Al Programming CS662-2013S-17 Bayesian Networks

David Galles

Department of Computer Science University of San Francisco

17-0: Probabilistic Reasoning

- Given:
 - Set of conditional probabilities (P(t1|d), etc)
 - Set of prior probabilities (P(d))
 - Conditional independence information (P(t1|d, t2) = P(t1|d))
- We can calculate any quantity that we like
- Problems:
 - Hard to know exactly what data we need
 - Even given sufficient data, calculations can be complex – especially dealing with conditional independence

17-1: Bayesian Networks

Bayesian Networks are:

- Clever encoding of conditional independence information
- Mechanical, "turn the crank" method for calculation
 Can be done by a computer
- Nothing "magic" about Bayesian Networks

17-2: Directed Acyclic Graphs

- We will encode conditional independence information using Directed Acyclic Graphs (or DAGs)
- While we will use causal language to give intuitive justification, these DAGs are *not necessarily* causal (more on this later)
- Three basic "junctions"

17-3: Head-to-Tail

- "Causal Chain"
- Rain → Wet Pavement → Slippery Pavement
 - $(A \not\perp C)$
 - $(A \perp C \mid B)$

17-4: Tail-to-Tail

- "Common Cause"
- Reading Ability \leftarrow Age \rightarrow Shoe Size
 - (A ⊭ C)
 - $(A \perp C \mid B)$

17-5: Head-to-Head

- "Common Effect"
- Rain \rightarrow Wet Grass \leftarrow Sprinkler
 - (A **LL** C)
 - $(A \not\perp C|B)$

17-6: Head-to-Head

- Also need to worry about descendants of head-head junctions.
- (Rain **L** Sprinkler)

17-7: Markovian Parents

- *V* is an ordered set of variables $X_1, X_2, \ldots X_n$.
- P(V) is a joint probability distribution over V
- Define the set of Markovian Parents of variable X_j, PA_j as:
 - Minimal set of predecessors of X_j such that
 - $P(X_j|X_1,\ldots,X_{j-1}) = P(X_j|PA_j)$
- The Markovian Parents of a variable X_j are often *(but not always)* the direct causes of X_j

17-8: Markovian Parents & Joint

• For any set of variables X_1, \ldots, X_n , we can calculate any row of the joint:

•
$$P(x_1, ..., x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)...$$

 $P(x_n|x_1, x_2, ..., x_{n-1})$

- Using Markovian parents
 - $P(x_1, ..., x_n) = P(x_1)P(x_2|PA_2)P(x_3|PA_3)...$ $P(x_n|PA_n)$

17-9: Markovian Parents & DAGs

- We can create a DAG which represents conditional independence information using Markovian parents.
 - Each variable is a node in the graph
 - For each variable *X_j*, add a directed link from all elements in *PA_j* to *X_j*

17-10: Burglary Example

- I want to know if my house has been robbed
- I install an alarm
 - Have two neighbors, John & Mary, who call me if they hear my alarm
- Small earthquakes could also set off the alarm
- Sometimes, small earthquakes are reported on the radio
- Variables:
 - Burglary, Earthquake, News Report, Alarm, John Calls, Mary Calls

17-11: DAG Example

17-12: Markovian Parents & DAGs

- The order that we consider variables is important!
- Causal ordering gives "best" DAGS, but non-causal works, too
- Example: Mary Calls, John Calls, News Report, Alarm, Burglary, Earthquake

17-13: DAG Example

 Order: Mary Calls, John Calls, News Report, Alarm, Burglary, Earthquake

17-14: Markovian Parents & DAGs

- The order that we consider variables is important!
- Causal ordering gives "best" DAGS, but non-causal works, too
- Example: News Report, Burglary, Mary Calls, Alarm, John Calls, Earthquake

17-15: DAG Example

Order: News Report, Burglary, Mary Calls, Alarm, John Calls, Earthquake

17-16: Markovian Parents & DAGs

- The order that we consider variables is important!
- Causal ordering gives "best" DAGS, but non-causal works, too
- Example: John Calls, Mary Cals, Alarm, Earthquake, News Report, Burglary,

17-17: DAG Example

 Order: John Calls, Mary Cals, Alarm, Earthquake, News Report, Burglary,

17-18: DAGs & Cond. Independence

- Given a DAG of Markovian Parents, we know that every variable X_i is independent of its ancestors, given its parents
- We also know quite a bit more

17-19: d-separation

To determine if a variable *X* is conditionally independent of *Y* given a set of variables *Z*:

- Examine all paths between X and Y in the graph
- Each node along a path can be "open" or "blocked"
 - A node at a head-to-tail or tail-to-tail junction is open if the node is not in *Z*, and closed otherwise.
 - A node at a head-to-head junction is open if the node *or any of its descendants* is not in *Z*, and closed otherwise.

17-20: d-separation Examples

(A ____ G)?

17-21: d-separation Examples

17-22: d-separation Examples

17-23: d-separation Examples

(A⊥⊥G|D)?

17-24: d-separation Examples

17-25: d-separation Examples

17-26: Bayesian Networks

To build a Bayesian Network:

- Select variables
- Order variables
 - Normally want a *causal* ordering
- Compute Markovian parents for each variable
- Compute $P(X_i|PA_i)$ for each variable

17-27: Test / Courier Example

 $\begin{array}{c|c} P(D) & D = ~d & D = d \\ \hline 0.999 & 0.001 \end{array}$ Disease P(T | D) | T = ~t T = t D = ~d | 0.9 | 0.1 D = d | 0.1 | 0.9Test P(C|T) C = ~c C = c T = ~t 0.95 0.05 T = t 0.1 0.9

Courier

17-28: Message Passing

- Once we have our Bayesian Network, we will calculate probabilities using message passing
- Example:
 - Leader of a group of troops wants to know how many soldiers are in the group
 - Sends a "count" message down line of soldiers
 - Gets a count reply back

17-29: Message Passing

Platoon leader counting soldiers

17-30: Message Passing

Platoon leader counting soldiers, from middle of line

17-31: Message Passing

atoon leader counting soldiers, with self-generating ount signal

17-32: Message Passing

eaderless Counting

17-33: Using Bayesian Networks

- A patient receives a "positive" result from the courier. Does the patient have the disease?
- What is P(d|c)?
- In general, what is *P*(*d*|*e*), where *e* is all the evidence that we have?

17-34: Breaking Up Evidence

Break evidence e into two pieces

- "causal evidence" or "causal support", e^+
- "diagnostic evidence" or "evidential support" e^-

$$P(d|e_{d}^{+}, e_{d}^{-}) = \frac{P(d|e_{d}^{+})P(e_{d}^{-}|d, e_{d}^{+})}{P(e_{d}^{-})}$$
$$= \frac{P(d|e_{d}^{+})P(e_{d}^{-}|d)}{P(e_{d}^{-})}$$
$$= \alpha P(d|e_{d}^{+})P(e_{d}^{-}|d)$$
17-35: Renaming

$$P(d|e_{d}^{+}, e_{d}^{-}) = \frac{P(d|e_{d}^{+})P(e_{d}^{-}|d, e_{d}^{+})}{P(e_{d}^{-})}$$
$$= \frac{P(d|e_{d}^{+})P(e_{d}^{-}|d)}{P(e_{d}^{-})}$$
$$= \alpha P(d|e_{d}^{+})P(e_{d}^{-}|d)$$

•
$$\pi(x) = P(x|e_x^+)$$

• $\lambda(x) = P(e_x^-|x)$

Thus, $\overline{P(d|e)} = \alpha \pi(\overline{d})\lambda(d)$

$$P(x|e_x^+, e_x^-) = \alpha P(x|e_x^+) P(e_x^-|x)$$

= $\alpha \pi(x)\lambda(x)$

- $\pi(x)$ is the "message" from upstream.
- $\lambda(x)$ is the "message" from downstream.

17-37: Calculating $\pi(d)$

- $\pi(d)$ is the probability that D = d, given upstream evidence for D
- All we have for upstream evidence is the prior probability for *D*
- $\pi(d) = \text{Prior Probability on } d = P(d) !$

17-38: Calculating $\lambda(d)$

 λ

$$(d) = P(e_d^-|d)$$

= $\sum_{t \in T} P(e_d^-|d, t)P(t|d)$
= $\sum_{t \in T} P(e_t^-|t)P(t|d)$
= $\sum_{t \in T} \lambda(t)P(t|d)$

17-39: Calculating $\lambda(d)$

$$\lambda(d) = \sum_{t \in T} \lambda(t) P(t|d)$$

$$\begin{aligned} \lambda(\neg d) &= \lambda(\neg t)P(\neg t|\neg d) &+ \lambda(t)P(t|\neg d) \\ \lambda(d) &= \lambda(\neg t)P(\neg t|d) &+ \lambda(t)P(t|d) \end{aligned}$$

17-40: Calculating $\lambda(d)$

 $\lambda(D) = [\lambda(\neg d), \lambda(d)]$

17-41: Calculating $\lambda(D)$

$$\lambda(d) = \sum_{t \in T} \lambda(t) P(t|d)$$

$$\begin{split} \lambda(D) &= [\lambda(\neg d), \lambda(d)] \\ &= [\lambda(\neg t)P(\neg t | \neg d) + \lambda(t)P(t | \neg d), \lambda(\neg t)P(\neg t | d) + \lambda(t)P(t | d)] \end{split}$$

17-42: Calculating $\lambda(D)$

$$\lambda(d) = \sum_{t \in T} \lambda(t) P(t|d)$$

$$\begin{split} \lambda(D) &= \left[\lambda(\neg d), \lambda(d)\right] \\ &= \left[\lambda(\neg t)P(\neg t|\neg d) + \lambda(t)P(t|\neg d), \lambda(\neg t)P(\neg t|d) + \lambda(t)P(t|d)\right] \\ &= \left[\begin{array}{c}P(\neg t|\neg d) & P(t|\neg d) \\ P(\neg t|d) & P(t|d)\end{array}\right] \left[\begin{array}{c}\lambda(\neg t) \\ \lambda(t)\end{array}\right] \end{split}$$

17-43: Calculating $\lambda(D)$

$$\lambda(d) = \sum_{t \in T} \lambda(t) P(t|d)$$

$$\begin{split} \lambda(D) &= [\lambda(\neg d), \lambda(d)] \\ &= [\lambda(\neg t)P(\neg t|\neg d) + \lambda(t)P(t|\neg d), \lambda(\neg t)P(\neg t|d) + \lambda(t)P(t|d)] \\ &= \begin{bmatrix} P(\neg t|\neg d) & P(t|\neg d) \\ P(\neg t|d) & P(t|d) \end{bmatrix} \begin{bmatrix} \lambda(\neg t) \\ \lambda(t) \end{bmatrix} \\ &= P(T|D)\lambda(T) \\ &= M_{T|D}\lambda(T) \end{split}$$

17-44: Calculating $\lambda(D)$

- $\lambda(D) = M_{T|D}\lambda(T)$
- $\lambda(T) = M_{C|T}\lambda(C)$
- $\lambda(C) = ?$
 - What is the evidence that $C = \neg c, C = c$?
 - We know that C = c
 - $\lambda(C) = [0, 1]$

17-45: Test / Courier Example

 $\begin{array}{c|c} P(D) & D = ~d & D = d \\ \hline 0.999 & 0.001 \end{array}$ Disease P(T | D) | T = ~t T = tD = ~d 0.9 0.1 D = d 0.1 0.9 Test P(C|T) | C = -C | C = c T = -t | 0.95 | 0.05 T = t | 0.1 | 0.9

(C) = [0, 1]

Courier

17-46: Test / Courier Example

17-47: Test / Courier Example

17-48: Calculating P(D|e)

- $\lambda(C) = [0, 1]$
- $\lambda(T) = M_{C|T}\lambda(C) = [0.05, 0.9]$
- $\lambda(D) = M_{T|D}\lambda(T) = [0.135, 0.815]$
- From before, $\pi(D) = P(D) = [0.999, 0.001]$
 - $P(D|e) = \alpha \pi(D)\lambda(D)$
 - $P(D|e) = \alpha[0.999, 0.001][0.135, 0.815]$
 - $P(D|e) = \alpha[0.134865, 0.000815]$

• $\alpha = 1/0.13568$

• P(D|e) = [0.993993, 0.006007]

17-49: Calculating P(T|e)

- What if we wanted to calculate the probability that the test actually was positive, given that the courier delivered a positive result?
- $P(T|e) = \alpha \pi(T)\lambda(T)$
- We know $\lambda(T)$ from before
- What is $\pi(T)$?

17-50: Calculating $\pi(t)$

7

$$\begin{aligned} f(t) &= P(t|e_t^+) \\ &= \sum_{d \in D} P(t|d, e_t^+) P(d|e_t^+) \\ &= \sum_{d \in D} P(t|d, e_d^+) P(d|e_d^+) \\ &= \sum_{d \in D} P(t|d) P(d|e_d^+) \\ &= \sum_{d \in D} P(t|d) \pi(d) \end{aligned}$$

17-51: Calculating $\pi(t)$

 $\mathcal{\Pi}$

$$\begin{aligned} f(t) &= P(t|e_t^+) \\ &= \sum_{d \in D} P(t|d, e_t^+) P(d|e_t^+) \\ &= \sum_{d \in D} P(t|d, e_d^+) P(d|e_d^+) \\ &= \sum_{d \in D} P(t|d) P(d|e_d^+) \\ &= \sum_{d \in D} P(t|d) \pi(d) \end{aligned}$$

 $\pi(\neg t) = P(\neg t | \neg d) P(\neg d | e_d^+) + P(\neg t | d) P(d | e_d^+)$ $\pi(t) = P(t | \neg d) P(\neg d | e_d^+) + P(t | d) P(d | e_d^+)$

17-52: Calculating $\pi(T)$

$$\pi(t) = \sum_{d \in D} P(t|d)\pi(d)$$

 $\pi(T) = [\pi(\neg t), \pi(t)]$ = $[P(\neg t | \neg d)\pi(\neg d) + P(\neg t | d)\pi(d), P(t | \neg d)\pi(\neg d) + P(t | d)\pi(d)]$ = $[\pi(\neg d), \pi(d)] \begin{bmatrix} P(\neg t | \neg d) & P(t | \neg d) \\ P(\neg t | d) & P(t | d) \end{bmatrix}$

17-53: Calculating $\pi(T)$

$$D) = [0.999, 0.001] \qquad \frac{P(D)}{D} = \frac{-d}{D} = \frac{D}{d}$$

$$\lambda(D) = [0.135, 0.815] \qquad Disease$$

$$\pi(T) = [0.8992, 0.1008]$$

$$\lambda(T) = [0.05, 0.9] \qquad Test$$

$$P(C|T|D) = T = \frac{-t}{D} = \frac{T}{d}$$

$$D = \frac{-d}{0.9} = \frac{0.9}{0.1}$$

$$D = \frac{1}{0.1} = \frac{0.9}{0.95}$$

$$Test$$

$$P(C|T) = \frac{C}{C} = \frac{-c}{C} = \frac{c}{T}$$

$$T = \frac{-t}{0.95} = \frac{0.95}{0.05}$$

$$T = t = \frac{1}{0.1} = \frac{0.95}{0.95}$$

$$\lambda(C) = [0, 1]$$

$$Courier$$

17-54: Calculating BEL(T) = P(T|e)

- $BEL(T) = \alpha \pi(T) \lambda(T)$
 - $\lambda(T) = [0.05, 0.9]$
 - $\pi(T) = [0.8992, 0.1008]$
 - $\pi(T)\lambda(T) = [0.04496, 0.09072]$
 - $\alpha = 1/(0.04496 + 0.09072) = 1/(0.13568)$
- BEL(T) = [0.331368, 0.668632]

17-55: Computation for Chains

- Calculating π messages:
 - π (root) = Prior on root
 - For any other variable *X* with parent *P*, $\pi(X) = \pi(P)M_{X|P}$
- Calculating λ messages:
 - $\lambda(\text{leaf}) = \text{evidence for leaf}$
 - ([1, 1, ..., 1] if no evidence)
 - For any other variable *X* with child *C*, $\lambda(X) = M_{C|X}\lambda(C)$

17-56: Computation for Chains

- Send π messages down
- Send λ messages up
- For any variable X, we can calculate BEL(X) = P(X|e) by multiplying the messages together, and normalizing
 - $P(X|e) = \alpha \lambda(X) \pi(X)$
 - (Pairwise multiplication)

17-57: Variable # of Values / Variables

- Of course, variables can have > 2 values
- Each variable can have a different number of values
- Disease Example
 - Doctor test for a disease
 - Test can be positive, indeterminate, or negative
 - Doctor discusses the result with the courier
 - Courier delivers result

17-58: Variable # of Values / Variables

$$\begin{array}{c|c} P(D) & D = ~d & D = d \\ \hline & 0.999 & 0.001 \end{array}$$

Disease

\mathbf{n}	P(T	D)	T = neg	g T = ind	T = pos
	D =	~d	0.8	0.1	0.1
	D =	d	0.1	0.1	0.8
7	1				
Т	est				
]	P(C T)	$C = \sim C C =$	С

$ \setminus \underline{P(C T)} $	$C = \sim C C = C$
\setminus T = neg	0.9 0.1
\setminus T = ind	0.5 0.5
$\sqrt{T} = pos$	0.1 0.9

Courier

17-59: Variable # of Values / Variables

 P(D)
 D = \sim d
 D = d

 0.999
 0.001

 Disease D) = [0.22, 0.78]Test $\lambda(T) = [0.1, 0.5, 0.9]$ $P(C|T) | C = \sim C | C = C$ T = neg 0.9 0.1 T = ind | 0.5 0.5T = pos 0.1 0.9Courier $\lambda(C) = [0, 1]$

17-60: Computation for Trees

- What if some of the nodes have > 1 child?
- Example: Send message via two different couriers

17-61: Computation for Trees

17-62: Computation for Trees

- How do we send λ messages in trees?
- Courier example: What is $\lambda(T)$, which is the probability of the downstream evidence given the test, if both couriers give a positive response?
- We will need to combine the messages that we get from each child into a single λ message
 - Use this λ message to compute BEL(T)
 - Use this λ message to send a message to D

17-63: Calculating $\lambda(t)$

$\overline{\lambda(t)} = P(e_t^-|t)$ $= P(e_{C1}^{-}, e_{C2}^{-}|t)$ $= P(e_{C1}^{-}|t)P(e_{C2}^{-}|t)$ $= \sum P(e_{C1}^{-}|c_1,t)P(c_1|t) \sum P(e_{C2}^{-}|c_2,t)P(c_2|t)$ $c_1 \in C1$ $c_{2} \in C2$ $= \sum P(e_{C1}^{-}|c_1)P(c_1|t) \sum P(e_{C2}^{-}|c_2)P(c_2|t)$ $c_1 \in C1$ $c_2 \in C2$ $= \sum \lambda(c_1)P(c_1|t) \sum \lambda(c_2)P(c_2|t)$ $c_1 \in C1$ $c_2 \in C2$

17-64: Calculating $\lambda(T)$

$$\lambda(t) = \sum_{c_1 \in C_1} \lambda(c_1) P(c_1|t) \sum_{c_2 \in C_2} \lambda(c_2) P(c_2|t)$$

$\lambda(T) = M_{C1|T}\lambda(C1) * M_{C2|T}\lambda(C2)$ = $\lambda_{C1}(T) * \lambda_{C2}(T)$

17-65: Computation for Trees

$$\begin{array}{c} P(D) \mid D = -d & D = d \\ 0.999 & 0.001 \end{array}$$

$$p(T \mid D) \mid T = -t & T = t \\ D = -d & 0.9 & 0.1 \\ D = d & 0.1 & 0.9 \end{array}$$

$$\lambda(T) = [0.0025, 0.81] \qquad Test$$

$$\lambda_{C1}(T) = [0.05, 0.9] \qquad \qquad \lambda_{C2}(T) = [0.05, 0.9] \qquad \qquad \lambda_{C2}(T) = [0.05, 0.9] \qquad \qquad \qquad P(C1\mid T) \mid C = -c & C = c \\ T = -t & 0.95 & 0.05 \\ T = t & 0.1 & 0.9 \\ Courier1 \qquad Courier2 \\ \lambda(C1) = [0,1] \qquad \qquad \lambda(C2) = [0,1] \end{array}$$

17-66: Computation for Trees

- $BEL(D) = \alpha \pi(D)\lambda(D)$
 - $\pi(D) = [0.999, 0.001]$
 - $\lambda(D) = [0.08325, 0.72925]$
 - $\pi(D)\lambda(D) = [0.0831667, 0.00072925]$
 - $\alpha = 1/(0.08389595)$
- BEL(D) = [0.991308, 0.008692]

17-67: Sending π Messages in Trees

- $\pi(x) = P(x|e_x^+)$
- That is, $\pi(x)$ is P(X = x), given all upstream evidence from X

- $\pi(X) = P(P|e_X^+)P(X|P)$
- $\pi(P) * \lambda_{\text{other children of } P}(P)M_{X|P}$
- $(BEL(P)/\lambda_X(P))M_{X|P}$
 - Pairwise division

17-68: Sending π Messages in Trees

- What is the probability that Courier 1 will give a positive result, given that Courier 2 gave a positive result?
- P(C1|e)
 - Evidence *e* is the prior probability for disease, and the fact that Courier 2 gave a positive result

17-69: Sending π Messages in Trees

- What is the probability that Courier 1 will give a positive result, given that Courier 2 gave a positive result?
- P(C1|e)

• Evidence *e* is the prior probability for disease, and the fact that Courier 2 gave a positive result

• $\pi(C1) = \alpha \pi(T) * \lambda_{C2}(T) M_{C1|T}$

17-70: Computation for Trees

1

$$\frac{P(D) | D = -d - D = d}{| 0.999 - 0.001}$$

$$\pi(D) = [0.999, 0.001] Disease$$

$$\pi(T) = [0.8992, 0.1008] \qquad P(T|D) | T = -t - T = t - D = -d | 0.9 - 0.1 - D = -d | 0.1 - 0.9$$

$$Test$$

$$\pi(T)\lambda_{C2}(T) = [.04496, 0.09072] \qquad P(C1|T) | C = -c - C = c - C = c - T = -t | 0.95 - 0.05 - T = -t | 0.1 - 0.9$$

$$Courier1 \qquad Courier2 - c - C = [0,1]$$

$$\lambda(C2) = [0,1]$$
17-71: Computation for Trees

- For root variable *R*, $\pi(R) = Prior$ on *R*
- For unobserved leaf variables *L*, $\lambda(L) = [1, 1, ..., 1]$
- For leaf variables L observed to have the value l_k,
 λ(L) = [0,...,0,1,0,...0] the kth element is 1, all others are 0
- Pass π and λ messages through the tree
 - Multiply π message by λ messages from other childen, them multiply the result by the link matrix
 - Multiply link matrix by λ messages
 - Multiple Children multiply λ messages

17-72: Multiple Parents (Polytrees)

- Add a gender variable
- Test for disease depends upon gender, as well as disease state
- Need to expand link matrix for test to include gender
 - Need P(t|g, d) for all values of t, g, d

17-73: Multiple Parents (Polytrees)

17-74: Calculating $\pi()$ in Polytrees

- For each parent *X*, we have $P(X|e^+)$
 - P(D) = [0.999, 0.001], P(G) = [0.5, 0, 5]
- We need the probabilities for all combinations of parents
 - $P(\neg d, m), P(\neg d, f), P(d, m), P(d, f)$
- Parents are *independent* given upstream evidence
 - $P(\neg d, m) = P(\neg d)P(m)$

17-75: Calculating $\pi()$ in Polytrees

- We have $[P(\neg d), P(d)]$ and [P(m), P(f)]
- We need $[P(\neg d, m), P(\neg d, f), P(d, m), P(d, f)]$

• $P(\neg d, m) = P(\neg d)P(m), P(\neg d, f) = P(\neg d)P(f)$, etc.

- $P(\neg d, m) = 0.999 * 0.5, P(\neg d, f) = 0.999 * 0.5,$ P(d, m) = 0.001 * 0.5, P(d, f) = 0.001 * 0.5
- P(D,G) = [0.4995, 0.4995, 0.0005.0.0005]

• $\pi(T) =$

$$\pi(\neg d, m) \quad \pi(\neg d, f) \quad \pi(d, m) \quad \pi(d, f) \end{bmatrix} \begin{bmatrix} P(\neg t | \neg d, m) & P(t | \neg d, m) \\ P(\neg t | \neg d, f) & P(t | \neg d, f) \\ P(\neg t | d, m) & P(t | d, m) \\ P(\neg t | d, f) & P(t | d, f) \end{bmatrix}$$

17-76: Calculating $\pi(T)$

$$\begin{bmatrix} \pi(\neg d,m) & \pi(\neg d,f) & \pi(d,m) & \pi(d,f) \end{bmatrix} \begin{bmatrix} P(\neg t|\neg d,m) & P(t|\neg d,m) \\ P(\neg t|\neg d,f) & P(t|\neg d,f) \\ P(\neg t|d,m) & P(t|d,m) \\ P(\neg t|d,f) & P(t|d,f) \end{bmatrix}$$

$$\begin{bmatrix} 0.9 & 0.1 \\ 0.4995 & 0.4995 & 0.0005 & 0.0005 \end{bmatrix} \begin{bmatrix} 0.9 & 0.1 \\ 0.8 & 0.2 \\ 0.1 & 0.9 \\ 0.2 & 0.8 \end{bmatrix}$$

= 0.8493 0.1507

17-77: Calculating BEL(T)

- What is our belief that the test actually is positive, given that the courier delivers a positive message?
 - $\pi(T) = [0.8493, 0.1507]$
 - $\lambda(T) = \begin{bmatrix} 0.95 & 0.05 \\ 0.1 & 0.9 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 - $\lambda(T) = [0.05, 0.9]$
- $BEL(T) = \alpha[0.42465, 0.13565] (\alpha = 1/0.5603)$
- BEL(T) = [0.757898, 0.242102]

17-78: Calculating $\pi()$ in Polytrees

- To calculate $\pi(X)$, when X has multiple parents m:
 - For each parent Y_k of X, calculate $P(Y_k|e_X^+)$ (Define message from Y_k to X, $\pi_X(Y_k) = (Y_k|e_X^+)$
 - If *X* is the only child of Y_k , $\pi_x(Y_k) = \pi(Y_k)$
 - If Y_k has children $C_1 \dots C_j$ other than X, then $\pi_X(Y_k) = \pi(Y_k) \prod_{i=i\dots j} \lambda_{C_i}(Y)$
 - (That is, $\pi_X(Y_k) = BEL(Y)/\lambda_X(Y)$)
 - Combine the π_X messages from all the parents, and multiply the result by the link matrix $M_{X|Y_1...Y_m}$ to get $\pi(X)$

17-79: Calculating λ () in Polytrees

17-80: Calculating $\lambda()$ in Polytrees

• How do we send a λ message up to Disease, given the combined link matrix for Disease and

Gender? $\begin{bmatrix} P(\neg t | \neg d, m) & P(t | \neg d, m) \\ P(\neg t | \neg d, f) & P(t | \neg d, f) \\ P(\neg t | d, m) & P(t | d, m) \\ P(\neg t | d, f) & P(t | d, f) \end{bmatrix}$

• If we knew that the gender was definitely male, then we could select the appropriate two rows, to create a 2x2 matrix: $\begin{bmatrix} P(\neg t | \neg d, m) & P(t | \neg d, m) \\ P(\neg t | d, m) & P(t | d, m) \end{bmatrix}$

17-81: Calculating λ () in Polytrees

• How do we send a λ message up to Disease, given the combined link matrix for Disease and

Gender? $\begin{bmatrix} P(\neg t | \neg d, m) & P(t | \neg d, m) \\ P(\neg t | \neg d, f) & P(t | \neg d, f) \\ P(\neg t | d, m) & P(t | d, m) \\ P(\neg t | d, f) & P(t | d, f) \end{bmatrix}$

• If we knew that the gender was definitely female, then we could select the appropriate two rows, to create a 2x2 matrix: $\begin{bmatrix} P(\neg t | \neg d, f) & P(t | \neg d, f) \\ P(\neg t | d, f) & P(t | d, f) \end{bmatrix}$

17-82: Calculating $\lambda()$ in Polytrees

- If we knew the value of Gender, we could select the correct rows to build the appropriate link matrix to send the lambda message.
- We don't know for certain the value of Gender, but we *do* know the probability *G*, given evidence upstream of *T*:

•
$$P(G|e_T^+) = \pi_T(G) = \pi(G) = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix}$$

• We can then average the rows:

 $P(\neg t | \neg d, m) * P(m) + P(\neg t | \neg d, f)P(f) \qquad P(t | \neg d, m)P(m) + P(t | \neg d, f)P(f)$ $P(\neg t | d, m) * P(m) + P(\neg t | d, f)P(f) \qquad P(t | d, m)P(m) + P(t | d, f)P(f)$

17-83: Calculating λ () in Polytrees

Original Link Matrix $M_{T D,C}$							
P(T D,C)		T = -	¬t	T = t			
$\neg d, m$		0.9		0.1			
$\neg d, f$		0.8		0.2			
d,m		0.1		0.9			
d, f		0.2		0.8			
Revised Link Matrix $M_{T D}$							
P(T D)	T	$= \neg t$	T	= t			
$\neg d$	0.	85	0.	15			
d	0.	15	0.8	85			

17-84: Calculating BEL(D)

 $\lambda(D) = \begin{bmatrix} 0.85 & 0.15 \\ 0.15 & 0.85 \end{bmatrix} \begin{bmatrix} 0.05 \\ 0.9 \end{bmatrix}$ = [0.1775 0.7725] $\pi(D) = \begin{bmatrix} 0.999 & 0.001 \end{bmatrix}$ $BEL(D) = \alpha \pi(D) \lambda(D)$ $= \alpha \left[0.177323 \ 0.0007725 \right]$ = [0.99566 0.00434]

17-85: Complete Polytree Example

(Courier link matrices the same)

17-86: Complete Polytree Example

• Find *BEL*(*D*), given that:

- Both couriers return a positive result
- Patients name is John

17-87: Polytree Example: λ s

lourier1

Courier2

- $\lambda(C_1) = \lambda(C_2) = [0, 1]$
- $\lambda_{C_1}(T) = [0.1, 0.9]$
- $\lambda_{C_2}(T) = [0.1, 0.9]$
- $\lambda(T) = [0.01, 0.81]$

17-88: Polytree Example: λ s

• $\lambda(\overline{N}) = [0, 0, 1]$ • $\lambda(G) = [0.5, 0.1]$

17-89: Polytree Example: λ s

17-90: Polytree Example: λ s

 λ (T) = [0.01, 0.81]

17-91: Polytree Example: λ s

17-92: Polytree Example: λ s

17-93: Polytree Example: λ s

17-94: Observing Non-Leaves

- What if we observe a variable that is not a leaf?
 - For instance, we observe the actual test result
- Add a "phantom child"
- Set *λ* message from that child to
 [0,...,0,1,0,...,0], where the 1 occurs at the
 observed value
- This λ message will override all other evidence for the node

17-95: Bayesian Network Failures

- Unfortunately, message passing only works for polytrees – DAGs whose underlying undirected graph has no cycles.
- There are systems that we would like to model (including many medical systems) whose Markovian DAG does not form a polytree.
- Message passing system is not guaranteed to produce correct results in non-polytrees.

17-96: Non-Polytree DAGs

• We can still calculate $P(X_i|PA_i)$...

17-97: Non-Polytree DAGs

 This is still enough information to answer queries – we just can't use the message passing scheme

• why?

17-98: Monte Carlo Method

- For each root variable, pick a value for the variable according to the prior.
- For example:
 - X is a root variable
 - $\pi(X) = [0.3, 0.2, 0.5]$
 - \Rightarrow Pick the value x_1 for X with probability 0.3, x_2 with probability 0.2, and x_3 with probability 0.5

17-99: Monte Carlo Method

- Once a value for all of the parents of a node Z have been chosen, pick a value for the node based on the value of the parents, and P(Z|PAZ)
- For example:
 - If Z has a single parent W
 - W = [0, 1, 0],

• $P(Z W) =$	P(Z W)	z_1	\mathcal{Z}_2	<i>Z</i> 3
	w_1	0.1	0.2	0.8
	w_2	0.3	0.4	0.3
	W ₃	0.9	0.1	0

• \Rightarrow Pick z_1 with probability 0.3, z_2 with probability 0.4, and z_3 with probability 0.3.

17-100: Monte Carlo Method

- Once values have been chosen for all variables in the network, we have a single trial
- Do repeated trials, collect frequency information, and use that information to determine the values of queries.

17-101: Monte Carlo Method

- Once values have been chosen for all variables in the network, we have a single trial
- Do repeated trials, collect frequency information, and use that information to determine the values of queries.
 - To determine P(x|y), count the number of trials in which X = x and Y = y, and the number of trials in which Y = y, and divide to get an estimate on P(x|y)

17-102: Monte Carlo Method

• Disadvantages of the Monte Carlo Method:

17-103: Monte Carlo Method

- Disadvantages of the Monte Carlo Method:
 - Not guaranteed to find an exact probability in finite time.
 - Can require exponential time to get good results.
 - Calculating *P*(*x*|*y*) when both *x* and *y* are unlikely can require a very large number of iterations to get good data.

17-104: Monte Carlo Method

• Advantages of the Monte Carlo Method:

17-105: Monte Carlo Method

- Advantages of the Monte Carlo Method:
 - Does not require exponential space
 - Do not need to modify the network (no node collapsing)
 - Easy to implement
 - And easy to parallelize
 - Can get approximate answers "quickly", and can get better answers with more time

17-106: Other Techniques

- There are a plethora of other techniques for doing inference in non-polytrees
 - Combining nodes to remove cycles
 - Methods using undirected graphs
 - Leave those methods unexplored
works

- Diagnosis (widely used in Microsoft's products)
- Medical diagnosis
- Spam filtering
- Expert systems applications (plant control, monitoring)
- Robotic control