
AI Programming
CS662-2008F-14

Decision Trees
David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

14-0: Rule Learning

Previously, we’ve assumed that background
knowledge was given to us by experts.

Focused on how to use that knowledge.

Today, we’ll talk about how to acquire that
knowledge from observation.

Focus on learning propositional rules
sunny ∧ warm → PlayTennis

cool ∧ (rain ∨ strongWind) → ¬PlayTennis

14-1: Learning

What does it mean for an agent to learn?

14-2: Learning

What does it mean for an agent to learn?

Agent acquires new knowledge

Agent changes its behavior

Agent improves its performance measure on a
given task

14-3: Learning Agents

A learning agent has a performance element and a
learning element.

The performance element is what an agent
uses to decide what to do.
This is what we’ve studied up to now.

The learning element is what allows the agent to
modify the performance element.

This might mean adding or changing rules or
facts, modifying a heuristic, changing a
successor function
In order to modify its behavior, an agent needs
information telling it how well it is performing.
This information is called feedback.

14-4: Deduction vs. Induction

Up to now, we’ve looked at cases where our agent
is given general knowledge and uses this to solve
a particular problem.

Exactly two people like Homer, Suck always
cleans a room, etc.
This general-to-specific reasoning is known as
deduction.
Advantage: deduction is sound, assuming your
knowledge is correct.

14-5: Deduction vs. Induction

Sometimes, you may not have general information
about a problem.

Instead, you might have data about particular
instances of a problem.

The problem then is to figure out a general rule
from specific data.

This is called induction - most learning is an
inductive process.

Problem: induction is not sound.

14-6: Example

Consider the problem of an agent deciding
whether we should play tennis on a given day.

There are four observable percepts:
Outlook (sunny, rainy, overcast)
Temperature (hot, mild, cool)
Humidity (high, low)
Wind (strong, weak)

We don’t have a model, but we do have some data
about past decsions.

Can we induce a general rule for when to play
tennis?

14-7: Types of Learning Tasks

There are essentially three categories of learning
tasks, each of which provides different feedback.

They vary in the amount of information that is
available to our learning algorithm.

Supervised learning.
In this case, an external source (often called a
teacher) provides the agent with labeled
examples
Agent sees specific actions/cases, along with
their classification.

D2 was Sunny, mild, high humidity and weak wind.
We played tennis.

14-8: Types of Learning Tasks

Unsupervised Learning
In this case, there is no teacher to provide
examples.
The agent typically tries to find a “concept” or
pattern in data.
Statistical methods such as clustering fall into
this category
Our agent might be told that day1, day 4 and
day 7 are similar and need to determine what
characteristics make these days alike.

14-9: Types of Learning Tasks

Reinforcement Learning
This is a particular version of learning in which
the agent only receives a reward for taking an
action.
May not know how optimal a reward is.
Will not know the “best” action to take
Our agent might be presented with a Sunny,
Hot, Low humidity, Strong wind day and asked
to choose whether to play tennis.
It chooses ‘yes’ and gets a reward of 0.3
Is 0.3 good or bad?

14-10: Supervised Learning

Supervised learning is one of the most common forms of
learning.

Agent is presented with a set of labeled data and must
use this data to determine more general rules.

Examples:

List of patients and characteristics: what factors are
correlated with cancer?

What factors make someone a credit risk?

What are the best questions for classifying animals?

Whose face is in this picture?

This is the form of learning we will spend most of our time
on.

14-11: Classification

the particular learning problem we are focusing on
is sometimes known as classification

For a given input, determine which class it
belongs to.

Programs that can perform this task are referred to
as classifiers

14-12: The Learning Problem

We can phrase the learning problem as that of
estimating a function f that tells us how to classify
a set of inputs.

An example is a set of inputs x and the
corresponding f(x) - the class that x belongs to.

<< Overcast, Cool, Low, Weak >, playTennis >

We can define the learning task as follows:
Given a collection of examples of f , find a
function H that approximates f for our
examples.
H is called a hypothesis.

14-13: Induction

We would like H to generalize
This means that H will correctly classify unseen
examples.

If the hypothesis can correctly classify all of the
training examples, we call it a consistent
hypothesis.

Goal: find a consistent hypothesis that also
performs well on unseen examples.

We can think of learning as search through a
space of hypotheses.

14-14: Inductive Bias

Notice that induction is not sound.

In picking a hypothesis, we make an educated guess
about how to classify unseen data.

The way in which we make this guess is called a bias.

All learning algorithms have a bias; identifying it can help
you understand the sorts of errors it will make.

Examples:

Occam’s razor

Most specific hypothesis.

Most general hypothesis.

Linear function

14-15: Observing Data

Agents may have different means of observing
examples of a hypothesis.

A batch learning algorithm is presented with a
large set of data all at once and selects a single
hypothesis.

An incremental learning algorithm receives
examples one at a time and continually modifies its
hypothesis.

Batch is typically more accurate, but
incremental may fit better with the agent’s
environment.

An active learning agent is able to choose
examples.

A passive learning agent has examples presented

14-16: Online vs Offline

An offline learing algorithm is able to separate learning
from execution.

Learning and performance are separate

Batch learning is easier, computational complexity is
less of a factor.

An online learning algorithm allows an agent to mix
learning and execution.

Agent takes actions, receives feedback, and updates
its performance component.

We will worry about both training time (time needed to
construct a hypothesis) and classification time (time
needed to classify a new instance).

14-17: Learning Decision Trees

Decision trees are data structures that provide an
agent with a means of classifying examples.

At each node in the tree, an attribute is tested.

Has Feathers?

Can Fly?

Can Swim?

Carivore?

Stripes? Long Neck?

Penguin Ostrich Tiger Seal Giraffe Zebra

Robin

y

y

y

y

y y

n

n

n

n

n n

14-18: Another Example

R & N show a decision tree for
determining whether to wait at a
busy restaurant.

The problem has the following
inputs/attributes:

Alternative nearby

Has a bar

Day of week

Hungriness

Crowd

Price

Raining?

Reservation

Type of restuarant

Wait estimate

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30-60 10-30 0-10

No Yes

Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

No Yes

No Yes

Yes

Yes

No Yes

No Yes

YesNoYes

No Yes

YesNo

WaitEstimate?

Note that not all attributes are
used.

14-19: Trees as rules

A decision tree is just a compiled set of rules.

We can rewrite each branch of the tree as a clause
in which the path to the leaf is on the left, and the
leaf is on the right.

Wait30 ∧ reservation → Stay

Wait10 − 30 ∧ Hungry ∧ ¬Alternate → Stay

NoPatrons → ¬Stay

The tree gives us a more efficient way of
determining what to do

14-20: An example training set

Ex Attributes Target

Alt Bar Fri Hun Pat $ Rain Res Type Est Wait?

X1 T F F T Some $$$ F T French 0-10 T

X2 T F F T Full $ F F Thai 30-60 F

X3 F T F F Some $ F F Burger 0-10 T

X4 T F T T Full $ F F Thai 10-30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0-10 T

X7 F T F F None $ T F Burger 0-10 F

X8 F F F T Some $$ T T Thai 0-10 T

X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10-30 F

X11 F F F F None $ F F Thai 0-10 F

X12 T T T T Full $ F F Burger 30-60 T

14-21: Inducing a decision tree

An example is a specific set of attributes, along
with a classification (Wait or not)

Examples where Wait is true are called positive
examples

Examples where Wait is false are called negative
examples

The set of labeled examples is called the training
set.

We want to have a tree that:
Classifies the training set correctly
Accurately predicts unseen examples
is as small as possible (Occam’s razor)

14-22: Inducing a decision tree

We want to have a tree that:
Classifies the training set correctly
Accurately predicts unseen examples
is as small as possible (Occam’s razor)

What if we construct a tree with one leaf for each
example? Would that be good? bad? Why?

14-23: Choosing useful attributes

Intuitively, we would like to test attributes that ’split’
the training set.

Questions that tell us whether or not to go to
the restaurant.

Splitting on restaurant type is not useful - positive
and negative examples are still clustered together.

Splitting on crowdedness is more effective.

(a)

None Some Full

Patrons?

YesNo Hungry?

(b)

No Yes

121 3 4 6 8

2 5 7 9 10 11

French Italian Thai Burger

Type?

121 3 4 6 8

2 5 7 9 10 11

1

5

6

10

4 8

2 11

123

7 9 7 11

1 3 6 8 124

2 5 9 10

124

2 105 9

14-24: Constructing a decision tree

We can construct a decision tree recursively:
1. Base cases: If all examples are positive or

negative, we are done.
2. If there are no examples left, then we haven’t

seen an instance of this classification, so we
use the majority classification of the parent.

3. If there are no attributes left to test, then we
have instances with the same description, but
different classifications.

Insufficient description
Noisy data, nondeterministic domain
Use majority vote

4. Recursive step Else, pick the best attribute to
split on and recursively construct subtrees.

14-25: An example tree

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30-60 10-30 0-10

No Yes

Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

No Yes

No Yes

Yes

Yes

No Yes

No Yes

YesNoYes

No Yes

YesNo

WaitEstimate?

The hand-constructed
tree.

None Some Full

Patrons?

No Yes

No Yes

Hungry?

No

No Yes

Fri/Sat?

YesNo

Yes

Type?

French Italian Thai Burger

Yes No

The induced tree. No-
tice that it’s simpler
and discovers a rela-
tionship between Thai
food and waiting.

14-26: Making Decisions

We can now use this tree to make decisions, or to
classify new instances.

Suppose we have a new instance:Alt = F ,
Bar = F ,Fri = T ,Hungry = T ,
Patrons = Full,
Rain = F ,Reservations = F ,Type = Burger,
EstimatedT ime = 10 − 30.

We traverse the tree from the root, following the
appropriate ’Full’, ’Hungry’, and ’Type’ branches.

According to the tree, we should wait.

14-27: Choosing an Attribute

The key to constructing a compact and efficient
decision tree is to effectively choose attributes to
test.

Intuition: we want to choose tests that will separate
our data set into positive and negative examples.

We want to measure the amount of information
provided by a test.

This is a mathematical concept that characterizes
the number of bits needed to answer a question or
provide a fact.

14-28: Information

Example:
In the vacuum world, rooms can be either clean
or dirty. This requires one bit to represent.
What if a room could take on four states?
Eight?
What if a room could only be in one state? How
many bits would we need to represent this?

14-29: Information Theory

More formally, let’s say there are n possible
answers v1, v2, ..., vn to a question, and each
answer has probability P (vn) of occuring.

The information content of the answer to the
question is: I =

∑n

i=1
−P (vi)log2P (vi)

For a coin, this is: −1

2
log2

1

2
+ −

1

2
log2

1

2
= 1.

Questions with one highly likely anwer will have
low information content. (if the coin comes up
heads 99/100 of the time, I = 0.08)

Information content is also referred to as entropy.
This is often used in compression and data
transfer algorithms

14-30: Using Information Theory

For decision trees, we want to know how valuable
each possible test is, or how much information it
yields.

We can estimate the probabilities of possible
answers from the training set.

Usually, a single test will not be enough to
completely separate positive and negative
examples.

Instead, we need to think about how much better
we’ll be after asking a question.

This is called the information gain.

14-31: Information Gain

If a training set has p positive examples and n
negative examples, its entropy is:
I(p

p+n
, n

p+n
) = −

p

p+n
log2

p

p+n
−

n

p+n
log2

n

p+n

We want to find the attribute that will come the
closest to separating the positive and negative
examples.

We begin by computing the remainder - this is the
information still in the data after we test attribute A.

Say attribute A can take on v possible values. This
test will create v new subsets of data, labeled
E1, E2, ..., Ev.

The remainder is the weighed sum of the
information in each of these subsets.

Remainder(A) =
∑v pi+ni

∗ I(pi , ni)

14-32: Information Gain

Information gain can then be quantified as the
difference between the original information (before
the test) and the new information (after the test).

Gain(A) = I(p

p+n
, n

p+n
) − Remainder(A)

Heuristic: Always choose the attribute with the
largest information gain.

Question: What kind of search is this?

14-33: Decision tree pseudocode

def makeTree(dataset) :

if all data are in the same class :

return a single Node with that classification

if there are no attributes left to test:

return a single Node with majority classification

else :

select the attribute that produces the largest information

gain

split the dataset according to the values of this attribute to

create v smaller datasets.

create a new Node - each child will be created by calling

makeTree with one on the v subsets.

14-34: Example

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

14-35: Example

Humidity Wind

S:[9+,5-]
E=0.940

S:[9+,5-]
E=0.940

S:[3+,4-]
E=0.985

S:[6+,1-]
E=0.592

S:[6+,2-]
E=0.811

S:[3+,3-]
E=1.0

Gain(S, Humidity)
= 0.940 - ((7/14)0.985 + (7/14)0.592)
= 0.151

Gain(S, Wind)
= 0.940 - ((8/14)0.811 + (6/14)1.0)
= 0.048

Which attribute is the better classifier?

14-36: Noise

If there are two examples that have the same
attributes but different values, a decision tree will
be unable to classify them separately.

We say that this data is noisy.

Solution: Use majority rule at the parent node.

14-37: Overfitting

A common problem is learning algorithms occurs
when there are random or anomalous patterns in
the data.

For example, in the tennis problem, by chance it
might turn out that we always play on Tuesdays.

The phenomenon of learning quirks in the data is
called overfitting.

In decision trees, overfitting is dealt with through
pruning.

Once the tree is generated, we evaluate the
significance of each node.

14-38: Pruning

Assume that the test provides no information. (null
hypothesis)

Does the data in the children look significantly
different from this assumption?

Use a chi-square test.

If not, the node is removed and examples moved
up to the parent.

14-39: Continuous-valued inputs

Decision trees can also be extended to work with
integer and continuous-valued inputs.

Discretize the range into, for example, < 70 and
> 70.

Challenge: What value yields the highest
information gain?

Use a hill-climbing search to find this value.

14-40: Features of Decision Trees

Work well with symbolic data

Use information gain to determine what questions
are most effective at classifying.

Greedy search

Produce a human-understandable hypothesis

Fixes needed to deal with noise or missing data

Can represent all Boolean functions

14-41: Uses of Decision Trees

Management

Automated help systems

Microsoft’s online help

Data mining

	{small lecturenumber -	heblocknumber :} Rule Learningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Learningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Learningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Learning Agentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deduction vs. Inductionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deduction vs. Inductionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Types of Learning Tasksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Types of Learning Tasksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Types of Learning Tasksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Supervised Learningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Classificationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} The Learning Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inductionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inductive Biasaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Observing Dataaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Online vs Offlineaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Learning Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Another Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Trees as rulesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} An example training setaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inducing a decision treeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inducing a decision treeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Choosing useful attributesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Constructing a decision treeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} An example treeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Making Decisionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Choosing an Attributeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Informationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Information Theoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Using Information Theoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Information Gainaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Information Gainaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision tree pseudocodeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Noiseaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overfittingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Continuous-valued inputsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Features of Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Uses of Decision Treesaddtocounter {blocknumber}{1}

