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15-0: Uncertainty

• In many interesting agent environments, uncertainty plays a central role.

• Actions may have nondeterministic effects.

• Shooting an arrow at a target, retrieving a web page, moving

• Agents may not know the true state of the world.

• Incomplete sensors, dynamic environment

• Relations between facts may not be deterministic.

• Sometimes it rains when it’s cloudy.

• Sometimes I play tennis when it’s humid.

• Rational agents will need to deal with uncertainty.

15-1: Logic and Uncertainty

• We’ve already seen how to use logic to deal with uncertainty.

• S tudies(Bart) ∨WatchesTV(Bart)

• Hungry(Homer)⇒ Eats(Homer,HotDog) ∨ Eats(Homer, Pie)

• ∃xHungry(x)

• Unfortunately, the logical approach has some drawbacks.

15-2: Weaknesses with logic

• Qualifying all possible outcomes.

• “If I leave now, I’ll be on time, unless there’s an earthquake, or I run out of gas, or there’s an accident ...”

• We may not know all possible outcomes.

• “If a patient has a toothache, she may have a cavity, or may have gum disease, or maybe something else

we don’t know about.”

• We have no way to talk about the likelihood of events.

• “It’s possible that I’ll get hit by lightning today.”

15-3: Qualitative vs. Quantitative

• Logic gives us a qualitative approach to uncertainty.

• We can say that one event is more common than another, or that something is a possibility.

• Useful in cases where we don’t have statistics, or we want to reason more abstractly.

• Probability allows us to reason quantitatively

• We assign concrete values to the chance of an event occurring and derive new concrete values based on

observations.

15-4: Uncertainty and Rationality

• Recall our definition of rationality:
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• A rational agent is one that acts to maximize its performance measure.

• How do we define this in an uncertain world?

• We will say that an agent has a utility for different outcomes, and that those outcomes have a probability of occurring.

• An agent can then consider each of the possible outcomes, their utility, and the probability of that outcome occurring, and choose the action that produces the highest expected (or average) utility.

• The theory of combining preferences over outcomes with the probability of an outcome’s occurrence is called decision theory.

• Talk a bit more about decision theory after we’ve covered probability theory.

15-5: Basic Probability

• A probability signifies a belief that a proposition is true.

• P(BartStudied) = 0.01

• P(Hungry(Homer)) = 0.99

• The proposition itself is true or false - we just don’t know which.

• This is different than saying the sentence is partially true.

• “Bart is short” - this is sort of true, since “short” is a vague term.

• An agent’s belief state is a representation of the probability of the value of each proposition of interest.

15-6: Notation

• A Random Variable (or just variable) is a variable whose value can be described using probabilities

• Use Upper Case for variables – X, Y, Z, etc.

• Random Variables can have discrete or continuous values (for now, we will assume discrete values)

• use lower case for values of variables – x, y, x1, x2, etc.

• P(X = x) is the probability that variable X has the value x

• Can also be written as P(x)

15-7: Notation

• If variable X can have the values x1, x2, . . . xn, then the expression P(X) stands for a vector which contains

P(X = xk), for all values xk of X

P(X) = [P(X = x1), P(X = x2), . . .P(X = xn)]

• If D is a variable that represents the value of a fair die, then

P(D) = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6]

15-8: Notation

• Variable W, represents Weather, which can have values sunny, cloudy, rain, or snow.

• P(W = sunny) = 0.7

• P(W = cloudy) = 0.2

• P(W = rain) = 0.08
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• P(W = snow) = 0.02

• P(W) = [0.7, 0.2, 0.08, 0.02]

15-9: Notation – AND

P(x, y) = P(X = x ∧ Y = y)

• Given two fair dice D1 and D2:

P(D1 = 3,D2 = 4) = 1/36

• P(X, Y) represents the set of P(x, y) for all values x of X and y of Y. Thus, P(D1,D2) represents 36 different

values.

15-10: Notation – Binary Variables

• If X has two values (false and true), we can represent:

• P(X = f alse) as P(¬x), and

• P(X = true) as P(x)

15-11: Conditional Probability

• P(x|y) = Probability that X = x given that all we know is Y = y

• P(cavity|toothache) = 0.8

• P(Cavity|Toothache) represents 4 values:

[

P(¬cavity|¬toothache) P(cavity|¬toothache)

P(¬cavity|toothache) P(cavity|toothache)

]

15-12: Conditional Probability

• We can define conditional probabilities in terms of unconditional probabilities.

P(a|b) =
P(a, b)

P(b)

Whenever P(b) > 0

• P(a, b) = P(a|b)P(b) = P(b|a)P(a)

• P(A, B) = P(A|B)P(B) means P(a, b) = P(a|b)P(b) for all values a, b

15-13: Axioms of Probability

• 0 ≤ P(a) ≤ 1

• P(true) = 1, P( f alse) = 0

• P(a ∨ b) = P(a) + P(b) − P(a ∧ b)
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Everything follows from these three axioms

For instance, prove P(x) = 1 − P(¬x)

15-14: Axioms of Probability

• 0 ≤ P(a) ≤ 1

• P(true) = 1, P( f alse) = 0

• P(a ∨ b) = P(a) + P(b) − P(a ∧ b)

P(x ∨ ¬x) = P(x) + P(¬x) − P(x ∧ ¬x)

1 = P(x) + P(¬x) − 0

1 − P(¬x) = P(x)

P(x) = 1 − P(¬x)

15-15: Joint Probability

• Probability for all possible values of all possible variables

cavity toothache 0.04

cavity ¬toothache 0.06

¬cavity toothache 0.01

¬cavity ¬toothache 0.89

• From the joint, we can calculate anything

15-16: Joint Probability

• Probability for all possible values of all possible variables

cavity toothache 0.04

cavity ¬toothache 0.06

¬cavity toothache 0.01

¬cavity ¬toothache 0.89

• From the joint, we can calculate anything

• P(cavity) = 0.04 + 0.06 = 0.01

• P(cavity ∨ toothache) = 0.04 + 0.06 + 0.01

= 0.11

• P(cavity|toothache) = P(c, t)/P(t)

= 0.04 / (0.04 + 0.01) = 0.80

15-17: Joint Probability
sunny windy playTennis 0.1

sunny windy ¬ playTennis 0.1

sunny ¬ windy playTennis 0.3

sunny ¬ windy ¬ playTennis 0.05

¬ sunny windy playTennis 0.05

¬ sunny windy ¬ playTennis 0.2

¬ sunny ¬ windy playTennis 0.1

¬ sunny ¬ windy ¬ playTennis 0.1

• P(sunny)?
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• P(playTennis|¬windy)?

• P(playTennis)?

• P(playTennis|sunny ∧ ¬windy)?

• (also written P(playTennis|sunny,¬windy))

15-18: Joint Probability

• Joint can tell us everything

• Calculate the joint, read off what you want to know

• This will not work!

15-19: Joint Probability

• Joint can tell us everything

• Calculate the joint, read off what you want to know

• This will not work!

• x different variables, each of which has v values

• Size of joint = vx

• 50 variables, each has 7 values, 1.8 ∗ 1042 table entires

15-20: Conditional Probability

• Working with the joint is impractical

• Work with conditional probabilities instead

• Manipulate conditional probabilities based on definition:

P(A|B) =
P(A, B)

P(B)

(when P(B) is always > 0)

15-21: Conditional Probability

• Just as we can define conditional probability given probability of a conjunction (AND), we can define the

probability of a conjunction given a conditional probability

P(A, B) = P(A|B)P(B)

15-22: Conditional Probability

Example:

• P(cloudy) = 0.25

• P(rain) = 0.25

• P(cloudy∧ rain) = 0.15

• P(cloudy∧ ¬rain) = 0.1

• P(¬cloudy∧ rain) = 0.1
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• P(¬cloudy∧ ¬rain) = 0.65

• Initially, P(Rain) = 0.25. Once we see that it’s cloudy, P(rain|cloudy) = P
(rain∧cloudy)

P(cloudy)
= 0.15

0.25
= 0.6

15-23: Independence

• In some cases, we can simplify matters by noticing that one variable has no effect on another.

• For example, what if we add a fourth variable DayO f Week to our Rain calculation?

• Since the day of the week will not affect the probability of rain, we can assert P(rain|cloudy,monday) =

P(rain|cloudy, tuesday)... = P(rain|cloudy)

• We say that DayO f Week and Rain are independent.

• We can then split the larger joint probability distribution into separate subtables.

• Independence will help us divide the domain into separate pieces.

15-24: Bayes’ Rule

P(B|A) =
P(A ∧ B)

P(A)

=
P(A|B)P(B)

P(A)

• Also known as Bayes’ theorem (or Bayes’ law).

15-25: Bayes’ Rule

P(B|A) =
P(A ∧ B)

P(A)

=
P(A|B)P(B)

P(A)

Generalize Bayes Rule, with additional evidence E:

P(B|A∧ E) =
P(A ∧ B|E)

P(A|E)

=
P(A|B∧ E)P(B|E)

P(A|E)

15-26: Bayes’ theorem example

• Say we know:

• Meningitis causes a stiff neck in 50% of patients.

• P(sti f f Neck|meningitis) = 0.5

• Prior probability of meningitis is 1/50000.

• P(meningitis) = 0.00002
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• Prior probability of a stiff neck is 1/20

• P(sti f f Neck) = 0.05

• A patient comes to use with a stiff neck. What is the probability she has meningitis?

• P(meningitis|sti f f Neck) =
P(sti f f Neck|meningitis)P(meningitis)

P(sti f f Neck)
= 0.5×0.00002

0.05
= 0.0002

15-27: Using Bayes Rule

• Rare disease, strikes one in every 10,000

• Test for the disease that is 95% accurate:

• P(t|d) = 0.95

• P(¬t|¬d) = 0.95

• Someone tests positive for the disease, what is the probability that they have it?

• P(d|t) = ?

15-28: Using Bayes Rule

• P(d) = 0.0001

• P(t|d) = 0.95

• P(¬t|¬d) = 0.95

P(d|t) = P(t|d)P(d)/P(t)

15-29: Using Bayes Rule

• P(d) = 0.0001

• P(t|d) = 0.95 (and hence P(¬t|d) = 0.05)

• P(¬t|¬d) = 0.95 (and hence P(t|¬d) = 0.05)

P(d|t) = P(t|d)P(d)/P(t)

15-30: Using Bayes Rule

• P(d) = 0.0001

• P(t|d) = 0.95

• P(¬t|¬d) = 0.95

P(d|t) = P(t|d)P(d)/P(t)

= 0.95 ∗ 0.0001/(P(t|d)P(d)+ P(t|¬d)P(¬d))

= 0.95 ∗ 0.0001/(0.95 ∗ 0.0001 + 0.05 ∗ 0.9999)

= 0.0019

15-31: Using Bayes Rule
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• This is somewhat counter-intuitive

• Test is 95% accurate

• Test is positive

• Only a 0.19% chance of having the disease!

• Why?

15-32: Using Bayes Rule

• Note that for:

• P(a|b) = P(b|a)P(a)/P(b)

• We needed P(b), which was a little bit of a pain to calculate

• We can often get away with not calculating it!

15-33: Using Bayes Rule

• P(a|b) = αP(b|a)P(a)

• α is a normalizing constant

• Calculate P(b|a)P(a), P(b|¬a)P(¬a)

• α = 1
P(b|a)P(a)+P(b|¬a)P(¬a)

• No magic here: α = 1
P(b)

15-34: Conditional Independence

• Variable A is conditionally independent of variable B, if P(A|B) = P(A)

• Notation: (A y B)

• D – roll of a fair die (d1 . . . d6)

• C – value of a coin flip (h or t)

• P(D|C) = P(D)

P(C|D) = P(C)

• (A y B)⇔ (B y A)

• P(A|B) = P(A)⇔ P(B|A) = P(B)

15-35: Conditional Independence

• If A and B are independent, then P(a, b) = P(a)P(b)

• (Also used as a definition of conditional independence – two definitions are equivalent)

• P(a, b) = P(a|b)P(b) = P(a)P(b)

15-36: Conditional Independence

• At an elementary school, reading scores and shoe sizes are correlated. Why?
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15-37: Conditional Independence

• At an elementary school, reading scores and shoe sizes are correlated. Why?

Age

Shoe Size
Reading
Ability

• P(R|S ) , P(R)

• P(R|S , A) = P(R|A)

• Notation: (R y S |A)

15-38: Monte Hall Problem

From the game show “Let’s make a Deal”

• Pick one of three doors. Fabulous prize behind one door, goats behind other 2 doors

• Monty opens one of the doors you did not pick, shows a goat

• Monty then offers you the chance to switch doors, to the other unopened door

• Should you switch?

15-39: Monte Hall Problem

Problem Clarification:

• Prize location selected randomly

• Monty always opens a door, allows contestants to switch

• When Monty has a choice about which door to open, he chooses randomly.

Variables Prize: P = pA, pB, pC

Choose: C = cA, cB, cC

Monty: M = mA, mB, mC

15-40: Monte Hall Problem

Without loss of generality, assume:

• Choose door A

• Monty opens door B

P(pA|cA,mB) =?

15-41: Monte Hall Problem

Without loss of generality, assume:

• Choose door A

• Monty opens door B
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P(pA|cA,mB) = P(mB|cA, pA)
P(pA |cA)

P(mB |cA)

15-42: Monte Hall Problem P(pA|cA,mB) = P(mB|cA, pA)
P(pA |cA)

P(mB |cA)

• P(mB|cA, pA) = ?

15-43: Monte Hall Problem P(pA|cA,mB) = P(mB|cA, pA)
P(pA |cA)

P(mB |cA)

• P(mB|cA, pA) = 1/2

• P(pA|cA) =?

15-44: Monte Hall Problem P(pA|cA,mB) = P(mB|cA, pA)
P(pA |cA)

P(mB |cA)

• P(mB|cA, pA) = 1/2

• P(pA|cA) = 1/3

• P(mB|cA) = ?

15-45: Monte Hall Problem P(pA|cA,mB) = P(mB|cA, pA)
P(pA |cA)

P(mB |cA)

• P(mB|cA, pA) = 1/2

• P(pA|cA) = 1/3

• P(mB|cA) = P(mb|cA, pA)P(pA)+

P(mb|cA, pB)P(pB)+

P(mb|cA, pC)P(pC)

15-46: Monte Hall Problem P(pA|cA,mB) = P(mB|cA, pA)
P(pA |cA)

P(mB |cA)

• P(mB|cA, pA) = 1/2

• P(pA|cA) = 1/3

• P(mB|cA) = P(mb|cA, pA)P(pA)+

P(mb|cA, pB)P(pB)+

P(mb|cA, pC)P(pC)

• P(pA) = P(pB) = P(pC) = 1/3

• P(mb|cA, pA) = 1/2

• P(mb|cA, pB) = 0 Won’t open prize door

• P(mb|cA, pC) = 1 Monty has no choice

15-47: Monte Hall Problem P(pA|cA,mB) = P(mB|cA, pA)
P(pA |cA)

P(mB |cA)

= 1/3

• P(mB|cA, pA) = 1/2

• P(pA|cA) = 1/3

• P(mB|cA) = P(mb|cA, pA)P(pA)+

P(mb|cA, pB)P(pB)+

P(mb|cA, pC)P(pC) = 1/2
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• P(pA) = P(pB) = P(pC) = 1/3

• P(mb|cA, pA) = 1/2

• P(mb|cA, pB) = 0 Won’t open prize door

• P(mb|cA, pC) = 1 Monty has no choice

15-48: Monte Hall Problem P(pC |cA,mB) = P(mB|cA, pC)
P(pC |cA)

P(mB |cA)

= 2/3

• P(mB|cA, pC) = 1

• P(pC |cA) = 1/3

• P(mB|cA) = P(mb|cA, pA)P(pA)+

P(mb|cA, pB)P(pB)+

P(mb|cA, pC)P(pC) = 1/2

• P(pA) = P(pB) = P(pC) = 1/3

• P(mb|cA, pA) = 1/2

• P(mb|cA, pB) = 0 Won’t open prize door

• P(mb|cA, pC) = 1 Monty has no choice

15-49: Rare Disease Redux

• Rare disease, strikes one in every 10,000

• Two tests, one 95% accurate, other 90% accurate:

• P(t1|d) = 0.95, P(¬t1|¬d) = 0.95

• P(t2|d) = 0.90, P(¬t2|¬d) = 0.90

• Tests use independent mechanisms to detect disease, and are conditionally independent, given disease state:

• P(t1|d, t2) = P(t1|d)

• Both test are positive, what is the probability of disease?

• P(d|t1, t2) = ?

15-50: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

15-51: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = ?

15-52: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2)+ P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2)+ P(t1|¬d)P(¬d|t2)

15-53: Rare Disease Redux
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P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2)+ P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2)+ P(t1|¬d)P(¬d|t2)

P(d|t2) = ?

15-54: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2)+ P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2)+ P(t1|¬d)P(¬d|t2)

P(d|t2) = P(t2|d)
P(d)

P(t2)

15-55: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2)+ P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2)+ P(t1|¬d)P(¬d|t2)

P(d|t2) = P(t2|d)
P(d)

P(t2)

P(t2) = ?

15-56: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2)+ P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2)+ P(t1|¬d)P(¬d|t2)

P(d|t2) = P(t2|d)
P(d)

P(t2)

P(t2) = P(t2|d)P(d) + P(t2|¬d)P(¬d)

15-57: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2)+ P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2)+ P(t1|¬d)P(¬d|t2)

P(d|t2) = P(t2|d)
P(d)

P(t2)

P(t2) = P(t2|d)P(d) + P(t2|¬d)P(¬d)

= .10008
15-58: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2)+ P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2)+ P(t1|¬d)P(¬d|t2)
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P(d|t2) = P(t2|d)
P(d)

P(t2)

= 0.0009

P(t2) = P(t2|d)P(d) + P(t2|¬d)P(¬d)

= .10008
15-59: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

P(t1|t2) = P(t1|t2, d)P(d|t2)+ P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2)+ P(t1|¬d)P(¬d|t2)

= 0.05081

P(d|t2) = P(t2|d)
P(d)

P(t2)

= 0.0009

P(t2) = P(t2|d)P(d) + P(t2|¬d)P(¬d)

= .10008
15-60: Rare Disease Redux

P(d|t1, t2) = P(t1|d, t2)
P(d|t2)

P(t1|t2)

= P(t1|d)
P(d|t2)

P(t1|t2)

= 0.0168

P(t1|t2) = P(t1|t2, d)P(d|t2)+ P(t1|t2,¬d)P(¬d|t2)

= P(t1|d)P(d|t2)+ P(t1|¬d)P(¬d|t2)

= 0.05081

P(d|t2) = P(t2|d)
P(d)

P(t2)

= 0.0009

P(t2) = P(t2|d)P(d) + P(t2|¬d)P(¬d)

= .10008
15-61: Probabilistic Reasoning

• Given:

• Set of conditional probabilities (P(t1|d), etc)

• Set of prior probabilities (P(d))

• Conditional independence information (P(t1|d, t2) = P(t1|d))

• We can calculate any quantity that we like

15-62: Probabilistic Reasoning

• Given:

• Set of conditional probabilities (P(t1|d), etc)

• Set of prior probabilities (P(d))

• Conditional independence information (P(t1|d, t2) = P(t1|d))

• We can calculate any quantity that we like

• Problems:

• Hard to know exactly what data we need

• Even given sufficient data, calculations can be complex – especially dealing with conditional independence
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15-63: Probabilistic Reasoning

• Next time:

• Make some simplifiying assumptions that are not theoretically sound, but give good results in practice

• Naive Bayes

• Works very well for spam filtering

• Use conditional independence to create a probabilistic alternative to rule-bases systems

• Bayesian Networks


