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16-0: Probability Review

Probability allows us to represent a belief about a
statement, or a likelihood that a statement is true.

P(rain) = 0.6 means that we believe it is 60%
likely that it is currently raining.

Axioms:

0 ≤ P(a) ≤ 1

The probability of (A ∨ B) is
P(A) + P(B) − P(A ∧ B)

Tautologies have P = 1

Contradictions have P = 0



16-1: Conditional Probability

Once we begin to make observations about the
value of certain variables, our belief in other
variables changes.

Once we notice that it’s cloudy, P(rain) goes up.

this is called conditional probability

Written as: P(rain|cloudy)

P(a|b) =
P(a∧b)

P(b)

or P(a ∧ b) = P(a|b)P(b)

This is called the product rule.



16-2: Conditional Probability

Example: P(Cloudy) = 0.25

P(Rain) = 0.25

P(cloudy ∧ rain) = 0.15

P(cloudy ∧ ¬Rain) = 0.1

P(¬cloudy ∧ Rain) = 0.1

P(¬Cloudy ∧ ¬Rain) = 0.65

Initially, P(Rain) = 0.25. Once we see that it’s

cloudy, P(Rain|Cloudy) = P
(Rain∧Cloudy)

P(Cloudy)
=

0.15
0.25
= 0.6



16-3: Combinations of events

The probability of (A ∧ B) is P(A|B)P(B)

What if A and B are independent?

Then P(A|B) is P(A), and P(A ∧ B) is P(A)P(B).

Example:

What is the probability of “heads” five times in a
row?

What is the probability of at least one “head”?



16-4: Bayes’ Rule

Often, we want to know how a probability changes
as a result of an observation.

Recall the Product Rule:

P(a ∧ b) = P(a|b)P(b)

P(a ∧ b) = P(b|a)P(a)

We can set these equal to each other

P(a|b)P(b) = P(b|a)P(a)

And then divide by P(a)

P(b|a) =
P(a|b)P(b)

P(a)

This equality is known as Bayes’ theorem (or rule
or law).



16-5: Bayes’ Rule

We can generalize Bayes’ rule, by adding in some
more evidence:

P(b|a) =
P(a|b)P(b)

P(a)

P(b|a, e) =
P(a|b,e)P(b|e)

P(a|e)



16-6: Bayes’ Rule

We can also avoid the pesky P(a):

P(b|a) =
P(a|b)P(b)

P(a)

P(b|a) = αP(a|b)P(b)

Where α is a normalizing constant, so that P(b|a)

and P(¬b|a) sum to 1.

Generally, so that
∑

b∈B P(b|a) sums to 1

Example:

P(t|d) = 0.8, P(¬t|¬d) = 0.9, P(d) = 0.2

P(d|t) ?



16-7: Bayes’ Rule

P(t|d) = 9/10, P(¬t|¬d) = 8/10, P(d) = 1/10

P(d|t) = αP(t|d)P(d)

= α9/10 ∗ 1/10

= α9/100

P(¬d|t) = αP(t|¬d)P(¬d)

= α2/10 ∗ 9/10

= α18/100

α =
1

9/100 + 18/100
=

100

27



16-8: Bayes’ Rule

P(t|d) = 9/10, P(¬t|¬d) = 8/10, P(d) = 1/10

P(d|t) = αP(t|d)P(d)

= α9/10 ∗ 1/10

= α(9/100)

= (100/27)(9/100)

= 1/3

P(¬d|t) = αP(t|¬d)P(¬d)

= α2/10 ∗ 9/10

= α(18/100)

= (100/27)(18/100)

= 2/3



16-9: More Probability

P(a) =
∑

b∈B

P(a|b)P(b)

Intuitively: It’s always either day or night (and never
both). Probability of of something happening is the
probability that it happens at night, plus the
probability that it happens during the day

P(a|e) =
∑

b∈B

P(a|b, e)P(b|e)

For any probability function, we can always
condition everything for some additional evidence



16-10: Example

Disease

Test

Report

P(d) = 0.1

P(t | d) = 0.9
P(~t | ~d) = 0.9

P(r | t) = 0.8
P(~r | ~t) = 1

P(d | ~r) ?



16-11: Example

P(d|¬r) = αP(¬r|d)P(d)

We know P(d), we just need P(¬r|d) and P(¬r).

P(¬r|d) We only know P(R) in terms of T ...

P(¬r|d) = P(¬r|d, t)P(t|d) + P(¬r|d,¬t)P(¬t|d)

Conditional Independence to the rescue!

P(¬r|d, t) = P(¬r|t), which we know.



16-12: Example

P(d|¬r) = α(P(¬r|t)P(t|d) + P(¬r|¬t)P(¬t|d)) ∗ P(d)

= α((0.2) ∗ (0.9) + (1) ∗ 0.1) ∗ 0.1

= α ∗ 0.019

P(¬d|¬r) = α(P(¬r|t)P(t|¬d) + P(¬r|¬t)P(¬t|¬d)) ∗ P(¬d)

= α((0.2) ∗ (0.1) + (1) ∗ 0.9) ∗ 0.9

= α(0.828)

α =
1

0.828 + 0.019
=

1

0.847



16-13: Example

P(d|¬r) = α(P(¬r|t)P(t|d) + P(¬r|¬t)P(¬t|d)) ∗ P(d)

= α((0.2) ∗ (0.9) + (1) ∗ 0.1) ∗ 0.1

= α ∗ 0.019

= 0.022

P(¬d|¬r) = α(P(¬r|t)P(t|¬d) + P(¬r|¬t)P(¬t|¬d)) ∗ P(¬d)

= α((0.2) ∗ (0.1) + (1) ∗ 0.9) ∗ 0.9

= α(0.828)

= 0.978



16-14: Example II

Disease

Test

Report

P(d) = 0.1

P(t | d) = 0.9
P(~t | ~d) = 0.9

P(r | t) = 0.8
P(~r | ~t) = 1

P(d | r) ?



16-15: Example

P(d|r) = αP(r|d)P(d)

P(r|d) = P(r|d, t)P(t|d) + P(r|d,¬t)P(¬t|d)

Conditional Independence to the rescue!
P(r|d, t) = P(r|t), which we know.



16-16: Example

P(d|r) = α(P(r|t)P(t|d) + P(r|¬t)P(¬t|d)) ∗ P(d)

= α((0.8) ∗ (0.9) + (0) ∗ 0.1) ∗ 0.1

= α ∗ 0.072

P(¬d|r) = α(P(r|t)P(t|¬d) + P(r|¬t)P(¬t|¬d)) ∗ P(¬d)

= α((0.8) ∗ (0.1) + (0) ∗ 0.9) ∗ 0.9

= α(0.072)

P(d|r) = P(¬d|r) = 0.5



16-17: Learning and Classification

An important sort of learning problem is the
classification problem.

This involves placing examples into one of two or
more classes.

Should/shouldn’t play tennis

Spam/not spam.

Wait/don’t wait at a restaurant

Classification is a supervised learning task.

Requires access to a set of labeled training
examples

From this we induce a hypothesis that describes
how to determine what class an example should
be in.



16-18: Probabilistic Learning

Decision trees are one way to do this.

They tell us the most likely classification for
given data.

Work best with tabular data, where each
attribute has a known number of possible
values.

What if we want to know how likely a hypothesis is?

We can apply our knowledge of probability to learn
a hypothesis.



16-19: Bayes’ Theorem

Recall the definition of Bayes’ Theorem

P(b|a) =
P(a|b)P(b)

P(a)

Let’s rewrite this a bit.

Let D be the data we’ve seen so far.

Let h be a possible hypothesis

P(h|D) =
P(D|h)P(h)

P(D)



16-20: MAP Hypothesis

Often, we’re not so interested in the particular
probabilities for each hypothesis.

Instead, we want to know: Which hypothesis is
most likely, given the data?

Which classification is the most probable?

Is PlayTennis or ¬PlayTennis more likely?

We call this the maximum a posteriori hypothesis
(MAP hypothesis).

In this case, we can ignore the denominator (P(D))

in Bayes’ Theorem, since it will be the same for all
h.

hMAP = argmaxh∈HP(D|h)P(h)



16-21: MAP Hypothesis

Advantages:

Simpler calculation

No need to have a prior for P(D)



16-22: ML Hypothesis

In some cases, we can simplify things even further.

What are the priors P(h) for each hypothesis?

Without any other information, we’ll often assume
that they’re equally possible.

Each has probability 1
H

In this case, we can just consider the conditional
probability P(D|h).

We call the hypothesis that maximizes this
conditional probability the maximum likelihood
hypothesis.

hML = argmaxh∈HP(D|h)



16-23: Example

Imagine that we have a large bag of candy. We
want to know the ratio of cherry to lime in the bag.

We start with 5 hypotheses:

1. h1: 100% cherry

2. h2 75% cherry, 25% lime.

3. h3 50% cherry, 50% lime

4. h4 25% cherry, 75% lime

5. h5 100% lime

Our agent repeatedly draws pieces of candy.

We want it to correctly pick the type of the next
piece of candy.



16-24: Example

Let’s assume our priors for the different
hypotheses are:

(0.1, 0.2, 0.4, 0.2, 0.1)

Also, we assume that the observations are i.i.d.

Independent and Identically Distributed – each
choice is independent of the others, and order
doesn’t matter.

In that case, we can multiply probabilities.

P(D|hi) = Π jP(d j|hi)

Suppose we draw 10 limes in a row. P(D|h3) is

(1
2
)10, since the probability of drawing a lime under

h3 is 1
2
.



16-25: Example

How do the hypotheses change as data is
observed?

Initially, we start with the priors:
(0.1, 0.2, 0.4, 0.2, 0.1)

Then we draw a lime.

P(h1|lime) = αP(lime|h1)P(h1) = 0.

P(h2|lime) = αP(lime|h2)P(h2) = α1
4
∗ 0.2 = α0.05.

P(h3|lime) = αP(lime|h3)P(h3) = α1
2
∗ 0.4 = α0.2

P(h4|lime) = αP(lime|h4)P(h4) = α3
4
∗ 0.2 = α0.15.

P(h5|lime) = αP(lime|h5)P(h5) = α1 ∗ 0.1 = α0.1.

α = 2.



16-26: Example

Then we draw a second lime.

P(h1|lime, lime) = αP(lime, lime|h1)P(h1) = 0.

P(h2|lime, lime) = αP(lime, lime|h2)P(h2) =

α1
4

1
4
∗ 0.2 = α0.0125.

P(h3|lime, lime) = αP(lime, lime|h3)P(h3) =

α1
2

1
2
∗ 0.4 = α0.1

P(h4|lime, lime) = αP(lime, lime|h4)P(h4) =

α3
4

3
4
∗ 0.2 = α0.1125.

P(h5|lime) = αP(lime|h5)P(h5) = α1 ∗ 0.1 = α0.1.

α = 3.07.

Strictly speaking, we don’t really care what α is.

We can just select the MAP hypothesis, since we
just want to know the most likely hypothesis.



16-27: Bayesian Learning

Eventually, the true hypothesis will dominate all
others.

Caveat: assuming the data is noise-free, or
noise is uniformly distributed.

Notice that we can use Bayesian learning (in this
case) either as a batch algorithm or as an
incremental algorithm.

We can always easily update our hypotheses to
incorporate new evidence.

This depends on the assumption that our
observations are independent.



16-28: Learning bias

What sort of bias does Bayesian Learning use?

Typically, simpler hypotheses will have larger
priors.

More complex hypotheses will fit data more exactly
(but there’s many more of them).

Under these assumptions, hMAP will be the
simplest hypothesis that fits the data.

This is Occam’s razor, again.



16-29: Bayesian Concept Learning

Bayesian Learning involves estimating the
likelihood of each hypothesis.

In a more complex world where observations are
not independent, this could be difficult.

Our first cut at doing this might be a brute force
approach:

1. For each h in H, calculate P(h|D) =
P(D|h)P(h)

P(D)

2. From this, output the hypothesis hMAP with the
highest posterior probability.

This is what we did in the example.

Challenge - Bayes’ Theorem can be
computationally expensive to use when
observations are not i.i.d.

P(h|o1, o2) =
P(o1 |h,o2)P(h|o2)



16-30: Bayesian Optimal Classifiers

There’s one other problem with the formulation as
we have it.

Usually, we’re not so interested in the hypothesis
that fits the data.

Instead, we want to classify some unseen data,
given the data we’ve seen so far.

One approach would be to just return the MAP
hypothesis.

We can do better, though.



16-31: Bayesian Optimal Classifiers

Suppose we have three hypotheses and
posteriors: h1 = 0.4, h2 = 0.3, h3 = 0.3.

We get a new piece of data - h1 says it’s positive,
h2 and h3 negative.

h1 is the MAP hypothesis, yet there’s a 0.6 chance
that the data is negative.

By combining weighted hypotheses, we improve
our performance.



16-32: Bayesian Optimal Classifiers

By combining the predictions of each hypothesis,
we get a Bayesian optimal classifier.

More formally, let’s say our unseen data belongs to
one of v classes.

The probability P(v j|D) that our new instance
belongs to class v j is:
∑

hi∈H
P(v j|hi)P(hi|D)

Intuitively, each hypothesis gives its prediction,
weighted by the likelihood that that hypothesis is
the correct one.

This classification method is provably optimal - on
average, no other algorithm can perform better.



16-33: Problems

However, the Bayes optimal classifier is mostly
interesting as a theoretical benchmark.

In practice, computing the posterior probabilities is
exponentially hard.

This problem arises when instances or data are
conditionally dependent upon each other.

Can we get around this?



16-34: Naive Bayes classifier

The Naive Bayes classifer makes a strong
assumption that makes the algorithm practical:

Each attribute of an example is independent of
the others.

P(a ∧ b) = P(a)P(b) for all a and b.

This makes it straightforward to compute
posteriors.



16-35: Bayesian Learning Problem

Given: a set of labeled, multivalued examples.

Find a function F(x) that correctly classifies an
unseen example with attributes (a1, a2, ..., an) .

Call the most probable category vmap.

vmap = argmaxvi∈V P(vi|a1, a2, ..., an)

We rewrite this with Bayes’ Theorem as:
vmap = argmaxvi∈V P(a1, a2, ..., an|vi)P(vi)

Estimating P(vi) is straightforward with a large
training set; count the fraction of the set that are of
class vi.

However, estimating P(a1, a2, ..., an|vi) is difficult
unless our training set is very large. We need to
see every possible attribute combination many
times.



16-36: Naive Bayes assumption

Naive Bayes assumes that all attributes are
conditionally independent of each other.

In this case, P(a1, a2, ..., an|vi) = ΠiP(ai|vi).

This can be estimated from the training data.

The classifier then picks the class with the highest
probability according to this equation.

Interestingly, Naive Bayes performs well even in
cases where the conditional independence
assumption fails.



16-37: Example

Recall your tennis-playing problem from the
decision tree homework.

We want to use the training data and a Naive
Bayes classifier to classify the following instance:

Outlook = Sunny, Temperature = Cool, Humidity =
high, Wind = Strong.



16-38: Example

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No



16-39: Example

Our priors are:

P(PlayTennis = yes) = 9/14 = 0.64

P(PlayTennis = no) = 5/14 = 0.36

We can estimate:

P(wind = strong|PlayTennis = yes) = 3/9 = 0.33

P(wind = strong|PlayTennis = no) = 3/5 = 0.6

P(humidity = high|PlayTennis = yes) = 3/9 = 0.33

P(humidity = high|PlayTennis = no) = 4/5 = 0.8

P(outlook = sunny|PlayTennis = yes) = 2/9 = 0.22

P(outlook = sunny|PlayTennis = no) = 3/5 = 0.6

P(temp = cool|PlayTennis = yes) = 3/9 = 0.33

P(temp = cool|PlayTennis = no) = 1/5 = 0.2



16-40: Example

vyes =

P(yes)P(sunny|yes)P(cool|yes)P(high|yes)P(strong|yes) =

0.005

vno =

P(no)P(sunny|no)P(cool|no)P(high|no)P(strong|no) =

0.0206

So we see that not playing tennis is the maximum
likelihood hypothesis.

Further, by normalizing, we see that the classifier

predicts a 0.0206
0.005+0.0206

= 0.80 probability of not

playing tennis.



16-41: Estimating Probabilities

As we can see from this example, estimating
probabilities through frequency is risky when our
data set is small.

We only have 5 negative examples, so we may not
have an accurate estimate.

A better approach is to use the following formula,
called an m-estimate:
nc+mp

n+m

Where nc is the number of individuals with the
characteristic of interest (say Wind = strong), n is
the total number of positive/negative examples, p

is our prior estimate, and m is a constant called the
equivalent sample size.



16-42: Estimating Probabilities

m determines how heavily to weight p.

p is assumed to be uniform.

So, in the Tennis example,

P(wind = strong|playTennis = no) = 3+0.2m
5+m

We’ll determine an m based on sample size.

If m is zero, we just use observed data.

If m >> n, we use the prior.

Otherwise m lets us weight these parameters’
relative influence.



16-43: Naive Bayes: Classify Spam

One are where Naive Bayes has been very
successful is in text classification.

Despite the violation of independence
assumptions.

Classifying spam is just a special case of text
classification.

Problem - given some emails labled ham or spam,
determine the category of new and unseen
documents.

Our features will be the tokens that appear in a
document.

Based on this, we’ll predict a category.



16-44: Classifying spam

Naive Bayes is only one possible way to classify
spam.

Rule-based systems (SpamAssassin)

Examining headers (broken From or
Content-Type)

Blacklist/Whitelist

Challenge/response



16-45: Naive Bayes: Classify Spam

Naive Bayes has several properties that make it
nice as a spam classifier:

We don’t need to encode specific rules

We can adapt as the types of spam change

Somewhat robust to spammers adding in extra
text



16-46: Naive Bayes: Classify Spam

For a given email, we’ll want to compute the MAP
hypothesis - that is, is:

P(spam|t1, t2, .., tn) greater than

P(ham|t1, t2, .., tn)

We can use Bayes’ rule to rewrite these as:

αP(t1, t2, ..., tn|spam)P(spam)

αP(t1, t2, ..., tn|ham)P(ham)



16-47: Naive Bayes: Classify Spam

We can then use the Naive Bayes assumption to
rewrite these as:

αP(t1|spam)P(t2|spam)...P(tn|spam)P(spam)

αP(t1|ham)P(t2|ham)...P(tn|ham)P(ham)

And this we know how to compute.



16-48: Naive Bayes: Classify Spam

We can get the conditional probabilities by
counting tokens in the training set.

We can get the priors from the training set, or
through estimation.



16-49: Naive Bayes: Classify Spam

This is a case of a problem where we can tolerate
occasional false negatives (spam classified as
ham) but we cannot tolerate false positives (ham
classified as spam).

Plain old vanilla Naive Bayes will do fairly well, but
there’s a lot of tuning and tweaking that can be
done to optimize performance.



16-50: Naive Bayes: Classify Spam

There are a lot of wrinkles to consider:

What should be treated as a token? All words?
All strings? Only some words?

Should headers be given different treatment?
Greater or less emphasis? What about
subject?

What about HTML?



16-51: Naive Bayes: Classify Spam

There are a lot of wrinkles to consider:

When classifying an email, should you consider
all tokens, or just the most significant?

When computing conditional probabilities,
should you could the fraction of documents a
token appear in, or the fraction of words
represented by a particular token?

Can you use any of the NLTK tools to better
identify structure?
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