.6 \times 10^{17}$ distinct 4-grams

13-8: Application: segmentation

- One application of n-gram models is segmentation
- Splitting a sequence of characters into tokens, or finding word boundaries.
- Speech-to-text systems
- Chinese and Japanese
- genomic data
- Documents with other characters, such as \ representing space.
- The algorithm for doing this is called Viterbi segmentation
- (Like parsing, it's a form of dynamic programming)

13-9: Viterbi segmentation

```
input: a string S, a 1-gram distribution P
n = length(S)
words = array[n+1]
best = array[n+1] = 0.0 % (n+1)
best[0] = 1.0
for i=1 to n
    for j=0 to i - 1
        word = S[j:i] ##get the substring from j to i
        w = length(word)
        if (P[word] x best[i - w] >= best[i])
                best[i] = P[word] x best[i-w]
                words[i] = word
get best words
result = []
l=n
push words[i] onto result
    push words[i] onto resul
return result, best[i]
13-10: Example
Input ''cattlefish'' P(cat) = 0.1, P(cattle) = 0.3, P(fish) = 0.1.
all other 1-grams are 0.001.
best[0] = 1.0
i: 1, j:0 word: 'c'. w = 1
0.001 * 1.0 >= 0.0
    best[1] =0.001
    words[1] = ' }\textrm{c}\mathrm{ '
i=2, j=0 word = 'ca', w = 2
0.001 * 1.0>>=0.0
    best[2] =0.001
    words[2] = 'ca'
i=2,j=1 word = 'a',w=1
```


13-11: Example

```
\(i=3, j=0\), word='cat', w=3
    \(1 * 1.0>0.0\)
best \([3]=0\).
    words[3] = 'cat
\(i=3, j=1\), word \(=\) 'at', w=2
\(0.001 * 0.001<0.1\)
\(i=3, j=2\), word \(=' t ', w=1\)
\(0.001 * 0.001<0.1\)
\(0.001 * 0.001<0.1\)
```

13-12: Example
$\mathrm{i}=4, \mathrm{j}=0$, word='catt', w=4
$0.001 * 1.0>0.0$
best[4] $=0.001$
$\mathrm{i}=4, \mathrm{j}=1$ word $=$ 'att', $\mathrm{w}=3$
$0.001 * 0.001<0.001$
$i=4, j=2$, word='tt', $w=2$
$0.001 * 0.001<0.001$
$\mathrm{i}=4, \mathrm{j}=3$, word='t', $\mathrm{w}=1$
$0.001 * 0.1<0.001$
13-13: Example
$i=5, j=0$, word='cattl', w=5
$0.001 * i .0$
$0.001 * 1.0>0.0$
best[5] $=0.001$
$i=5, j=1$, word='attl', w=4
-0, ,
$i=5, j=2$, word='ttl', $w=3$
$0.001 * 0.001<0.001$
$\mathrm{i}=5, \mathrm{j}=3$, word='tl', w=2
$0.001 * 0.1<0.001$
$i=5, j=4$, word='1', $w=1$
0.001 * $0.001<0.001$
13-14: Example

```
i=6, j=0, word='cattle', w=6
    word[6] = 'cattle
    best[6] = 0.3
etc ...
```


13-15: Example

```
best:[1.0 0.001 0.001 0.1 0.001 0.001 0.3 0.001 0.001 0.2]
words: ['c' 'ca' 'cat' 'catt' 'cattl','cattle' 'cattlef'''cattlefi'
'cattlefis','fish']
i=10
push 'fish' onto result
push i-4
push 'cattle' onto result
```


13-16: What's going on here?

- The Viterbi algorithm is searching through the space of all combinations of substrings.
- States with high probability mass are pursued.
- The 'best' array is used to prevent the algorithm from repeatedly expanding portions of the search space.
- This is an example of dynamic programming (like chart parsing)

13-17: Application: language detection

- n -grams have also been successfully used to detect the language a document is in.
- Approach: consider letters as tokens, rather than words.
- Gather a corpus in a variety of different languages (Wikipedia works well here.)
- Process the documents, and count all two-grams.
- Estimate probabilities for Language L with $\frac{\text { count }}{\# \text { of } 2 \text {-grams }}$ Call this P_{L}
- Assumption: different languages have characteristic two-grams.

13-18: Application: language detection

- To classify a document by language:
- Find all two-grams in the document. Call this set T.
- For each language L , the likelihood that the document is of language L is: $P_{L}\left(t_{1}\right) \times P_{L}\left(t_{2}\right) \times \ldots \times P_{L}\left(t_{n}\right)$
- The language with the highest likelihood is the most probable language.
- (this is a form of Bayesian inference - we'll spend more time on this later in the semester.)

13-19: Going further

- n-grams and segmentation provide some interesting ideas:
- We can combine structure with statistical knowledge.
- Probabilities can be used to help guide search
- Probabilities can help a parser choose between different outcomes.
- But, no structure used apart from colocation.
- Maybe we can apply these ideas to grammars.

13-20: Reminder: CFGs

- Recall context-free grammars from the last lecture
- Single non-terminal on the left, anything on the right.
- S_{-i} NP VP
- VP - ¿ Verb - Verb PP
- Verb -i 'run' - 'sleep'
- We can construct sentences that have more than one legal parse.
- "Squad helps dog bite victim"
- CFGs don't give us any information about which parse to select.

13-21: Probabalistic CFGs

- A probabalisitc CFG is just a regular CFG with probabilities attached to the right-hand sides of rules.
- The have to sum up to 1
- They indicate how often a particular non-terminal derives that right-hand side.

13-22: Example

S $->$ NP VP (1.0)
PP -> P NP (1.0)
VP -> V NP (0.7)
VP -> VP PP (0.3)
P -> with (1.0)
V -> saw (1.0)
NP -> NP PP (0.4)
NP -> astronomers (0.1)
NP -> stars (0.18)
NP -> saw (0.04)
NP -> ears (0.18)
NP -> telescopes (0.1)

13-23: Disambiguation

- The probability of a parse tree being correct is just the product of each rule in the tree being derived.
- This lets us compare two parses and say which is more likely.

13-24: Disambiguation

$\mathrm{P} 1=1.0 * 0.1 * 0.7 * 1.0 * 0.4 * 0.18 * 1.0 * 1.0 * 0.18=0.0009072$

$\mathrm{P} 1=1.0 * 0.1 * 0.3 * 0.7 * 1.0 * 0.18 * 1.0 * 1.0 * 0.18=0.00068$

13-25: Faster Parsing

- We can also use probabilities to speed up parsing.
- Recall that both top-down and chart pasring proceed in a primarily depth-first fashion.
- They choose a rule to apply, and based on its right-hand side, they choose another rule.
- Probabilities can be used to better select which rule to apply, or which branch of the search tree to follow.
- This is a form of best-first search.

13-26: Information Extraction

- An increasingly common application of parsing is information extraction.
- This is the process of creating structured information (database or knowledge base entries) from unstructured text.

13-27: Information Extraction

- Example:
- Suppose we want to build a price comparison agent that can visit sites on the web and find the best deals on flatscreen TVs?
- Suppose we want to build a database about video games. We might do this by hand, or we could write a program that could parse wikipedia pages and insert knowledge such as madeBy(Blizzard, WorldOfWarcraft) into a knowledge base.

13-28: Extracting specific information

- A program that fetches HTML pages and extracts specfic information is called a scraper.
- Simple scrapers can be built with regular expressions.
- For example, prices typically have a dollar sign, some digits, a period, and two digits.
- \$[0-9]+.[0-9]\{2\}
- This approach will work, but it has several limitations
- Can only handle simple extractions
- Brittle and page specific

13-29: Steps in information extraction

- A more robust system will need to take advantage of sentence structure.
- A typical system will have the following components:
- Sentence segmenter.
- Tokenizer.
- Part of speech tagger.
- Chunker.
- Named Entity detector.
- Relation extractor.

13-30: POS tagging

- There are a number of approaches to part-of-speech tagging.
- We can write rules based on a word's structure. ("-ed" is a past tense verb)
- We can learn rules based on labeled data.
- Most common tag - ZeroR.
- We can use contextual information - n-grams.
- We can combine them, and learn more complex rules.

13-31: Chunking

- A chunk is a larger part of a sentence, such as a noun phrase.
- This will help us identify entities and relations.
- We can identify chunks with a chunk grammar:
- $N P:<D T>$? $<J J\rangle *<N N\rangle$
- Once we've tagged words with parts of speech, we use a parser to identify chunks.
- This can be done top-down or bottom up.

13-32: Named Entities

- These are noun phrases that refer to specific individuals, places, or organizations.
- How can we identify them, and what type of entity they are?
- e.g. University of San Francisco: NP - Organization, Barack Obama: NP - Person.
- Maybe we have a gazetteer (lookup table), but this is very brittle.
- We can also build a classifier to label entities.
- Input: token with a part-of-speech label
- Output: whether it is a Named Entity, and its type.

13-33: Relation extraction

- Once we have Named Entities, we would like to know relations between them.
- In(USF, San Francisco)
- We can write a set of augmented regular expressions to do this.
- ${ }_{¡} \mathrm{ORG}_{i}(.+) \mathrm{VP} \operatorname{in}(.+)_{i} \mathrm{CITY}_{i}$ will match ${ }_{j}$ organization $_{i}$ verb-phrase in blah ${ }_{j}$ city $_{i}$.
- There will be false positives; getting this highly accurate takes some care.
- We can trade off precision and accuracy here - more restrictive regular expressions might miss some relations, but avoid adding false positives.

13-34: Summary

- We can combine the best of probabilistic and classical NLP approaches.
- n -grams take advantage of co-occurrence information.
- Segmenting, language detection
- CFGs can be augmented with probabilities
- Speeds parsing, deals with ambiguity.
- Information extraction is an increasingly common application.
- Still no discussion of semantics; just increasingly complex syntax processing.

