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15-0: Uncertainty

In many interesting agent environments,
uncertainty plays a central role.

Actions may have nondeterministic effects.

Shooting an arrow at a target, retrieving a web
page, moving

Agents may not know the true state of the world.

Incomplete sensors, dynamic environment

Relations between facts may not be deterministic.

Sometimes it rains when it’s cloudy.

Sometimes I play tennis when it’s humid.

Rational agents will need to deal with uncertainty.



15-1: Logic and Uncertainty

We’ve already seen how to use logic to deal with
uncertainty.

S tudies(Bart) ∨WatchesTV(Bart)

Hungry(Homer) ⇒

Eats(Homer,HotDog) ∨ Eats(Homer, Pie)

∃xHungry(x)

Unfortunately, the logical approach has some
drawbacks.



15-2: Weaknesses with logic

Qualifying all possible outcomes.

“If I leave now, I’ll be on time, unless there’s an
earthquake, or I run out of gas, or there’s an
accident ...”

We may not know all possible outcomes.

“If a patient has a toothache, she may have a
cavity, or may have gum disease, or maybe
something else we don’t know about.”

We have no way to talk about the likelihood of
events.

“It’s possible that I’ll get hit by lightning today.”



15-3: Qualitative vs. Quantitative

Logic gives us a qualitative approach to
uncertainty.

We can say that one event is more common
than another, or that something is a possibility.

Useful in cases where we don’t have statistics,
or we want to reason more abstractly.

Probability allows us to reason quantitatively

We assign concrete values to the chance of an
event occurring and derive new concrete values
based on observations.



15-4: Uncertainty and Rationality

Recall our definition of rationality:

A rational agent is one that acts to maximize its performance measure.

How do we define this in an uncertain world?

We will say that an agent has a utility for different outcomes, and that those outcomes

have a probability of occurring.

An agent can then consider each of the possible outcomes, their utility, and the

probability of that outcome occurring, and choose the action that produces the highest

expected (or average) utility.

The theory of combining preferences over outcomes with the probability of an

outcome’s occurrence is called decision theory.

Talk a bit more about decision theory after we’ve covered probability theory.



15-5: Basic Probability

A probability signifies a belief that a proposition is
true.

P(BartStudied) = 0.01

P(Hungry(Homer)) = 0.99

The proposition itself is true or false - we just don’t
know which.

This is different than saying the sentence is
partially true.

“Bart is short” - this is sort of true, since “short”
is a vague term.

An agent’s belief state is a representation of the
probability of the value of each proposition of
interest.



15-6: Notation

A Random Variable (or just variable) is a variable
whose value can be described using probabilities

Use Upper Case for variables – X, Y, Z, etc.

Random Variables can have discrete or continuous
values (for now, we will assume discrete values)

use lower case for values of variables –
x, y, x1, x2, etc.

P(X = x) is the probability that variable X has the
value x

Can also be written as P(x)



15-7: Notation

If variable X can have the values x1, x2, . . . xn, then
the expression P(X) stands for a vector which
contains P(X = xk), for all values xk of X

P(X) = [P(X = x1), P(X = x2), . . . P(X = xn)]

If D is a variable that represents the value of a fair
die, then

P(D) = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6]



15-8: Notation

Variable W, represents Weather, which can have
values sunny, cloudy, rain, or snow.

P(W = sunny) = 0.7

P(W = cloudy) = 0.2

P(W = rain) = 0.08

P(W = snow) = 0.02

P(W) = [0.7, 0.2, 0.08, 0.02]



15-9: Notation – AND

P(x, y) = P(X = x ∧ Y = y)

Given two fair dice D1 and D2:
P(D1 = 3,D2 = 4) = 1/36

P(X, Y) represents the set of P(x, y) for all values x

of X and y of Y. Thus, P(D1,D2) represents 36
different values.



15-10: Notation – Binary Variables

If X has two values (false and true), we can
represent:

P(X = f alse) as P(¬x), and

P(X = true) as P(x)



15-11: Conditional Probability

P(x|y) = Probability that X = x given that all we
know is Y = y

P(cavity|toothache) = 0.8

P(Cavity|Toothache) represents 4 values:













P(¬cavity|¬toothache) P(cavity|¬toothache)

P(¬cavity|toothache) P(cavity|toothache)















15-12: Conditional Probability

We can define conditional probabilities in terms of
unconditional probabilities.

P(a|b) =
P(a, b)

P(b)

Whenever P(b) > 0

P(a, b) = P(a|b)P(b) = P(b|a)P(a)

P(A, B) = P(A|B)P(B) means P(a, b) = P(a|b)P(b) for
all values a, b



15-13: Axioms of Probability

0 ≤ P(a) ≤ 1

P(true) = 1, P( f alse) = 0

P(a ∨ b) = P(a) + P(b) − P(a ∧ b)

Everything follows from these three axioms

For instance, prove P(x) = 1 − P(¬x)



15-14: Axioms of Probability

0 ≤ P(a) ≤ 1

P(true) = 1, P( f alse) = 0

P(a ∨ b) = P(a) + P(b) − P(a ∧ b)

P(x ∨ ¬x) = P(x) + P(¬x) − P(x ∧ ¬x)

1 = P(x) + P(¬x) − 0

1 − P(¬x) = P(x)

P(x) = 1 − P(¬x)



15-15: Joint Probability

Probability for all possible values of all possible
variables

cavity toothache 0.04

cavity ¬toothache 0.06

¬cavity toothache 0.01

¬cavity ¬toothache 0.89

From the joint, we can calculate anything



15-16: Joint Probability

Probability for all possible values of all possible
variables

cavity toothache 0.04

cavity ¬toothache 0.06

¬cavity toothache 0.01

¬cavity ¬toothache 0.89

From the joint, we can calculate anything

P(cavity) = 0.04 + 0.06 = 0.01

P(cavity ∨ toothache) = 0.04 + 0.06 + 0.01
= 0.11

P(cavity|toothache) = P(c, t)/P(t)

= 0.04 / (0.04 + 0.01) = 0.80



15-17: Joint Probability

sunny windy playTennis 0.1

sunny windy ¬ playTennis 0.1

sunny ¬ windy playTennis 0.3

sunny ¬ windy ¬ playTennis 0.05

¬ sunny windy playTennis 0.05

¬ sunny windy ¬ playTennis 0.2

¬ sunny ¬ windy playTennis 0.1

¬ sunny ¬ windy ¬ playTennis 0.1

P(sunny)?

P(playTennis|¬windy)?

P(playTennis)?

P(playTennis|sunny ∧ ¬windy)?

(also written P(playTennis|sunny,¬windy))



15-18: Joint Probability

Joint can tell us everything

Calculate the joint, read off what you want to know

This will not work!



15-19: Joint Probability

Joint can tell us everything

Calculate the joint, read off what you want to know

This will not work!

x different variables, each of which has v values

Size of joint = vx

50 variables, each has 7 values, 1.8 ∗ 1042 table
entires



15-20: Conditional Probability

Working with the joint is impractical

Work with conditional probabilities instead

Manipulate conditional probabilities based on
definition:

P(A|B) =
P(A, B)

P(B)

(when P(B) is always > 0)



15-21: Conditional Probability

Just as we can define conditional probability given
probability of a conjunction (AND), we can define
the probability of a conjunction given a conditional
probability

P(A, B) = P(A|B)P(B)



15-22: Conditional Probability

Example:

P(cloudy) = 0.25

P(rain) = 0.25

P(cloudy ∧ rain) = 0.15

P(cloudy ∧ ¬rain) = 0.1

P(¬cloudy ∧ rain) = 0.1

P(¬cloudy ∧ ¬rain) = 0.65

Initially, P(Rain) = 0.25. Once we see that it’s

cloudy, P(rain|cloudy) = P
(rain∧cloudy)

P(cloudy)
=

0.15
0.25
= 0.6



15-23: Independence

In some cases, we can simplify matters by noticing
that one variable has no effect on another.

For example, what if we add a fourth variable
DayO f Week to our Rain calculation?

Since the day of the week will not affect the
probability of rain, we can assert
P(rain|cloudy,monday) = P(rain|cloudy, tuesday)... =

P(rain|cloudy)

We say that DayO f Week and Rain are independent.

We can then split the larger joint probability
distribution into separate subtables.

Independence will help us divide the domain into
separate pieces.



15-24: Bayes’ Rule

P(B|A) =
P(A ∧ B)

P(A)

=

P(A|B)P(B)

P(A)

Also known as Bayes’ theorem (or Bayes’ law).



15-25: Bayes’ Rule

P(B|A) =
P(A ∧ B)

P(A)

=

P(A|B)P(B)

P(A)

Generalize Bayes Rule, with additional evidence E:

P(B|A ∧ E) =
P(A ∧ B|E)

P(A|E)

=

P(A|B ∧ E)P(B|E)

P(A|E)



15-26: Bayes’ theorem example

Say we know:

Meningitis causes a stiff neck in 50% of
patients.

P(sti f f Neck|meningitis) = 0.5

Prior probability of meningitis is 1/50000.

P(meningitis) = 0.00002

Prior probability of a stiff neck is 1/20

P(sti f f Neck) = 0.05

A patient comes to use with a stiff neck. What is
the probability she has meningitis?

P(meningitis|sti f f Neck) =
P(sti f f Neck|meningitis)P(meningitis)

P(sti f f Neck)
=

0.5×0.00002
0.05

= 0.0002



15-27: Using Bayes Rule

Rare disease, strikes one in every 10,000

Test for the disease that is 95% accurate:

P(t|d) = 0.95

P(¬t|¬d) = 0.95

Someone tests positive for the disease, what is the
probability that they have it?

P(d|t) = ?



15-28: Using Bayes Rule

P(d) = 0.0001

P(t|d) = 0.95

P(¬t|¬d) = 0.95

P(d|t) = P(t|d)P(d)/P(t)



15-29: Using Bayes Rule

P(d) = 0.0001

P(t|d) = 0.95 (and hence P(¬t|d) = 0.05)

P(¬t|¬d) = 0.95 (and hence P(t|¬d) = 0.05)

P(d|t) = P(t|d)P(d)/P(t)



15-30: Using Bayes Rule

P(d) = 0.0001

P(t|d) = 0.95

P(¬t|¬d) = 0.95

P(d|t) = P(t|d)P(d)/P(t)

= 0.95 ∗ 0.0001/(P(t|d)P(d) + P(t|¬d)P(¬d))

= 0.95 ∗ 0.0001/(0.95 ∗ 0.0001 + 0.05 ∗ 0.9999)

= 0.0019



15-31: Using Bayes Rule

This is somewhat counter-intuitive

Test is 95% accurate

Test is positive

Only a 0.19% chance of having the disease!

Why?



15-32: Using Bayes Rule

Note that for:

P(a|b) = P(b|a)P(a)/P(b)

We needed P(b), which was a little bit of a pain to
calculate

We can often get away with not calculating it!



15-33: Using Bayes Rule

P(a|b) = αP(b|a)P(a)

α is a normalizing constant

Calculate P(b|a)P(a), P(b|¬a)P(¬a)

α = 1
P(b|a)P(a)+P(b|¬a)P(¬a)

No magic here: α = 1
P(b)



15-34: Conditional Independence

Variable A is conditionally independent of variable
B, if P(A|B) = P(A)

Notation: (A y B)

D – roll of a fair die (d1 . . . d6)

C – value of a coin flip (h or t)

P(D|C) = P(D)

P(C|D) = P(C)

(A y B)⇔ (B y A)

P(A|B) = P(A)⇔ P(B|A) = P(B)



15-35: Conditional Independence

If A and B are independent, then P(a, b) = P(a)P(b)

(Also used as a definition of conditional
independence – two definitions are equivalent)

P(a, b) = P(a|b)P(b) = P(a)P(b)



15-36: Conditional Independence

At an elementary school, reading scores and shoe
sizes are correlated. Why?



15-37: Conditional Independence

At an elementary school, reading scores and shoe
sizes are correlated. Why?

Age

Shoe Size
Reading
Ability

P(R|S ) , P(R)

P(R|S , A) = P(R|A)

Notation: (R y S |A)



15-38: Monte Hall Problem

From the game show “Let’s make a Deal”

Pick one of three doors. Fabulous prize behind one
door, goats behind other 2 doors

Monty opens one of the doors you did not pick,
shows a goat

Monty then offers you the chance to switch doors,
to the other unopened door

Should you switch?



15-39: Monte Hall Problem

Problem Clarification:

Prize location selected randomly

Monty always opens a door, allows contestants to
switch

When Monty has a choice about which door to
open, he chooses randomly.

Variables Prize: P = pA, pB, pC

Choose: C = cA, cB, cC

Monty: M = mA, mB, mC



15-40: Monte Hall Problem

Without loss of generality, assume:

Choose door A

Monty opens door B

P(pA|cA,mB) =?



15-41: Monte Hall Problem

Without loss of generality, assume:

Choose door A

Monty opens door B

P(pA|cA,mB) = P(mB|cA, pA)
P(pA |cA)

P(mB|cA)



15-42: Monte Hall Problem

P(pA|cA,mB) = P(mB|cA, pA)
P(pA |cA)

P(mB|cA)

P(mB|cA, pA) = ?



15-43: Monte Hall Problem

P(pA|cA,mB) = P(mB|cA, pA)
P(pA |cA)

P(mB|cA)

P(mB|cA, pA) = 1/2

P(pA|cA) =?



15-44: Monte Hall Problem

P(pA|cA,mB) = P(mB|cA, pA)
P(pA |cA)

P(mB|cA)

P(mB|cA, pA) = 1/2

P(pA|cA) = 1/3

P(mB|cA) = ?



15-45: Monte Hall Problem

P(pA|cA,mB) = P(mB|cA, pA)
P(pA |cA)

P(mB|cA)

P(mB|cA, pA) = 1/2

P(pA|cA) = 1/3

P(mB|cA) = P(mb|cA, pA)P(pA)+

P(mb|cA, pB)P(pB)+

P(mb|cA, pC)P(pC)



15-46: Monte Hall Problem

P(pA|cA,mB) = P(mB|cA, pA)
P(pA |cA)

P(mB|cA)

P(mB|cA, pA) = 1/2

P(pA|cA) = 1/3

P(mB|cA) = P(mb|cA, pA)P(pA)+

P(mb|cA, pB)P(pB)+

P(mb|cA, pC)P(pC)

P(pA) = P(pB) = P(pC) = 1/3

P(mb|cA, pA) = 1/2

P(mb|cA, pB) = 0 Won’t open prize door

P(mb|cA, pC) = 1 Monty has no choice



15-47: Monte Hall Problem

P(pA|cA,mB) = P(mB|cA, pA)
P(pA |cA)

P(mB|cA)

= 1/3

P(mB|cA, pA) = 1/2

P(pA|cA) = 1/3

P(mB|cA) = P(mb|cA, pA)P(pA)+

P(mb|cA, pB)P(pB)+

P(mb|cA, pC)P(pC) = 1/2

P(pA) = P(pB) = P(pC) = 1/3

P(mb|cA, pA) = 1/2

P(mb|cA, pB) = 0 Won’t open prize door

P(mb|cA, pC) = 1 Monty has no choice



15-48: Monte Hall Problem

P(pC |cA,mB) = P(mB|cA, pC)
P(pC |cA)

P(mB|cA)

= 2/3

P(mB|cA, pC) = 1

P(pC |cA) = 1/3

P(mB|cA) = P(mb|cA, pA)P(pA)+

P(mb|cA, pB)P(pB)+

P(mb|cA, pC)P(pC) = 1/2

P(pA) = P(pB) = P(pC) = 1/3

P(mb|cA, pA) = 1/2

P(mb|cA, pB) = 0 Won’t open prize door

P(mb|cA, pC) = 1 Monty has no choice



15-49: Rare Disease Redux

Rare disease, strikes one in every 10,000

Two tests, one 95% accurate, other 90% accurate:

P(t1|d) = 0.95, P(¬t1|¬d) = 0.95

P(t2|d) = 0.90, P(¬t2|¬d) = 0.90

Tests use independent mechanisms to detect
disease, and are conditionally independent, given
disease state:

P(t1|d, t2) = P(t1|d)

Both test are positive, what is the probability of
disease?

P(d|t1, t2) = ?



15-50: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)



15-51: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = ?



15-52: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2) + P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2) + P(t1|¬d)P(¬d|t2)



15-53: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2) + P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2) + P(t1|¬d)P(¬d|t2)

P(d|t2) = ?



15-54: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2) + P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2) + P(t1|¬d)P(¬d|t2)

P(d|t2) = P(t2|d)
P(d)

P(t2)



15-55: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2) + P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2) + P(t1|¬d)P(¬d|t2)

P(d|t2) = P(t2|d)
P(d)

P(t2)

P(t2) = ?



15-56: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2) + P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2) + P(t1|¬d)P(¬d|t2)

P(d|t2) = P(t2|d)
P(d)

P(t2)

P(t2) = P(t2|d)P(d) + P(t2|¬d)P(¬d)



15-57: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2) + P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2) + P(t1|¬d)P(¬d|t2)

P(d|t2) = P(t2|d)
P(d)

P(t2)

P(t2) = P(t2|d)P(d) + P(t2|¬d)P(¬d)

= .10008



15-58: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2) + P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2) + P(t1|¬d)P(¬d|t2)

P(d|t2) = P(t2|d)
P(d)

P(t2)

= 0.0009

P(t2) = P(t2|d)P(d) + P(t2|¬d)P(¬d)

= .10008



15-59: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2) + P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2) + P(t1|¬d)P(¬d|t2)

= 0.05081

P(d|t2) = P(t2|d)
P(d)

P(t2)

= 0.0009

P(t2) = P(t2|d)P(d) + P(t2|¬d)P(¬d)

= .10008



15-60: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

= 0.0168

P(t1|t2) = P(t1|t2, d)P(d|t2) + P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2) + P(t1|¬d)P(¬d|t2)

= 0.05081

P(d|t2) = P(t2|d)
P(d)

P(t2)

= 0.0009

P(t2) = P(t2|d)P(d) + P(t2|¬d)P(¬d)

= .10008



15-61: Probabilistic Reasoning

Given:

Set of conditional probabilities (P(t1|d), etc)

Set of prior probabilities (P(d))

Conditional independence information
(P(t1|d, t2) = P(t1|d))

We can calculate any quantity that we like



15-62: Probabilistic Reasoning

Given:

Set of conditional probabilities (P(t1|d), etc)

Set of prior probabilities (P(d))

Conditional independence information
(P(t1|d, t2) = P(t1|d))

We can calculate any quantity that we like

Problems:

Hard to know exactly what data we need

Even given sufficient data, calculations can be
complex – especially dealing with conditional
independence



15-63: Probabilistic Reasoning

Next time:

Make some simplifiying assumptions that are
not theoretically sound, but give good results in
practice

Naive Bayes
Works very well for spam filtering

Use conditional independence to create a
probabilistic alternative to rule-bases systems

Bayesian Networks
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