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17-0: Probabilistic Reasoning

Given:

Set of conditional probabilities (P(t1|d), etc)

Set of prior probabilities (P(d))

Conditional independence information
(P(t1|d, t2) = P(t1|d))

We can calculate any quantity that we like

Problems:

Hard to know exactly what data we need

Even given sufficient data, calculations can be
complex – especially dealing with conditional
independence



17-1: Bayesian Networks

Bayesian Networks are:

Clever encoding of conditional independence
information

Mechanical, “turn the crank” method for calculation

Can be done by a computer

Nothing “magic” about Bayesian Networks



17-2: Directed Acyclic Graphs

We will encode conditional independence
information using Directed Acyclic Graphs (or
DAGs)

While we will use causal language to give intuitive
justification, these DAGs are not necessarily
causal (more on this later)

Three basic “junctions”



17-3: Head-to-Tail

A

B

C

“Causal Chain”

Rain→Wet Pavement→ Slippery Pavement

(A 6y C)

(A y C|B)



17-4: Tail-to-Tail

A

B

C

“Common Cause”

Reading Ability← Age→ Shoe Size

(A 6y C)

(A y C|B)



17-5: Head-to-Head

A

B

C

“Common Effect”

Rain→Wet Grass← Sprinkler

(A y C)

(A 6y C|B)



17-6: Head-to-Head

Rain

Wet Grass

Sprinkler

Slugs

Also need to worry about descendants of
head-head junctions.

(Rain y Sprinkler)

(Rain 6y Sprinkler | Slugs)



17-7: Markovian Parents

V is an ordered set of variables X1, X2, . . . Xn.

P(V) is a joint probability distribution over V

Define the set of Markovian Parents of variable X j,
PA j as:

Minimal set of predecessors of X j such that

P(X j|X1, . . . X j−1) = P(X j|PA j)

The Markovian Parents of a variable X j are often

(but not always) the direct causes of X j



17-8: Markovian Parents & Joint

For any set of variables X1, . . . Xn, we can calculate
any row of the joint:

P(x1, ...xn) = P(x1)P(x2|x1)P(x3|x1, x2) . . .

P(xn|x1, x2, . . . xn−1)

Using Markovian parents

P(x1, ...xn) = P(x1)P(x2|PA2)P(x3|PA3) . . .

P(xn|PAn)



17-9: Markovian Parents & DAGs

We can create a DAG which represents conditional
independence information using Markovian
parents.

Each variable is a node in the graph

For each variable X j, add a directed link from
all elements in PA j to X j



17-10: Burglary Example

I want to know if my house has been robbed

I install an alarm

Have two neighbors, John & Mary, who call me
if they hear my alarm

Small earthquakes could also set off the alarm

Sometimes, small earthquakes are reported on the
radio

Variables:

Burglary, Earthquake, News Report, Alarm,
John Calls, Mary Calls



17-11: DAG Example

Burglary Earthquake

News ReportAlarm

John
Calls

Mary
Calls



17-12: Markovian Parents & DAGs

The order that we consider variables is important!

Causal ordering gives “best” DAGS, but
non-causal works, too

Example: Mary Calls, John Calls, News Report,
Alarm, Burglary, Earthquake



17-13: DAG Example

Order: Mary Calls, John Calls, News Report,
Alarm, Burglary, Earthquake

Burglary
Earthquake

News Report

Alarm

John
Calls

Mary
Calls



17-14: Markovian Parents & DAGs

The order that we consider variables is important!

Causal ordering gives “best” DAGS, but
non-causal works, too

Example: News Report, Burglary, Mary Calls,
Alarm, John Calls, Earthquake



17-15: DAG Example

Order: News Report, Burglary, Mary Calls, Alarm,
John Calls, Earthquake

Burglary

Earthquake

News Report

Alarm

John
Calls

Mary
Calls



17-16: Markovian Parents & DAGs

The order that we consider variables is important!

Causal ordering gives “best” DAGS, but
non-causal works, too

Example: John Calls, Mary Cals, Alarm,
Earthquake, News Report, Burglary,



17-17: DAG Example

Order: John Calls, Mary Cals, Alarm, Earthquake,
News Report, Burglary,

Burglary

Earthquake

News Report

Alarm

John
Calls

Mary
Calls



17-18: DAGs & Cond. Independence

Given a DAG of Markovian Parents, we know that
every variable Xi is independent of its ancestors,
given its parents

We also know quite a bit more



17-19: d-separation

To determine if a variable X is conditionally
independent of Y given a set of variables Z:

Examine all paths between X and Y in the graph

Each node along a path can be “open” or “blocked”

A node at a head-to-tail or tail-to-tail junction is
open if the node is not in Z, and closed
otherwise.

A node at a head-to-head junction is open if the
node or any of its descendants is not in Z, and
closed otherwise.



17-20: d-separation Examples

A B

C

D

E

F G

H

(A  G)?



17-21: d-separation Examples

A B

C

D

E

F G

H

(A  G)?

blocked

open

blocked

Path
Blocked



17-22: d-separation Examples

A B

C

D

E

F G

H

(A  G)!

blocked

open
open

Path
Blocked



17-23: d-separation Examples

A B

C

D

E

F G

H

(A  G|D)?



17-24: d-separation Examples

A B

C

D

E

F G

H

(A  G|D)

Open

Open

Open
Path
Open



17-25: d-separation Examples

A B

C

D

E

F G

H



17-26: Bayesian Networks

To build a Bayesian Network:

Select variables

Order variables

Normally want a causal ordering

Compute Markovian parents for each variable

Compute P(Xi|PAi) for each variable



17-27: Test / Courier Example

Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9



17-28: Message Passing

Once we have our Bayesian Network, we will
calculate probabilities using message passing

Example:

Leader of a group of troops wants to know how
many soldiers are in the group

Sends a “count” message down line of soldiers

Gets a count reply back



17-29: Message Passing

12345

Platoon leader counting soldiers



17-30: Message Passing

12321

Platoon leader counting soldiers, from middle of line



17-31: Message Passing

12321

Platoon leader counting soldiers, with self-generating

count signal



17-32: Message Passing

12345

1 2 3 4 5

Leaderless Counting



17-33: Using Bayesian Networks

A patient receives a “positive” result from the
courier. Does the patient have the disease?

What is P(d|c)?

In general, what is P(d|e), where e is all the
evidence that we have?



17-34: Breaking Up Evidence

Break evidence e into two pieces

“causal evidence” or “causal support”, e+

“diagnostic evidence” or “evidential support” e−

P(d|e+d , e
−
d ) =

P(d|e+
d
)P(e−

d
|d, e+

d
)

P(e−
d
)

=

P(d|e+
d
)P(e−

d
|d)

P(e−
d
)

= αP(d|e+d )P(e−d |d)



17-35: Renaming

P(d|e+d , e
−
d ) =

P(d|e+
d
)P(e−

d
|d, e+

d
)

P(e−
d
)

=

P(d|e+
d
)P(e−

d
|d)

P(e−
d
)

= αP(d|e+d )P(e−d |d)

π(x) = P(x|e+x )

λ(x) = P(e−x |x)

Thus, P(d|e) = απ(d)λ(d)



17-36: Renaming

P(x|e+x , e
−
x ) = αP(x|e+x )P(e−x |x)

= απ(x)λ(x)

π(x) is the “message” from upstream.

λ(x) is the “message” from downstream.



17-37: Calculating π(d)

π(d) is the probability that D = d, given upstream
evidence for D

All we have for upstream evidence is the prior
probability for D

π(d) = Prior Probability on d = P(d) !



17-38: Calculating λ(d)

λ(d) = P(e−d |d)

=

∑

t∈T

P(e−d |d, t)P(t|d)

=

∑

t∈T

P(e−t |t)P(t|d)

=

∑

t∈T

λ(t)P(t|d)



17-39: Calculating λ(d)

λ(d) =
∑

t∈T

λ(t)P(t|d)

λ(¬d) = λ(¬t)P(¬t|¬d) + λ(t)P(t|¬d)

λ(d) = λ(¬t)P(¬t|d) + λ(t)P(t|d)



17-40: Calculating λ(d)

λ(d) =
∑

t∈T

λ(t)P(t|d)

λ(D) = [λ(¬d), λ(d)]



17-41: Calculating λ(D)

λ(d) =
∑

t∈T

λ(t)P(t|d)

λ(D) = [λ(¬d), λ(d)]

= [λ(¬t)P(¬t|¬d)+λ(t)P(t|¬d), λ(¬t)P(¬t|d)+λ(t)P(t|d)]



17-42: Calculating λ(D)

λ(d) =
∑

t∈T

λ(t)P(t|d)

λ(D) = [λ(¬d), λ(d)]

= [λ(¬t)P(¬t|¬d)+λ(t)P(t|¬d), λ(¬t)P(¬t|d)+λ(t)P(t|d)]

=













P(¬t|¬d) P(t|¬d)

P(¬t|d) P(t|d)

























λ(¬t)

λ(t)















17-43: Calculating λ(D)

λ(d) =
∑

t∈T

λ(t)P(t|d)

λ(D) = [λ(¬d), λ(d)]

= [λ(¬t)P(¬t|¬d)+λ(t)P(t|¬d), λ(¬t)P(¬t|d)+λ(t)P(t|d)]

=













P(¬t|¬d) P(t|¬d)

P(¬t|d) P(t|d)

























λ(¬t)

λ(t)













= P(T |D)λ(T )

= MT |Dλ(T )



17-44: Calculating λ(D)

λ(D) = MT |Dλ(T )

λ(T ) = MC|Tλ(C)

λ(C) = ?

What is the evidence that C = ¬c,C = c?

We know that C = c

λ(C) = [0, 1]



17-45: Test / Courier Example

Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

λ(C)= [0, 1]



17-46: Test / Courier Example

Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

λ(C)= [0, 1]

λ(T)= [0.05, 0.9]



17-47: Test / Courier Example

Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

λ(C)= [0, 1]

λ(T)= [0.05, 0.9]

λ(D)= [0.135, 0.815]



17-48: Calculating P(D|e)

λ(C) = [0, 1]

λ(T ) = MC|Tλ(C) = [0.05, 0.9]

λ(D) = MT |Dλ(T ) = [0.135, 0.815]

From before, π(D) = P(D) = [0.999, 0.001]

P(D|e) = απ(D)λ(D)

P(D|e) = α[0.999, 0.001][0.135, 0.815]

P(D|e) = α[0.134865, 0.000815]

α = 1/0.13568

P(D|e) = [0.993993, 0.006007]



17-49: Calculating P(T |e)

What if we wanted to calculate the probability that
the test actually was positive, given that the courier
delivered a positive result?

P(T |e) = απ(T )λ(T )

We know λ(T ) from before

What is π(T )?



17-50: Calculating π(t)

π(t) = P(t|e+t )

=

∑

d∈D

P(t|d, e+t )P(d|e+t )

=

∑

d∈D

P(t|d, e+d )P(d|e+d )

=

∑

d∈D

P(t|d)P(d|e+d )

=

∑

d∈D

P(t|d)π(d)



17-51: Calculating π(t)

π(t) = P(t|e+t )

=

∑

d∈D

P(t|d, e+t )P(d|e+t )

=

∑

d∈D

P(t|d, e+d )P(d|e+d )

=

∑

d∈D

P(t|d)P(d|e+d )

=

∑

d∈D

P(t|d)π(d)

π(¬t) = P(¬t|¬d)P(¬d|e+
d
) + P(¬t|d)P(d|e+

d
)

π(t) = P(t|¬d)P(¬d|e+
d
) + P(t|d)P(d|e+

d
)



17-52: Calculating π(T )

π(t) =
∑

d∈D

P(t|d)π(d)

π(T ) = [π(¬t), π(t)]

= [P(¬t|¬d)π(¬d)+P(¬t|d)π(d), P(t|¬d)π(¬d)+P(t|d)π(d)]

= [π(¬d), π(d)]













P(¬t|¬d) P(t|¬d)

P(¬t|d) P(t|d)















17-53: Calculating π(T )

Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

λ(C)= [0, 1]

λ(T)= [0.05, 0.9]

λ(D)= [0.135, 0.815]

π(T)= [0.8992, 0.1008]

π(D)= [0.999, 0.001]



17-54: Calculating BEL(T ) = P(T |e)

BEL(T ) = απ(T )λ(T )

λ(T ) = [0.05, 0.9]

π(T ) = [0.8992, 0.1008]

π(T )λ(T ) = [0.04496, 0.09072]

α = 1/(0.04496 + 0.09072) = 1/(0.13568)

BEL(T ) = [0.331368, 0.668632]



17-55: Computation for Chains

Calculating π messages:

π(root) = Prior on root

For any other variable X with parent P,
π(X) = π(P)MX|P

Calculating λ messages:

λ(leaf) = evidence for leaf
([1, 1, . . . , 1] if no evidence)

For any other variable X with child C,
λ(X) = MC|Xλ(C)



17-56: Computation for Chains

Send π messages down

Send λ messages up

For any variable X, we can calculate
BEL(X) = P(X|e) by multiplying the messages
together, and normalizing

P(X|e) = αλ(X)π(X)

(Pairwise multiplication)



17-57: Variable # of Values / Variables

Of course, variables can have > 2 values

Each variable can have a different number of
values

Disease Example

Doctor test for a disease

Test can be positive, indeterminate, or negative

Doctor discusses the result with the courier

Courier delivers result



17-58: Variable # of Values / Variables

Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D) T = neg T = ind

0.8 0.1D = ~d

D =  d 0.1 0.1

P(C|T) C = ~c C = c

0.9 0.1T = neg

T = ind 0.5 0.5

T = pos

0.1

0.8

T = pos 0.1 0.9



17-59: Variable # of Values / Variables

Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D) T = neg T = ind

0.8 0.1D = ~d

D =  d 0.1 0.1

P(C|T) C = ~c C = c

0.9 0.1T = neg

T = ind 0.5 0.5

T = pos

0.1

0.8

T = pos 0.1 0.9

λ(C)=[0, 1]

λ(T)=[0.1, 0.5. 0.9]

λ(D)=[0.22, 0.78]



17-60: Computation for Trees

What if some of the nodes have > 1 child?

Example: Send message via two different couriers



17-61: Computation for Trees

Disease

Test

Courier2

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C2|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

Courier1

P(C1|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9



17-62: Computation for Trees

How do we send λ messages in trees?

Courier example: What is λ(T ), which is the
probability of the downstream evidence given the
test, if both couriers give a positive response?

We will need to combine the messages that we get
from each child into a single λ message

Use this λ message to compute BEL(T )

Use this λ message to send a message to D



17-63: Calculating λ(t)

λ(t) = P(e−t |t)

= P(e−C1, e
−
C2|t)

= P(e−C1|t)P(e−C2|t)

=

∑

c1∈C1

P(e−C1|c1, t)P(c1|t)
∑

c2∈C2

P(e−C2|c2, t)P(c2|t)

=

∑

c1∈C1

P(e−C1|c1)P(c1|t)
∑

c2∈C2

P(e−C2|c2)P(c2|t)

=

∑

c1∈C1

λ(c1)P(c1|t)
∑

c2∈C2

λ(c2)P(c2|t)



17-64: Calculating λ(T )

λ(t) =
∑

c1∈C1

λ(c1)P(c1|t)
∑

c2∈C2

λ(c2)P(c2|t)

λ(T ) = MC1|Tλ(C1) ∗ MC2|Tλ(C2)

= λC1(T ) ∗ λC2(T )



17-65: Computation for Trees

Disease

Test

Courier2

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C2|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

Courier1

P(C1|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

λ(C1) = [0,1] λ(C2) = [0,1]

λ     (T) = [0.05, 0.9]λ     (T) = [0.05, 0.9]
C1 C2

λ (T) = [0.0025, 0.81]

λ (D) = [0.08325, 0.72925]



17-66: Computation for Trees

BEL(D) = απ(D)λ(D)

π(D) = [0.999, 0.001]

λ(D) = [0.08325, 0.72925]

π(D)λ(D) = [0.0831667, 0.00072925]

α = 1/(0.08389595)

BEL(D) = [0.991308, 0.008692]



17-67: Sending π Messages in Trees

π(x) = P(x|e+x )

That is, π(x) is P(X = x), given all upstream
evidence from X

X

P
π(x)

π(X) = P(P|e+
X
)P(X|P)

π(P) ∗ λother children of P(P)MX|P

(BEL(P)/λX(P))MX|P

Pairwise division



17-68: Sending π Messages in Trees

What is the probability that Courier 1 will give a
positive result, given that Courier 2 gave a positive
result?

P(C1|e)

Evidence e is the prior probability for disease,
and the fact that Courier 2 gave a positive result



17-69: Sending π Messages in Trees

What is the probability that Courier 1 will give a
positive result, given that Courier 2 gave a positive
result?

P(C1|e)

Evidence e is the prior probability for disease,
and the fact that Courier 2 gave a positive result

π(C1) = απ(T ) ∗ λC2(T )MC1|T



17-70: Computation for Trees

Disease

Test

Courier2

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C2|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

Courier1

P(C1|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

λ(C2) = [0,1]

λ     (T) = [0.05, 0.9]π(T)λ     (T) = [.04496, 0.09072]
C2 C2

π(T) = [0.8992, 0.1008]

π(D) = [0.999, 0.001]

π(C1) = α[0.051884, 0.083896]
      = [0.382952, 0.619232]



17-71: Computation for Trees

For root variable R, π(R) = Prior on R

For unobserved leaf variables L, λ(L) = [1, 1, . . . , 1]

For leaf variables L observed to have the value lk,
λ(L) = [0, . . . , 0, 1, 0, . . . 0] – the kth element is 1, all
others are 0

Pass π and λ messages through the tree

Multiply π message by λ messages from other
childen, them multiply the result by the link
matrix

Multiply link matrix by λ messages
Multiple Children – multiply λ messages



17-72: Multiple Parents (Polytrees)

Add a gender variable

Test for disease depends upon gender, as well as
disease state

Need to expand link matrix for test to include
gender

Need P(t|g, d) for all values of t, g, d



17-73: Multiple Parents (Polytrees)

Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D,G) T = ~t T = t

0.9 0.1~d, m

~d, f 0.8 0.2

P(C|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

Gender

P(G) G = m G = f

0.50.5

0.1 0.9 d, m

 d, f 0.2 0.8



17-74: Calculating π() in Polytrees

For each parent X, we have P(X|e+)

P(D) = [0.999, 0.001], P(G) = [0.5, 0, 5]

We need the probabilities for all combinations of
parents

P(¬d,m), P(¬d, f ), P(d,m), P(d, f )

Parents are independent given upstream evidence

P(¬d,m) = P(¬d)P(m)



17-75: Calculating π() in Polytrees

We have [P(¬d), P(d)] and [P(m), P( f )]

We need [P(¬d,m), P(¬d, f ), P(d,m), P(d, f )]

P(¬d,m) = P(¬d)P(m), P(¬d, f ) = P(¬d)P( f ), etc.

P(¬d,m) = 0.999 ∗ 0.5, P(¬d, f ) = 0.999 ∗ 0.5,
P(d,m) = 0.001 ∗ 0.5, P(d, f ) = 0.001 ∗ 0.5

P(D,G) = [0.4995, 0.4995, 0.0005.0.0005]

π(T ) =

[

π(¬d,m) π(¬d, f ) π(d,m) π(d, f )

]

















































P(¬t|¬d,m) P(t|¬d,m)

P(¬t|¬d, f ) P(t|¬d, f )

P(¬t|d,m) P(t|d,m)

P(¬t|d, f ) P(t|d, f )



















































17-76: Calculating π(T )

[

π(¬d,m) π(¬d, f ) π(d,m) π(d, f )

]

















































P(¬t|¬d,m) P(t|¬d,m)

P(¬t|¬d, f ) P(t|¬d, f )

P(¬t|d,m) P(t|d,m)

P(¬t|d, f ) P(t|d, f )

















































=

[

0.4995 0.4995 0.0005 0.0005

]

















































0.9 0.1

0.8 0.2

0.1 0.9

0.2 0.8

















































=
[

0.8493 0.1507
]



17-77: Calculating BEL(T )

What is our belief that the test actually is positive,
given that the courier delivers a positive message?

π(T ) = [0.8493, 0.1507]

λ(T ) =













0.95 0.05

0.1 0.9

























0

1













λ(T ) = [0.05, 0.9]

BEL(T ) = α[0.42465, 0.13565] (α = 1/0.5603)

BEL(T ) = [0.757898, 0.242102]



17-78: Calculating π() in Polytrees

To calculate π(X), when X has multiple parents m:

For each parent Yk of X, calculate P(Yk|e
+

X
)

(Define message from Yk to X, πX(Yk) = (Yk|e
+

X
)

If X is the only child of Yk, πx(Yk) = π(Yk)

If Yk has children C1 . . .C j other than X, then
πX(Yk) = π(Yk)

∏

i=i... j λCi
(Y)

(That is, πX(Yk) = BEL(Y)/λX(Y))

Combine the πX messages from all the parents,
and multiply the result by the link matrix
MX|Y1...Ym

to get π(X)



17-79: Calculating λ() in Polytrees

Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D,G) T = ~t T = t

0.9 0.1~d, m

~d, f 0.8 0.2

P(C|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

Gender

P(G) G = m G = f

0.50.5

0.1 0.9 d, m

 d, f 0.2 0.8



17-80: Calculating λ() in Polytrees

How do we send a λ message up to Disease,
given the combined link matrix for Disease and

Gender?





































P(¬t|¬d,m) P(t|¬d,m)

P(¬t|¬d, f ) P(t|¬d, f )

P(¬t|d,m) P(t|d,m)

P(¬t|d, f ) P(t|d, f )





































If we knew that the gender was definitely male,
then we could select the appropriate two rows, to

create a 2x2 matrix:













P(¬t|¬d,m) P(t|¬d,m)

P(¬t|d,m) P(t|d,m)















17-81: Calculating λ() in Polytrees

How do we send a λ message up to Disease,
given the combined link matrix for Disease and

Gender?





































P(¬t|¬d,m) P(t|¬d,m)

P(¬t|¬d, f ) P(t|¬d, f )

P(¬t|d,m) P(t|d,m)

P(¬t|d, f ) P(t|d, f )





































If we knew that the gender was definitely female,
then we could select the appropriate two rows, to

create a 2x2 matrix:













P(¬t|¬d, f ) P(t|¬d, f )

P(¬t|d, f ) P(t|d, f )















17-82: Calculating λ() in Polytrees

If we knew the value of Gender, we could select
the correct rows to build the appropriate link matrix
to send the lambda message.

We don’t know for certain the value of Gender, but
we do know the probability G, given evidence
upstream of T :

P(G|e+
T

) = πT (G) = π(G) =
[

0.5 0.5
]

We can then average the rows:


















P(¬t|¬d,m) ∗ P(m) + P(¬t|¬d, f )P( f ) P(t|¬d,m)P(m) + P(t|¬d, f )P( f )

P(¬t|d,m) ∗ P(m) + P(¬t|d, f )P( f ) P(t|d,m)P(m) + P(t|d, f )P( f )





















17-83: Calculating λ() in Polytrees

Original Link Matrix MT |D,C

P(T |D,C) T = ¬t T = t

¬d,m 0.9 0.1

¬d, f 0.8 0.2

d,m 0.1 0.9

d, f 0.2 0.8

Revised Link Matrix MT |D

P(T |D) T = ¬t T = t

¬d 0.85 0.15

d 0.15 0.85



17-84: Calculating BEL(D)

λ(D) =













0.85 0.15

0.15 0.85

























0.05

0.9













=

[

0.1775 0.7725
]

π(D) =
[

0.999 0.001
]

BEL(D) = απ(D)λ(D)

= α
[

0.177323 0.0007725
]

=

[

0.99566 0.00434
]



17-85: Complete Polytree Example

Disease

Test

Courier2

P(D) D = ~d D = d

0.0010.999

P(T|D,G) T = ~t T = t

0.9 0.1~d, m

~d, f 0.8 0.2

P(C|T) C = ~c C = c

0.9 0.1T = ~t

T =  t 0.1 0.9

Gender

P(G) G = m G = f

0.50.5

0.1 0.9 d, m

 d, f 0.2 0.8

Name

P(N|G) sue chris

0.1 0.4G = m

T = f 0.5 0.4

john

0.5

0.1

Courier1

(Courier link matrices the same)



17-86: Complete Polytree Example

Find BEL(D), given that:

Both couriers return a positive result

Patients name is John



17-87: Polytree Example: λs

Test

Courier2

P(C|T) C = ~c C = c

0.9 0.1T = ~t

T =  t 0.1 0.9

Courier1

λ(C1) = λ(C2) = [0, 1]

λC1
(T ) = [0.1, 0.9]

λC2
(T ) = [0.1, 0.9]

λ(T ) = [0.01, 0.81]



17-88: Polytree Example: λs

Gender

Name

P(N|G) sue chris

0.1 0.4G = m

T = f 0.5 0.4

john

0.5

0.1

λ(N) = [0, 0, 1]

λ(G) = [0.5, 0.1]



17-89: Polytree Example: λs

Test

Gender

P(G) G = m G = f

0.50.5

Name

λ(G) = [0.5, 0.1] π   (G) = α[0.25, 0.05]
      = [0.8333, 0.1667] 
T



17-90: Polytree Example: λs

Disease

Test

P(T|D,G) T = ~t T = t

0.9 0.1~d, m

~d, f 0.8 0.2

Gender

0.1 0.9 d, m

 d, f 0.2 0.8

λ(T)=[0.01, 0.81]

π  (G)=[0.8333, 0.1667]
T



17-91: Polytree Example: λs

Disease

Test

Gender

λ(T)=[0.01, 0.81]

π  (G)=[0.8333, 0.1667]
T

P(T|D) T = ~t T = t

0.8833 0.1167~d

d 0.1167 0.8833



17-92: Polytree Example: λs

Disease

Test

Gender

λ(T)=[0.01, 0.81]

π  (G)=[0.8333, 0.1667]
T

P(T|D) T = ~t T = t

0.8833 0.1167~d

d 0.1167 0.8833

λ(D)=[0.1034, 0.7166]



17-93: Polytree Example: λs

Disease

Test

Gender

λ(T)=[0.01, 0.81]

π  (G)=[0.8333, 0.1667]
T

P(T|D) T = ~t T = t

0.8833 0.1167~d

d 0.1167 0.8833

λ(D)=[0.1034, 0.7166]

BEL(D) = απ(D)λ(D)

BEL(D) = α[0.999, 0.001][0.1034, 0.7166]

BEL(D) = α[0.1033, 0.0007]

BEL(D) = α[0.9933, 0.0067]



17-94: Observing Non-Leaves

What if we observe a variable that is not a leaf?

For instance, we observe the actual test result

Add a “phantom child”

Set λ message from that child to
[0, . . . , 0, 1, 0, . . . , 0], where the 1 occurs at the
observed value

This λ message will override all other evidence for
the node



17-95: Bayesian Network Failures

Unfortunately, message passing only works for
polytrees – DAGs whose underlying undirected
graph has no cycles.

There are systems that we would like to model
(including many medical systems) whose
Markovian DAG does not form a polytree.

Message passing system is not guaranteed to
produce correct results in non-polytrees.



17-96: Non-Polytree DAGs

Metastatic Cancer

Increased total
serum calcium

Brain Tumor

Coma
Severe

Headaches

We can still calculate P(Xi|PAi) . . .



17-97: Non-Polytree DAGs

M

I B

C
H

[0.8, 0.2]

P(C|I,B) C = ~c c = c

0.95 0.05~i,~b

~i, b 0.2 0.8

0.2 0.8 i,~b

 i, b 0.2 0.8

P(B|M) b = ~b B = b

0.95 0.05M = ~m

M =  m 0.8 0.2

P(I|M) I = ~i I = i

0.8 0.2M = ~m

M =  m 0.2 0.8

P(H|B) H = ~h H = h

0.4 0.6B = ~b

B =  b 0.2 0.8

This is still enough information to answer queries –
we just can’t use the message passing scheme

why?



17-98: Monte Carlo Method

For each root variable, pick a value for the variable
according to the prior.

For example:

X is a root variable

π(X) = [0.3, 0.2, 0.5]

⇒ Pick the value x1 for X with probability 0.3, x2

with probability 0.2, and x3 with probability 0.5



17-99: Monte Carlo Method

Once a value for all of the parents of a node Z

have been chosen, pick a value for the node based
on the value of the parents, and P(Z|PAZ)

For example:

If Z has a single parent W

W = [0, 1, 0],

P(Z|W) =

P(Z|W) z1 z2 z3

w1 0.1 0.2 0.8

w2 0.3 0.4 0.3

w3 0.9 0.1 0

⇒ Pick z1 with probability 0.3, z2 with probability
0.4, and z3 with probability 0.3.



17-100: Monte Carlo Method

Once values have been chosen for all variables in
the network, we have a single trial

Do repeated trials, collect frequency information,
and use that information to determine the values of
queries.



17-101: Monte Carlo Method

Once values have been chosen for all variables in
the network, we have a single trial

Do repeated trials, collect frequency information,
and use that information to determine the values of
queries.

To determine P(x|y), count the number of trials
in which X = x and Y = y,and the number of
trials in which Y = y, and divide to get an
estimate on P(x|y)



17-102: Monte Carlo Method

Disadvantages of the Monte Carlo Method:



17-103: Monte Carlo Method

Disadvantages of the Monte Carlo Method:

Not guaranteed to find an exact probability in
finite time.

Can require exponential time to get good
results.

Calculating P(x|y) when both x and y are
unlikely can require a very large number of
iterations to get good data.



17-104: Monte Carlo Method

Advantages of the Monte Carlo Method:



17-105: Monte Carlo Method

Advantages of the Monte Carlo Method:

Does not require exponential space

Do not need to modify the network (no node
collapsing)

Easy to implement
And easy to parallelize

Can get approximate answers “quickly”, and
can get better answers with more time



17-106: Other Techniques

There are a plethora of other techniques for doing
inference in non-polytrees

Combining nodes to remove cycles

Methods using undirected graphs

Leave those methods unexplored



17-107: Applications of Bayesian Net-
works

Diagnosis (widely used in Microsoft’s products)

Medical diagnosis

Spam filtering

Expert systems applications (plant control,
monitoring)

Robotic control
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