## 15-0: Uncertainty

- In many interesting agent environments, uncertainty plays a central role.
- Actions may have nondeterministic effects.
- Shooting an arrow at a target, retrieving a web page, moving
- Agents may not know the true state of the world.
- Incomplete sensors, dynamic environment
- Relations between facts may not be deterministic.
- Sometimes it rains when it's cloudy.
- Sometimes I play tennis when it's humid.
- Rational agents will need to deal with uncertainty.


## 15-1: Logic and Uncertainty

- We've already seen how to use logic to deal with uncertainty.
- Studies(Bart) $\vee$ WatchesTV(Bart)
- Hungry $($ Homer $) \Rightarrow$ Eats(Homer, HotDog $) \vee$ Eats(Homer, Pie)
- $\exists x H u n g r y(x)$
- Unfortunately, the logical approach has some drawbacks.


## 15-2: Weaknesses with logic

- Qualifying all possible outcomes.
- "If I leave now, I'll be on time, unless there's an earthquake, or I run out of gas, or there's an accident ..."
- We may not know all possible outcomes.
- "If a patient has a toothache, she may have a cavity, or may have gum disease, or maybe something else we don't know about."
- We have no way to talk about the likelihood of events.
- "It's possible that I'll get hit by lightning today."


## 15-3: Qualitative vs. Quantitative

- Logic gives us a qualitative approach to uncertainty.
- We can say that one event is more common than another, or that something is a possibility.
- Useful in cases where we don't have statistics, or we want to reason more abstractly.
- Probability allows us to reason quantitatively
- We assign concrete values to the chance of an event occurring and derive new concrete values based on observations.


## 15-4: Uncertainty and Rationality

- Recall our definition of rationality:
- A rational agent is one that acts to maximize its performance measure.
- How do we define this in an uncertain world?
- We will say that an agent has a utility for different outcomes, and that those outcomes have a probability of occurring
- An agent can then consider each of the possible outcomes, their utility, and the probability of that outcome occurring, and choose the action that produces the highest expected (or average) utility.
- The theory of combining preferences over outcomes with the probability of an outcome's occurrence is called decision theory.
- Talk a bit more about decision theory after we've covered probability theory.


## 15-5: Basic Probability

- A probability signifies a belief that a proposition is true.
- $\mathrm{P}($ BartStudied $)=0.01$
- $\mathrm{P}($ Hungry $($ Homer $))=0.99$
- The proposition itself is true or false - we just don't know which.
- This is different than saying the sentence is partially true.
- "Bart is short" - this is sort of true, since "short" is a vague term.
- An agent's belief state is a representation of the probability of the value of each proposition of interest.


## 15-6: Notation

- A Random Variable (or just variable) is a variable whose value can be described using probabilities
- Use Upper Case for variables - $X, Y, Z$, etc.
- Random Variables can have discrete or continuous values (for now, we will assume discrete values)
- use lower case for values of variables $-x, y, x_{1}, x_{2}$, etc.
- $P(X=x)$ is the probability that variable $X$ has the value $x$
- Can also be written as $P(x)$


## 15-7: Notation

- If variable $X$ can have the values $x_{1}, x_{2}, \ldots x_{n}$, then the expression $P(X)$ stands for a vector which contains $P\left(X=x_{k}\right)$, for all values $x_{k}$ of $X$

$$
P(X)=\left[P\left(X=x_{1}\right), P\left(X=x_{2}\right), \ldots P\left(X=x_{n}\right)\right]
$$

- If $D$ is a variable that represents the value of a fair die, then

$$
P(D)=[1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6]
$$

15-8: Notation

- Variable $W$, represents Weather, which can have values sunny, cloudy, rain, or snow.
- $\mathrm{P}(\mathrm{W}=$ sunny $)=0.7$
- $\mathrm{P}(\mathrm{W}=$ cloudy $)=0.2$
- $\mathrm{P}(\mathrm{W}=$ rain $)=0.08$
- $\mathrm{P}(\mathrm{W}=$ snow $)=0.02$
- $P(W)=[0.7,0.2,0.08,0.02]$

15-9: Notation - AND

$$
P(x, y)=P(X=x \wedge Y=y)
$$

- Given two fair dice $D_{1}$ and $D_{2}$ :
$P\left(D_{1}=3, D_{2}=4\right)=1 / 36$
- $P(X, Y)$ represents the set of $P(x, y)$ for all values $x$ of $X$ and $y$ of $Y$. Thus, $P\left(D_{1}, D_{2}\right)$ represents 36 different values.

15-10: Notation - Binary Variables

- If $X$ has two values (false and true), we can represent:
- $P(X=$ false $)$ as $P(\neg x)$, and
- $P(X=$ true $)$ as $P(x)$


## 15-11: Conditional Probability

- $P(x \mid y)=$ Probability that $X=x$ given that all we know is $Y=y$
- $P($ cavity $\mid t o o t h a c h e ~)=0.8$
- $P($ Cavity $\mid$ Toothache $)$ represents 4 values:
$\left.\begin{array}{ll}P(\neg \text { cavity } \mid \neg \text { toothache }) & P(\text { cavity } \mid \neg \text { toothache }) \\ P(\neg \text { cavity } \mid \text { toothache }) & P(\text { cavity } \mid \text { toothache })\end{array}\right]$


## 15-12: Conditional Probability

- We can define conditional probabilities in terms of unconditional probabilities.

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

Whenever $P(b)>0$

- $P(a, b)=P(a \mid b) P(b)=P(b \mid a) P(a)$
- $P(A, B)=P(A \mid B) P(B)$ means $P(a, b)=P(a \mid b) P(b)$ for all values $a, b$


## 15-13: Axioms of Probability

- $0 \leq P(a) \leq 1$
- $P($ true $)=1, P($ false $)=0$
- $P(a \vee b)=P(a)+P(b)-P(a \wedge b)$

Everything follows from these three axioms
For instance, prove $P(x)=1-P(\neg x)$

## 15-14: Axioms of Probability

- $0 \leq P(a) \leq 1$
- $P($ true $)=1, P($ false $)=0$
- $P(a \vee b)=P(a)+P(b)-P(a \wedge b)$

$$
\begin{aligned}
P(x \vee \neg x) & =P(x)+P(\neg x)-P(x \wedge \neg x) \\
1 & =P(x)+P(\neg x)-0 \\
1-P(\neg x) & =P(x) \\
P(x) & =1-P(\neg x)
\end{aligned}
$$

## 15-15: Joint Probability

- Probability for all possible values of all possible variables

| cavity | toothache | 0.04 |
| ---: | ---: | :--- |
| cavity | $\neg$ toothache | 0.06 |
| $\neg$ cavity | toothache | 0.01 |
| ᄀcavity | $\neg$ toothache | 0.89 |

- From the joint, we can calculate anything


## 15-16: Joint Probability

- Probability for all possible values of all possible variables

| cavity | toothache | 0.04 |
| ---: | ---: | :--- |
| cavity | $\neg$ toothache | 0.06 |
| حcavity | toothache | 0.01 |
| حcavity | $\neg$ toothache | 0.89 |

- From the joint, we can calculate anything
- $P($ cavity $)=0.04+0.06=0.01$
- $P($ cavity $\vee$ toothache $)=0.04+0.06+0.01$

$$
=0.11
$$

- $P($ cavity $\mid$ toothache $)=P(c, t) / P(t)$

$$
=0.04 /(0.04+0.01)=0.80
$$

## 15-17: Joint Probability

| sunny | windy | playTennis | 0.1 |
| :---: | :---: | :---: | :---: |
| sunny | windy | $\neg$ playTennis | 0.1 |
| sunny | $\neg$ windy | playTennis | 0.3 |
| sunny | $\neg$ windy | $\neg$ playTennis | 0.05 |
| $\neg$ sunny | windy | playTennis | 0.0 |
| $\neg$ sunny | windy | $\neg$ playTennis | 0.2 |
| $\neg$ sunny | $\neg$ windy | playTennis | 0.1 |
| $\neg$ sunny | $\neg$ windy | $\neg$ playTennis | 0.1 |

- $P($ sunny $)$ ?
- $\quad P($ playTennis $\mid \neg$ windy $)$ ?
- $\quad$ (playTennis)?
- $P($ playTennis|sunny $\wedge \neg$ windy $)$ ?
- (also written $P($ playTennis|sunny, ᄀwindy))


## 15-18: Joint Probability

- Joint can tell us everything
- Calculate the joint, read off what you want to know
- This will not work!


## 15-19: Joint Probability

- Joint can tell us everything
- Calculate the joint, read off what you want to know
- This will not work!
- $x$ different variables, each of which has $v$ values
- Size of joint $=v^{x}$
- 50 variables, each has 7 values, $1.8 * 10^{42}$ table entires


## 15-20: Conditional Probability

- Working with the joint is impractical
- Work with conditional probabilities instead
- Manipulate conditional probabilities based on definition:

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

(when $P(B)$ is always $>0$ )

## 15-21: Conditional Probability

- Just as we can define conditional probability given probability of a conjunction (AND), we can define the probability of a conjunction given a conditional probability

$$
P(A, B)=P(A \mid B) P(B)
$$

## 15-22: Conditional Probability

Example:

- $P($ cloudy $)=0.25$
- $P($ rain $)=0.25$
- $P($ cloudy $\wedge$ rain $)=0.15$
- $P($ cloudy $\wedge \neg$ rain $)=0.1$
- $P(\neg$ cloudy $\wedge$ rain $)=0.1$
- $P(\neg$ cloudy $\wedge \neg$ rain $)=0.65$
- Initially, $P($ Rain $)=0.25$. Once we see that it's cloudy, $P($ rain $\mid$ cloudy $)=P \frac{(\text { rain } \wedge \text { cloudy })}{P(\text { cloudy })}=\frac{0.15}{0.25}=0.6$


## 15-23: Independence

- In some cases, we can simplify matters by noticing that one variable has no effect on another.
- For example, what if we add a fourth variable DayOfWeek to our Rain calculation?
- Since the day of the week will not affect the probability of rain, we can assert $P($ rain $\mid$ cloudy, monday $)=$ $P($ rain $\mid$ cloudy, tuesday $) \ldots=P($ rain $\mid$ cloudy $)$
- We say that DayOfWeek and Rain are independent.
- We can then split the larger joint probability distribution into separate subtables.
- Independence will help us divide the domain into separate pieces.


## 15-24: Bayes' Rule

$$
\begin{aligned}
P(B \mid A) & =\frac{P(A \wedge B)}{P(A)} \\
& =\frac{P(A \mid B) P(B)}{P(A)}
\end{aligned}
$$

- Also known as Bayes' theorem (or Bayes' law).

15-25: Bayes' Rule

$$
\begin{aligned}
P(B \mid A) & =\frac{P(A \wedge B)}{P(A)} \\
& =\frac{P(A \mid B) P(B)}{P(A)}
\end{aligned}
$$

Generalize Bayes Rule, with additional evidence E:

$$
\begin{aligned}
P(B \mid A \wedge E) & =\frac{P(A \wedge B \mid E)}{P(A \mid E)} \\
& =\frac{P(A \mid B \wedge E) P(B \mid E)}{P(A \mid E)}
\end{aligned}
$$

## 15-26: Bayes' theorem example

- Say we know:
- Meningitis causes a stiff neck in $50 \%$ of patients.
- $P($ stiffNeck|meningitis $)=0.5$
- Prior probability of meningitis is $1 / 50000$.
- $P($ meningitis $)=0.00002$
- Prior probability of a stiff neck is $1 / 20$
- $P($ stiffNeck $)=0.05$
- A patient comes to use with a stiff neck. What is the probability she has meningitis?
- $P($ meningitis $\mid$ stiffNeck $)=\frac{P(\text { stiffNeck|meningitis }) P(\text { meningitis })}{P(\text { stiffNeck })}=\frac{0.5 \times 0.00002}{0.05}=0.0002$


## 15-27: Using Bayes Rule

- Rare disease, strikes one in every 10,000
- Test for the disease that is $95 \%$ accurate:
- $P(t \mid d)=0.95$
- $P(\neg t \mid \neg d)=0.95$
- Someone tests positive for the disease, what is the probability that they have it?
- $P(d \mid t)=$ ?


## 15-28: Using Bayes Rule

- $P(d)=0.0001$
- $P(t \mid d)=0.95$
- $P(\neg t \mid \neg d)=0.95$

$$
P(d \mid t)=P(t \mid d) P(d) / P(t)
$$

## 15-29: Using Bayes Rule

- $P(d)=0.0001$
- $P(t \mid d)=0.95$ (and hence $P(\neg t \mid d)=0.05)$
- $P(\neg t \mid \neg d)=0.95$ (and hence $P(t \mid \neg d)=0.05)$


## $P(d \mid t)=P(t \mid d) P(d) / P(t)$ <br> 15-30: Using Bayes Rule

- $P(d)=0.0001$
- $P(t \mid d)=0.95$
- $P(\neg t \mid \neg d)=0.95$

$$
\begin{aligned}
P(d \mid t) & =P(t \mid d) P(d) / P(t) \\
& =0.95 * 0.0001 /(P(t \mid d) P(d)+P(t \mid \neg d) P(\neg d)) \\
& =0.95 * 0.0001 /(0.95 * 0.0001+0.05 * 0.9999) \\
& =0.0019
\end{aligned}
$$

- This is somewhat counter-intuitive
- Test is $95 \%$ accurate
- Test is positive
- Only a $0.19 \%$ chance of having the disease!
- Why?


## 15-32: Using Bayes Rule

- Note that for:
- $P(a \mid b)=P(b \mid a) P(a) / P(b)$
- We needed $P(b)$, which was a little bit of a pain to calculate
- We can often get away with not calculating it!


## 15-33: Using Bayes Rule

- $P(a \mid b)=\alpha P(b \mid a) P(a)$
- $\alpha$ is a normalizing constant
- Calculate $P(b \mid a) P(a), P(b \mid \neg a) P(\neg a)$
- $\alpha=\frac{1}{P(b \mid a) P(a)+P(b \mid \neg a) P(\neg a)}$
- No magic here: $\alpha=\frac{1}{P(b)}$


## 15-34: Conditional Independence

- Variable $A$ is conditionally independent of variable $B$, if $P(A \mid B)=P(A)$
- Notation: $(A \Perp B)$
- $D$ - roll of a fair die $\left(d_{1} \ldots d_{6}\right)$
- $C$ - value of a coin flip (h or t)
- $P(D \mid C)=P(D)$ $P(C \mid D)=P(C)$
- $(A \Perp B) \Leftrightarrow(B \Perp A)$
- $P(A \mid B)=P(A) \Leftrightarrow P(B \mid A)=P(B)$


## 15-35: Conditional Independence

- If $A$ and $B$ are independent, then $P(a, b)=P(a) P(b)$
- (Also used as a definition of conditional independence - two definitions are equivalent)
- $P(a, b)=P(a \mid b) P(b)=P(a) P(b)$


## 15-36: Conditional Independence

- At an elementary school, reading scores and shoe sizes are correlated. Why?


## 15-37: Conditional Independence

- At an elementary school, reading scores and shoe sizes are correlated. Why?

- $P(R \mid S) \neq P(R)$
- $P(R \mid S, A)=P(R \mid A)$
- Notation: $(R \Perp S \mid A)$


## 15-38: Monte Hall Problem

From the game show "Let's make a Deal"

- Pick one of three doors. Fabulous prize behind one door, goats behind other 2 doors
- Monty opens one of the doors you did not pick, shows a goat
- Monty then offers you the chance to switch doors, to the other unopened door
- Should you switch?


## 15-39: Monte Hall Problem

Problem Clarification:

- Prize location selected randomly
- Monty always opens a door, allows contestants to switch
- When Monty has a choice about which door to open, he chooses randomly.

Variables Prize: $P=p_{A}, p_{B}, p_{C}$
Choose: $C=c_{A}, c_{B}, c_{C}$
Monty: $M=m_{A}, m_{B}, m_{C}$
15-40: Monte Hall Problem
Without loss of generality, assume:

- Choose door A
- Monty opens door B
$P\left(p_{A} \mid c_{A}, m_{B}\right)=$ ?
15-41: Monte Hall Problem
Without loss of generality, assume:
- Choose door A
- Monty opens door B
$P\left(p_{A} \mid c_{A}, m_{B}\right)=P\left(m_{B} \mid c_{A}, p_{A}\right) \frac{P\left(p_{A} \mid c_{A}\right)}{P\left(m_{B} \mid c_{A}\right)}$
15-42: Monte Hall Problem $P\left(p_{A} \mid c_{A}, m_{B}\right)=P\left(m_{B} \mid c_{A}, p_{A}\right) \frac{P\left(p_{A} \mid c_{A}\right)}{P\left(m_{B} \mid c_{A}\right)}$
- $P\left(m_{B} \mid c_{A}, p_{A}\right)=$ ?

15-43: Monte Hall Problem $P\left(p_{A} \mid c_{A}, m_{B}\right)=P\left(m_{B} \mid c_{A}, p_{A}\right) \frac{P\left(p_{A} \mid c_{A}\right)}{P\left(m_{B} \mid c_{A}\right)}$

- $P\left(m_{B} \mid c_{A}, p_{A}\right)=1 / 2$
- $P\left(p_{A} \mid c_{A}\right)=$ ?

15-44: Monte Hall Problem $P\left(p_{A} \mid c_{A}, m_{B}\right)=P\left(m_{B} \mid c_{A}, p_{A}\right) \frac{P\left(p_{A} \mid c_{A}\right)}{P\left(m_{B} \mid c_{A}\right)}$

- $P\left(m_{B} \mid c_{A}, p_{A}\right)=1 / 2$
- $P\left(p_{A} \mid c_{A}\right)=1 / 3$
- $P\left(m_{B} \mid c_{A}\right)=$ ?

15-45: Monte Hall Problem $P\left(p_{A} \mid c_{A}, m_{B}\right)=P\left(m_{B} \mid c_{A}, p_{A}\right) \frac{P\left(p_{A} \mid c_{A}\right)}{P\left(m_{B} \mid c_{A}\right)}$

- $P\left(m_{B} \mid c_{A}, p_{A}\right)=1 / 2$
- $P\left(p_{A} \mid c_{A}\right)=1 / 3$
- $P\left(m_{B} \mid c_{A}\right)=P\left(m_{b} \mid c_{A}, p_{A}\right) P\left(p_{A}\right)+$

$$
\begin{aligned}
& P\left(m_{b} \mid c_{A}, p_{B}\right) P\left(p_{B}\right)+ \\
& P\left(m_{b} \mid c_{A}, p_{C}\right) P\left(p_{C}\right)
\end{aligned}
$$

15-46: Monte Hall Problem $P\left(p_{A} \mid c_{A}, m_{B}\right)=P\left(m_{B} \mid c_{A}, p_{A}\right) \frac{P\left(p_{A} \mid c_{A}\right)}{P\left(m_{B} \mid c_{A}\right)}$

- $P\left(m_{B} \mid c_{A}, p_{A}\right)=1 / 2$
- $P\left(p_{A} \mid c_{A}\right)=1 / 3$
- $P\left(m_{B} \mid c_{A}\right)=P\left(m_{b} \mid c_{A}, p_{A}\right) P\left(p_{A}\right)+$

$$
\begin{aligned}
& P\left(m_{b} \mid c_{A}, p_{B}\right) P\left(p_{B}\right)+ \\
& P\left(m_{b} \mid c_{A}, p_{C}\right) P\left(p_{C}\right)
\end{aligned}
$$

- $P\left(p_{A}\right)=P\left(p_{B}\right)=P\left(p_{C}\right)=1 / 3$
- $P\left(m_{b} \mid c_{A}, p_{A}\right)=1 / 2$
- $P\left(m_{b} \mid c_{A}, p_{B}\right)=0 \quad$ Won't open prize door
- $P\left(m_{b} \mid c_{A}, p_{C}\right)=1 \quad$ Monty has no choice

15-47: Monte Hall Problem $P\left(p_{A} \mid c_{A}, m_{B}\right)=P\left(m_{B} \mid c_{A}, p_{A}\right) \frac{P\left(p_{A} \mid c_{A}\right)}{P\left(m_{B} \mid c_{A}\right)}$

$$
=1 / 3
$$

- $P\left(m_{B} \mid c_{A}, p_{A}\right)=1 / 2$
- $P\left(p_{A} \mid c_{A}\right)=1 / 3$
- $P\left(m_{B} \mid c_{A}\right)=P\left(m_{b} \mid c_{A}, p_{A}\right) P\left(p_{A}\right)+$

$$
\begin{aligned}
& P\left(m_{b} \mid c_{A}, p_{B}\right) P\left(p_{B}\right)+ \\
& P\left(m_{b} \mid c_{A}, p_{C}\right) P\left(p_{C}\right)=1 / 2
\end{aligned}
$$

- $P\left(p_{A}\right)=P\left(p_{B}\right)=P\left(p_{C}\right)=1 / 3$
- $P\left(m_{b} \mid c_{A}, p_{A}\right)=1 / 2$
- $P\left(m_{b} \mid c_{A}, p_{B}\right)=0 \quad$ Won't open prize door
- $P\left(m_{b} \mid c_{A}, p_{C}\right)=1 \quad$ Monty has no choice

15-48: Monte Hall Problem $P\left(p_{C} \mid c_{A}, m_{B}\right)=P\left(m_{B} \mid c_{A}, p_{C}\right) \frac{P\left(p_{C} \mid c_{A}\right)}{P\left(m_{B} \mid c_{A}\right)}$

$$
=2 / 3
$$

- $P\left(m_{B} \mid c_{A}, p_{C}\right)=1$
- $P\left(p_{C} \mid c_{A}\right)=1 / 3$
- $P\left(m_{B} \mid c_{A}\right)=P\left(m_{b} \mid c_{A}, p_{A}\right) P\left(p_{A}\right)+$

$$
\begin{aligned}
& P\left(m_{b} \mid c_{A}, p_{B}\right) P\left(p_{B}\right)+ \\
& P\left(m_{b} \mid c_{A}, p_{C}\right) P\left(p_{C}\right)=1 / 2
\end{aligned}
$$

- $P\left(p_{A}\right)=P\left(p_{B}\right)=P\left(p_{C}\right)=1 / 3$
- $P\left(m_{b} \mid c_{A}, p_{A}\right)=1 / 2$
- $P\left(m_{b} \mid c_{A}, p_{B}\right)=0 \quad$ Won't open prize door
- $P\left(m_{b} \mid c_{A}, p_{C}\right)=1 \quad$ Monty has no choice


## 15-49: Rare Disease Redux

- Rare disease, strikes one in every 10,000
- Two tests, one $95 \%$ accurate, other $90 \%$ accurate:
- $P(t 1 \mid d)=0.95, P(\neg t 1 \mid \neg d)=0.95$
- $P(t 2 \mid d)=0.90, P(\neg t 2 \mid \neg d)=0.90$
- Tests use independent mechanisms to detect disease, and are conditionally independent, given disease state:
- $P(t 1 \mid d, t 2)=P(t 1 \mid d)$
- Both test are positive, what is the probability of disease?
- $P(d \mid t 1, t 2)=$ ?


## 15-50: Rare Disease Redux

$P(d \mid t 1, t 2)=P(t 1 \mid d, t 2) \frac{P(d \mid t 2)}{P(t| | t 2)}$

$$
=P(t 1 \mid d) \frac{P(d \mid t 2)}{P(t| | t 2)}
$$

$P(d \mid t 1, t 2)=P(t 1 \mid d, t 2) \frac{P(d \mid t 2)}{P(t 1 \mid t 2)}$

$$
=P(t 1 \mid d) \frac{P(d \mid t 2)}{P(t| | t 2)}
$$

$P(t 1 \mid t 2)=?$
15-52: Rare Disease Redux

$$
\begin{aligned}
P(d \mid t 1, t 2) & =P(t 1 \mid d, t 2) \frac{P(d \mid t 2)}{P(t| | t 2)} \\
& =P(t 1 \mid d) \frac{P(d \mid t)}{P(t 1 \mid t 2)} \\
P(t 1 \mid t 2) & =P(t 1 \mid t 2, d) P(d \mid t 2)+P(t 1 \mid t 2, \neg d) P(\neg d \mid t 2) \\
& =P(t 1 \mid d) P(d \mid t 2)+P(t 1 \mid \neg d) P(\neg d \mid t 2)
\end{aligned}
$$

## 15-53: Rare Disease Redux

```
    \(P(d \mid t 1, t 2)=P(t 1 \mid d, t 2) \frac{P(d \mid t 2)}{P(t 1 \mid t 2)}\)
        \(=P(t 1 \mid d) \frac{P(d \mid t 2)}{P(t| | t 2)}\)
    \(P(t 1 \mid t 2)=P(t 1 \mid t 2, d) P(d \mid t 2)+P(t 1 \mid t 2, \neg d) P(\neg d \mid t 2)\)
        \(=P(t 1 \mid d) P(d \mid t 2)+P(t 1 \mid \neg d) P(\neg d \mid t 2)\)
    \(P(d \mid t 2)=\) ?
```

15-54: Rare Disease Redux
$P(d \mid t 1, t 2)=P(t 1 \mid d, t 2) \frac{P(d \mid t 2)}{P(t 1 \mid t 2)}$
$=P(t 1 \mid d) \frac{P(d \mid t 2)}{P(t| | t 2)}$
$P(t 1 \mid t 2)=P(t 1 \mid t 2, d) P(d \mid t 2)+P(t 1 \mid t 2, \neg d) P(\neg d \mid t 2)$
$=P(t 1 \mid d) P(d \mid t 2)+P(t 1 \mid \neg d) P(\neg d \mid t 2)$
$P(d \mid t 2)=P(t 2 \mid d) \frac{P(d)}{P(t 2)}$
15-55: Rare Disease Redux
$P(d \mid t 1, t 2)=P(t 1 \mid d, t 2) \frac{P(d \mid t 2)}{P(t 1 \mid t 2)}$
$=P(t 1 \mid d) \frac{P(d \mid t 2)}{P(t| | t 2)}$
$P(t 1 \mid t 2) \quad=P(t 1 \mid t 2, d) P(d \mid t 2)+P(t 1 \mid t 2, \neg d) P(\neg d \mid t 2)$
$=P(t 1 \mid d) P(d \mid t 2)+P(t 1 \mid \neg d) P(\neg d \mid t 2)$
$P(d \mid t 2)=P(t 2 \mid d) \frac{P(d)}{P(t 2)}$
$P(t 2)=$ ?
15-56: Rare Disease Redux
$P(d \mid t 1, t 2) \quad=P(t 1 \mid d, t 2) \frac{P(d \mid 12)}{P(t| | t 2)}$
$=P(t 1 \mid d) \frac{P(d \mid t 2)}{P(t| | t 2)}$
$P(t 1 \mid t 2)=P(t 1 \mid t 2, d) P(d \mid t 2)+P(t 1 \mid t 2, \neg d) P(\neg d \mid t 2)$
$=P(t 1 \mid d) P(d \mid t 2)+P(t 1 \mid \neg d) P(\neg d \mid t 2)$
$P(d \mid t 2)=P(t 2 \mid d) \frac{P(d)}{P(t 2)}$
$P(t 2) \quad=P(t 2 \mid d) P(d)+P(t 2 \mid \neg d) P(\neg d)$
15-57: Rare Disease Redux
$P(d \mid t 1, t 2)=P(t 1 \mid d, t 2) \frac{P(d \mid t 2)}{P(t 1 \mid t 2)}$
$=P(t 1 \mid d) \frac{P(d \mid t 2)}{P(t| | t 2)}$
$P(t 1 \mid t 2)=P(t 1 \mid t 2, d) P(d \mid t 2)+P(t 1 \mid t 2, \neg d) P(\neg d \mid t 2)$
$=P(t 1 \mid d) P(d \mid t 2)+P(t 1 \mid \neg d) P(\neg d \mid t 2)$
$P(d \mid t 2)=P(t 2 \mid d) \frac{P(d)}{P(t 2)}$
$P(t 2) \quad=P(t 2 \mid d) P(d)+P(t 2 \mid \neg d) P(\neg d)$
$=.10008$
15-58: Rare Disease Redux
$P(d \mid t 1, t 2)=P(t 1 \mid d, t 2) \frac{P(d \mid t 2)}{P(t t \mid t 2)}$
$=P(t 1 \mid d) \frac{P(d \mid t 2)}{P(t| | t 2)}$
$P(t 1 \mid t 2)=P(t 1 \mid t 2, d) P(d \mid t 2)+P(t 1 \mid t 2, \neg d) P(\neg d \mid t 2)$
$=P(t 1 \mid d) P(d \mid t 2)+P(t 1 \mid \neg d) P(\neg d \mid t 2)$

$$
\begin{aligned}
& P(d \mid t 2)=P(t 2 \mid d) \frac{P(d)}{P(t 2)} \\
& =0.0009 \\
& P(t 2)=P(t 2 \mid d) P(d)+P(t 2 \mid \neg d) P(\neg d) \\
& =.10008 \\
& P(d \mid t 1, t 2)=P(t 1 \mid d, t 2) \frac{P(d \mid t 2)}{P(t t \mid t 2)} \\
& =P(t 1 \mid d) \frac{P(d \mid t 2)}{P(t| | t 2)} \\
& P(t 1 \mid t 2)=P(t 1 \mid t 2, d) P(d \mid t 2)+P(t 1 \mid t 2, \neg d) P(\neg d \mid t 2) \\
& =P(t 1 \mid d) P(d \mid t 2)+P(t 1 \mid \neg d) P(\neg d \mid t 2) \\
& =0.05081 \\
& P(d \mid t 2)=P(t 2 \mid d) \frac{P(d)}{P(t 2)} \\
& =0.0009 \\
& P(t 2)=P(t 2 \mid d) P(d)+P(t 2 \mid \neg d) P(\neg d) \\
& =.10008 \\
& \text { 15-59: Rare Disease Redux } \\
& P(d \mid t 1, t 2)=P(t 1 \mid d, t 2) \frac{P(d \mid t 2)}{P(t| | t 2)} \\
& P(d \mid t 1, t 2)=P(t 1 \mid d, t 2) \frac{P(d \mid t 2)}{P(t| | 22)} \\
& =P(t 1 \mid d) \frac{P(d \mid t 2)}{P(t| | t 2)} \\
& =0.0168 \\
& P(t 1 \mid t 2)=P(t 1 \mid t 2, d) P(d \mid t 2)+P(t 1 \mid t 2, \neg d) P(\neg d \mid t 2) \\
& =P(t 1 \mid d) P(d \mid t 2)+P(t 1 \mid \neg d) P(\neg d \mid t 2) \\
& =0.05081 \\
& P(d \mid t 2)=P(t 2 \mid d) \frac{P(d)}{P(t 2)} \\
& =0.0009 \\
& \begin{aligned}
P(t 2) & =P(t 2 \mid d) P(d)+P(t 2 \mid \neg d) P(\neg d) \quad \text { 15-61: Probabilistic Reasoning } \\
& =.10008
\end{aligned}
\end{aligned}
$$

- Given:
- Set of conditional probabilities $(P(t 1 \mid d)$, etc)
- Set of prior probabilities $(P(d))$
- Conditional independence information $(P(t 1 \mid d, t 2)=P(t 1 \mid d))$
- We can calculate any quantity that we like


## 15-62: Probabilistic Reasoning

- Given:
- Set of conditional probabilities $(P(t 1 \mid d)$, etc)
- Set of prior probabilities $(P(d))$
- Conditional independence information $(P(t 1 \mid d, t 2)=P(t 1 \mid d))$
- We can calculate any quantity that we like
- Problems:
- Hard to know exactly what data we need
- Even given sufficient data, calculations can be complex - especially dealing with conditional independence


## 15-63: Probabilistic Reasoning

- Next time:
- Make some simplifiying assumptions that are not theoretically sound, but give good results in practice
- Naive Bayes
- Works very well for spam filtering
- Use conditional independence to create a probabilistic alternative to rule-bases systems
- Bayesian Networks

