Al Programming CS662-2013S-17

 Bayesian Networks

 Bayesian Networks}

David Galles

Department of Computer Science University of San Francisco

17-0: Probabilistic Reasoning

- Given:
- Set of conditional probabilities ($P(t 1 \mid d)$, etc)
- Set of prior probabilities ($P(d)$)
- Conditional independence information $(P(t 1 \mid d, t 2)=P(t 1 \mid d))$
- We can calculate any quantity that we like
- Problems:
- Hard to know exactly what data we need
- Even given sufficient data, calculations can be complex - especially dealing with conditional independence

17-1: Bayesian Networks

Bayesian Networks are:

- Clever encoding of conditional independence information
- Mechanical, "turn the crank" method for calculation - Can be done by a computer

Nothing "magic" about Bayesian Networks

17-2: Directed Acyclic Graphs

- We will encode conditional independence information using Directed Acyclic Graphs (or DAGs)
- While we will use causal language to give intuitive justification, these DAGs are not necessarily causal (more on this later)
- Three basic "junctions"

17-3: Head-to-Tail

A

- "Causal Chain"
- Rain \rightarrow Wet Pavement \rightarrow Slippery Pavement
- $(A \not \Perp C)$
- $(A \Perp C \mid B)$

17-4: Tail-to-Tail

- "Common Cause"
- Reading Ability \leftarrow Age \rightarrow Shoe Size
- $(A \not \perp C)$
- $(A \Perp C \mid B)$

17-5: Head-to-Head

- "Common Effect"
- Rain \rightarrow Wet Grass \leftarrow Sprinkler
- $(A \Perp C)$
- $(A \not \perp C \mid B)$

17-6: Head-to-Head

- Also need to worry about descendants of head-head junctions.
- (Rain \Perp Sprinkler)
- (Rain „ Sprinkler | Slugs)

17-7: Markovian Parents

- V is an ordered set of variables $X_{1}, X_{2}, \ldots X_{n}$.
- $P(V)$ is a joint probability distribution over V
- Define the set of Markovian Parents of variable X_{j}, $P A_{j}$ as:
- Minimal set of predecessors of X_{j} such that
- $P\left(X_{j} \mid X_{1}, \ldots X_{j-1}\right)=P\left(X_{j} \mid P A_{j}\right)$
- The Markovian Parents of a variable X_{j} are often (but not always) the direct causes of X_{j}

17-8: Markovian Parents \& Joint

- For any set of variables $X_{1}, \ldots X_{n}$, we can calculate any row of the joint:
- $P\left(x_{1}, \ldots x_{n}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \ldots$

$$
P\left(x_{n} \mid x_{1}, x_{2}, \ldots x_{n-1}\right)
$$

- Using Markovian parents
- $P\left(x_{1}, \ldots x_{n}\right)=P\left(x_{1}\right) P\left(x_{2} \mid P A_{2}\right) P\left(x_{3} \mid P A_{3}\right) \ldots$ $P\left(x_{n} \mid P A_{n}\right)$

17-9: Markovian Parents \& DAGs

- We can create a DAG which represents conditional independence information using Markovian parents.
- Each variable is a node in the graph
- For each variable X_{j}, add a directed link from all elements in $P A_{j}$ to X_{j}

17-10: Burglary Example

- I want to know if my house has been robbed
- I install an alarm
- Have two neighbors, John \& Mary, who call me if they hear my alarm
- Small earthquakes could also set off the alarm
- Sometimes, small earthquakes are reported on the radio
- Variables:
- Burglary, Earthquake, News Report, Alarm, John Calls, Mary Calls

17-11: DAG Example

17-12: Markovian Parents \& DAGs

- The order that we consider variables is important!
- Causal ordering gives "best" DAGS, but non-causal works, too
- Example: Mary Calls, John Calls, News Report, Alarm, Burglary, Earthquake

17-13: DAG Example

- Order: Mary Calls, John Calls, News Report, Alarm, Burglary, Earthquake

17-14: Markovian Parents \& DAGs

- The order that we consider variables is important!
- Causal ordering gives "best" DAGS, but non-causal works, too
- Example: News Report, Burglary, Mary Calls, Alarm, John Calls, Earthquake

17-15: DAG Example

- Order: News Report, Burglary, Mary Calls, Alarm, John Calls, Earthquake

17-16: Markovian Parents \& DAGs

- The order that we consider variables is important!
- Causal ordering gives "best" DAGS, but non-causal works, too
- Example: John Calls, Mary Cals, Alarm, Earthquake, News Report, Burglary,

17-17: DAG Example

- Order: John Calls, Mary Cals, Alarm, Earthquake, News Report, Burglary,

17-18: DAGs \& Cond. Independence

- Given a DAG of Markovian Parents, we know that every variable X_{i} is independent of its ancestors, given its parents
- We also know quite a bit more

17-19: d-separation

To determine if a variable X is conditionally independent of Y given a set of variables Z :

- Examine all paths between X and Y in the graph
- Each node along a path can be "open" or "blocked" - A node at a head-to-tail or tail-to-tail junction is open if the node is not in Z, and closed otherwise.
- A node at a head-to-head junction is open if the node or any of its descendants is not in Z, and closed otherwise.

17-20: d-separation Examples

 $(\mathrm{A} \Perp \mathrm{G}) ?$

17-21: d-separation Examples

$(\mathrm{A} \Perp \mathrm{G}) ?$

17-22: d-separation Examples

17-24: d-separation Examples

17-25: d-separation Examples

17-26: Bayesian Networks

To build a Bayesian Network:

- Select variables
- Order variables
- Normally want a causal ordering
- Compute Markovian parents for each variable
- Compute $P\left(X_{i} \mid P A_{i}\right)$ for each variable

17-27: Test / Courier Example

\[

\]

$\left\{\begin{array}{l|ll}P(T \mid D) & T=\sim t & T=t \\ D=\sim d & 0.9 & 0.1 \\ D= & d & 0.1 \\ & & 0.9\end{array}\right.$

Test
$\left\{\begin{array}{r|ll}\mathrm{P}(\mathrm{C} \mid \mathrm{T}) & \mathrm{C}=\sim \mathrm{C} & \mathrm{C}=\mathrm{C} \\ \mathrm{T}=\sim \mathrm{t} & 0.95 & 0.05 \\ \mathrm{~T}=\mathrm{t} & 0.1 & 0.9\end{array}\right.$

Courier

17-28: Message Passing

- Once we have our Bayesian Network, we will calculate probabilities using message passing
- Example:
- Leader of a group of troops wants to know how many soldiers are in the group
- Sends a "count" message down line of soldiers
- Gets a count reply back

17-29: Message Passing

Platoon leader counting soldiers

17-30: Message Passing

Platoon leader counting soldiers, from middle of line

17-31: Message Passing

Platoon leader counting soldiers, with self-generating count signal

17-32: Message Passing

Leaderless Counting

17-33: Using Bayesian Networks

- A patient receives a "positive" result from the courier. Does the patient have the disease?
- What is $P(d \mid c)$?
- In general, what is $P(d \mid e)$, where e is all the evidence that we have?

17-34: Breaking Up Evidence

- Break evidence e into two pieces
- "causal evidence" or "causal support", e^{+}
- "diagnostic evidence" or "evidential support" e^{-}

$$
\begin{aligned}
P\left(d \mid e_{d}^{+}, e_{d}^{-}\right) & =\frac{P\left(d \mid e_{d}^{+}\right) P\left(e_{d}^{-} \mid d, e_{d}^{+}\right)}{P\left(e_{d}^{-}\right)} \\
& =\frac{P\left(d \mid e_{d}^{+}\right) P\left(e_{d}^{-} \mid d\right)}{P\left(e_{d}^{-}\right)} \\
& =\alpha P\left(d \mid e_{d}^{+}\right) P\left(e_{d}^{-} \mid d\right)
\end{aligned}
$$

17-35: Renaming

$$
\begin{aligned}
P\left(d \mid e_{d}^{+}, e_{d}^{-}\right) & =\frac{P\left(d \mid e_{d}^{+}\right) P\left(e_{d}^{-} \mid d, e_{d}^{+}\right)}{P\left(e_{d}^{-}\right)} \\
& =\frac{P\left(d \mid e_{d}^{+}\right) P\left(e_{d}^{-} \mid d\right)}{P\left(e_{d}^{-}\right)} \\
& =\alpha P\left(d \mid e_{d}^{+}\right) P\left(e_{d}^{-} \mid d\right)
\end{aligned}
$$

- $\pi(x)=P\left(x \mid e_{x}^{+}\right)$
- $\lambda(x)=P\left(e_{x}^{-} \mid x\right)$

Thus, $P(d \mid e)=\alpha \pi(d) \lambda(d)$

17-36: Renaming

$$
\begin{aligned}
P\left(x \mid e_{x}^{+}, e_{x}^{-}\right) & =\alpha P\left(x \mid e_{x}^{+}\right) P\left(e_{x}^{-} \mid x\right) \\
& =\alpha \pi(x) \lambda(x)
\end{aligned}
$$

- $\pi(x)$ is the "message" from upstream.
- $\lambda(x)$ is the "message" from downstream.

17-37: Calculating $\pi(d)$

- $\pi(d)$ is the probability that $D=d$, given upstream evidence for D
- All we have for upstream evidence is the prior probability for D
- $\pi(d)=$ Prior Probability on $d=P(d)$!

17-38: Calculating $\lambda(d)$

$$
\begin{aligned}
\lambda(d) & =P\left(e_{d}^{e} \mid d\right) \\
& =\sum_{r \in T} P\left(e_{d}^{--\mid d, t) P(t \mid d)}\right. \\
& =\sum_{r \in T} P\left(e_{t}^{-\mid} \mid\right) P(t \mid d) \\
& =\sum_{r \in T} \lambda(t) P(t \mid d)
\end{aligned}
$$

17-39: Calculating $\lambda(d)$

$$
\lambda(d)=\sum_{t \in T} \lambda(t) P(t \mid d)
$$

$$
\begin{array}{lll}
\lambda(\neg d) & =\lambda(\neg t) P(\neg t \mid \neg d) & +\lambda(t) P(t \mid \neg d) \\
\lambda(d) & =\lambda(\neg t) P(\neg t \mid d) & +\lambda(t) P(t \mid d)
\end{array}
$$

17-40: Calculating $\lambda(d)$

$$
\lambda(d)=\sum_{t \in T} \lambda(t) P(t \mid d)
$$

$\lambda(D)=[\lambda(\neg d), \lambda(d)]$

17-41: Calculating $\lambda(D)$

$$
\lambda(d)=\sum_{t \in T} \lambda(t) P(t \mid d)
$$

$$
\begin{aligned}
\lambda(D) & =[\lambda(\neg d), \lambda(d)] \\
& =[\lambda(\neg t) P(\neg t \mid \neg d)+\lambda(t) P(t \mid \neg d), \lambda(\neg t) P(\neg t \mid d)+\lambda(t) P(t \mid d)]
\end{aligned}
$$

17-42: Calculating $\lambda(D)$

$$
\lambda(d)=\sum_{t \in T} \lambda(t) P(t \mid d)
$$

$$
\begin{aligned}
\lambda(D) & =[\lambda(\neg d), \lambda(d)] \\
& =[\lambda(\neg t) P(\neg t \mid \neg d)+\lambda(t) P(t \mid \neg d), \lambda(\neg t) P(\neg t \mid d)+\lambda(t) P(t \mid d)] \\
& =\left[\begin{array}{ll}
P(\neg t \mid \neg d) & P(t \mid \neg d) \\
P(\neg t \mid d) & P(t \mid d)
\end{array}\right]\left[\begin{array}{l}
\lambda(\neg t) \\
\lambda(t)
\end{array}\right]
\end{aligned}
$$

17-43: Calculating $\lambda(D)$

$$
\lambda(d)=\sum_{t \in T} \lambda(t) P(t \mid d)
$$

$$
\begin{aligned}
\lambda(D) & =[\lambda(\neg d), \lambda(d)] \\
& =[\lambda(\neg t) P(\neg t \mid \neg d)+\lambda(t) P(t \mid \neg d), \lambda(\neg t) P(\neg t \mid d)+\lambda(t) P(t \mid d)] \\
& =\left[\begin{array}{ll}
P(\neg t \mid \neg d) & P(t \mid \neg d) \\
P(\neg t \mid d) & P(t \mid d)
\end{array}\right]\left[\begin{array}{l}
\lambda(\neg t) \\
\lambda(t)
\end{array}\right] \\
& =P(T \mid D) \lambda(T) \\
& =M_{T \mid D)} \lambda(T)
\end{aligned}
$$

17-44: Calculating $\lambda(D)$

- $\lambda(D)=M_{T \mid D} \lambda(T)$
- $\lambda(T)=M_{C \mid T} \lambda(C)$
- $\lambda(C)=$?
- What is the evidence that $C=\neg c, C=c$?
- We know that $C=c$
- $\lambda(C)=[0,1]$

17-45: Test / Courier Example

$$
\begin{array}{l|ll}
P(D) & D=\sim d & D=d \\
\hline & 0.999 & 0.001 \\
c \\
\text { Disease }
\end{array}
$$

$\left\{\begin{array}{l|ll}P(T \mid D) & T=\sim t & T=t \\ D=\sim d & 0.9 & 0.1 \\ D=d & 0.1 & 0.9\end{array}\right.$

Test
$\left\{\begin{array}{r|ll}\mathrm{P}(\mathrm{C} \mid \mathrm{T}) & \mathrm{C}=\sim \mathrm{C} & \mathrm{C}=\mathrm{C} \\ \mathrm{T}=\sim \mathrm{t} & 0.95 & 0.05 \\ \mathrm{~T}=\mathrm{t} & 0.1 & 0.9\end{array}\right.$

$$
\lambda(C)=[0,1]
$$

Courier

17-46: Test / Courier Example

\[

\]

$\left\{\begin{array}{l|ll}P(T \mid D) & T=\sim t & T=t \\ D=\sim d & 0.9 & 0.1 \\ D=d & 0.1 & 0.9\end{array}\right.$
$\lambda(T)=[0.05,0.9]$
Test

$P(C \mid T)$	$C=\sim C$	$C=C$
$T=\sim t$	0.95	0.05
$T=t$	0.1	0.9

$$
\lambda(C)=[0,1]
$$

Courier

17-47: Test / Courier Example

$P(D)$	$D=\sim d$	$D=d$
	0.999	0.001

$\lambda(D)=[0.135,0.815]$
Disease
$\left\{\begin{array}{l|ll}P(T \mid D) & T=\sim t & T=t \\ D=\sim d & 0.9 & 0.1 \\ D=d & 0.1 & 0.9\end{array}\right.$

Test
$\left\{\begin{array}{r|ll}\mathrm{P}(\mathrm{C} \mid \mathrm{T}) & \mathrm{C}=\sim \mathrm{C} & \mathrm{C}=\mathrm{C} \\ \mathrm{T}=\sim \mathrm{t} & 0.95 & 0.05 \\ \mathrm{~T}=\mathrm{t} & 0.1 & 0.9\end{array}\right.$

$$
\lambda(C)=[0,1]
$$

Courier

17-48: Calculating $P(D \mid e)$

- $\lambda(C)=[0,1]$
- $\lambda(T)=M_{C \mid T} \lambda(C)=[0.05,0.9]$
- $\lambda(D)=M_{T \mid D} \lambda(T)=[0.135,0.815]$

From before, $\pi(D)=P(D)=[0.999,0.001]$

- $P(D \mid e)=\alpha \pi(D) \lambda(D)$
- $P(D \mid e)=\alpha[0.999,0.001][0.135,0.815]$
- $P(D \mid e)=\alpha[0.134865,0.000815]$
- $\alpha=1 / 0.13568$
- $P(D \mid e)=[0.993993,0.006007]$

17-49: Calculating $P(T \mid e)$

- What if we wanted to calculate the probability that the test actually was positive, given that the courier delivered a positive result?
- $P(T \mid e)=\alpha \pi(T) \lambda(T)$
- We know $\lambda(T)$ from before
- What is $\pi(T)$?

17-50: Calculating $\pi(t)$

$$
\begin{aligned}
\pi(t) & =P\left(t \mid e_{t}^{+}\right) \\
& =\sum_{d \in D} P\left(t \mid d, e_{t}^{+}\right) P\left(d \mid e_{t}^{+}\right) \\
& =\sum_{d \in D} P\left(t \mid d, e_{d}^{+}\right) P\left(d \mid e_{d}^{+}\right) \\
& =\sum_{d \in D} P(t \mid d) P\left(d \mid e_{d}^{+}\right) \\
& =\sum_{d \in D} P(t \mid d) \pi(d)
\end{aligned}
$$

17-51: Calculating $\pi(t)$

$$
\begin{aligned}
\pi(t) & =P\left(t \mid e_{t}^{+}\right) \\
& =\sum_{d \in D} P\left(t \mid d, e_{t}^{+}\right) P\left(d \mid e_{t}^{+}\right) \\
& =\sum_{d \in D} P\left(t \mid d, e_{d}^{+}\right) P\left(d \mid e_{d}^{+}\right) \\
& =\sum_{d \in D} P(t \mid d) P\left(d \mid e_{d}^{+}\right) \\
& =\sum_{d \in D} P(t \mid d) \pi(d)
\end{aligned}
$$

$$
\pi(\neg t)=P(\neg t \mid \neg d) P\left(\neg d \mid e_{d}^{+}\right)+P(\neg t \mid d) P\left(d \mid e_{d}^{+}\right)
$$

$$
\pi(t)=P(t \mid \neg d) P\left(\neg d \mid e_{d}^{+}\right)+P(t \mid d) P\left(d \mid e_{d}^{+}\right)
$$

17-52: Calculating $\pi(T)$

$$
\pi(t)=\sum_{d \in D} P(t \mid d) \pi(d)
$$

$$
\begin{aligned}
& \pi(T)=[\pi(\neg t), \pi(t)] \\
& \quad=[P(\neg t \mid \neg d) \pi(\neg d)+P(\neg t \mid d) \pi(d), P(t \mid \neg d) \pi(\neg d)+P(t \mid d) \pi(d)] \\
& \quad=[\pi(\neg d), \pi(d)]\left[\begin{array}{ll}
P(\neg t \mid \neg d) & P(t \mid \neg d) \\
P(\neg t \mid d) & P(t \mid d)
\end{array}\right]
\end{aligned}
$$

17-53: Calculating $\pi(T)$

$$
\begin{gathered}
\pi(D)=\left[\begin{array}{ll|ll}
0.999, & 0.001
\end{array} \quad \begin{array}{lll}
P(D) & D=\sim d & D=d \\
& \lambda(D)=\left[\begin{array}{lll}
0.135, & 0.815
\end{array}\right] & \text { Disease }
\end{array}\right. \\
\end{gathered}
$$

$$
\begin{gathered}
\pi(T)=[0.8992,0.1008] \\
\lambda(T)=[0.05,0.9] \\
\lambda(\mathrm{C})=[0,1]
\end{gathered}
$$

$\left\{\begin{array}{l|ll}P(T \mid D) & T=\sim t & T=t \\ D=\sim d & 0.9 & 0.1 \\ D=d & 0.1 & 0.9\end{array}\right.$

Test
$\left\{\begin{array}{l|ll}\mathrm{P}(\mathrm{C} \mid \mathrm{T}) & \mathrm{C}=\sim \mathrm{C} & \mathrm{C}=\mathrm{C} \\ \mathrm{T}=\sim \mathrm{t} & 0.95 & 0.05 \\ \mathrm{~T}=\mathrm{t} & 0.1 & 0.9\end{array}\right.$

Courier

17.54: Calculating $B E L(T)=P(T \mid e)$

- $B E L(T)=\alpha \pi(T) \lambda(T)$
- $\lambda(T)=[0.05,0.9]$
- $\pi(T)=[0.8992,0.1008]$
- $\pi(T) \lambda(T)=[0.04496,0.09072]$
- $\alpha=1 /(0.04496+0.09072)=1 /(0.13568)$
- $B E L(T)=[0.331368,0.668632]$

17-55: Computation for Chains

- Calculating π messages:
- π (root) $=$ Prior on root
- For any other variable X with parent P, $\pi(X)=\pi(P) M_{X \mid P}$
- Calculating λ messages:
- λ (leaf) $=$ evidence for leaf
- ([1, 1, ..., 1] if no evidence)
- For any other variable X with child C, $\lambda(X)=M_{C \mid X} \lambda(C)$

17-56: Computation for Chains

- Send π messages down
- Send λ messages up
- For any variable X, we can calculate $B E L(X)=P(X \mid e)$ by multiplying the messages together, and normalizing
- $P(X \mid e)=\alpha \lambda(X) \pi(X)$
- (Pairwise multiplication)

17-57: Variable \# of Values / Variables

- Of course, variables can have >2 values
- Each variable can have a different number of values
- Disease Example
- Doctor test for a disease
- Test can be positive, indeterminate, or negative
- Doctor discusses the result with the courier
- Courier delivers result

17-56: Variable \# of Values / Variables

\[

\]

$\left\langle\begin{array}{c|lcc}P(T \mid D) & T=\text { neg } & T=\text { ind } & T=\text { pos } \\ \hline D=\sim d & 0.8 & 0.1 & 0.1 \\ D=d & 0.1 & 0.1 & 0.8\end{array}\right.$

Test

$\mathrm{P}(\mathrm{C} \mid \mathrm{T})$	$\mathrm{C}=\sim \mathrm{C}$	$\mathrm{C}=\mathrm{C}$
$\mathrm{T}=$ neg	0.9	0.1
$\mathrm{~T}=$ ind	0.5	0.5
$\mathrm{~T}=$ pos	0.1	0.9

Courier

17-59: Variable \# of Values / Variables

$$
\begin{array}{l|ll}
P(D) & D=\sim d & D=d \\
\hline & 0.999 & 0.001
\end{array}
$$

$\lambda(\mathrm{D})=\left[\begin{array}{ll}0.22, & 0.78\end{array}\right]$
Disease
$\left\{\begin{array}{c|lcc}P(T \mid D) & T=\text { neg } & T=\text { ind } & T=\text { pos } \\ \hline D=\sim d & 0.8 & 0.1 & 0.1 \\ D=d & 0.1 & 0.1 & 0.8\end{array}\right.$

$$
\lambda(\mathrm{T})=\left[\begin{array}{lll}
0.1, & 0.5 . & 0.9
\end{array}\right]
$$

$\mathrm{P}(\mathrm{C} \mid \mathrm{T})$	$\mathrm{C}=\sim \mathrm{C}$	$\mathrm{C}=\mathrm{C}$
$\mathrm{T}=$ neg	0.9	0.1
$\mathrm{~T}=$ ind	0.5	0.5
$\mathrm{~T}=$ pos	0.1	0.9

Courier

$$
\lambda(C)=[0,1]
$$

17-60: Computation for Trees

- What if some of the nodes have >1 child?
- Example: Send message via two different couriers

17-61: Computation for Trees

$$
\begin{array}{l|ll}
P(D) & D=\sim d & D=d \\
\hline & 0.999 & 0.001
\end{array}
$$

Disease
$\left\{\begin{array}{c|ll}P(T \mid D) & T=\sim t & T=t \\ \hline D=\sim d & 0.9 & 0.1 \\ D=d & 0.1 & 0.9\end{array}\right.$

17-62: Computation for Trees

- How do we send λ messages in trees?
- Courier example: What is $\lambda(T)$, which is the probability of the downstream evidence given the test, if both couriers give a positive response?
- We will need to combine the messages that we get from each child into a single λ message
- Use this λ message to compute $B E L(T)$
- Use this λ message to send a message to D

17-63: Calculating $\lambda(t)$

$$
\begin{aligned}
\lambda(t) & =P\left(e_{t}^{-} \mid t\right) \\
& =P\left(e_{C 1}^{-}, e_{C 2}^{-} \mid t\right) \\
& =P\left(e_{C 1}^{-} \mid t\right) P\left(e_{C 2}^{-} \mid t\right) \\
& =\sum_{c_{1} \in C 1} P\left(e_{C 1}^{-} \mid c_{1}, t\right) P\left(c_{1} \mid t\right) \sum_{c_{2} \in C 2} P\left(e_{C 2}^{-} \mid c_{2}, t\right) P\left(c_{2} \mid t\right) \\
& =\sum_{c_{1} \in C 1} P\left(e_{C 1}^{-} \mid c_{1}\right) P\left(c_{1} \mid t\right) \sum_{c_{2} \in C 2} P\left(e_{C 2}^{-} \mid c_{2}\right) P\left(c_{2} \mid t\right) \\
& =\sum_{c_{1} \in C 1} \lambda\left(c_{1}\right) P\left(c_{1} \mid t\right) \sum_{c_{2} \in C 2} \lambda\left(c_{2}\right) P\left(c_{2} \mid t\right)
\end{aligned}
$$

17-64: Calculating $\lambda(T)$

$$
\lambda(t)=\sum_{c_{1} \in C 1} \lambda\left(c_{1}\right) P\left(c_{1} \mid t\right) \sum_{c_{2} \in C 2} \lambda\left(c_{2}\right) P\left(c_{2} \mid t\right)
$$

$$
\begin{aligned}
\lambda(T) & =M_{C 1 \mid T} \lambda(C 1) * M_{C 2 \mid T} \lambda(C 2) \\
& =\lambda_{C 1}(T) * \lambda_{C 2}(T)
\end{aligned}
$$

17-65: Computation for Trees

$$
\begin{array}{l|cc}
P(D) & D=\sim d & D=d \\
\hline & 0.999 & 0.001
\end{array}
$$

$\lambda(D)=[0.08325,0.72925]$
Disease

17-66: Computation for Trees

- $B E L(D)=\alpha \pi(D) \lambda(D)$
- $\pi(D)=[0.999,0.001]$
- $\lambda(D)=[0.08325,0.72925]$
- $\pi(D) \lambda(D)=[0.0831667,0.00072925]$
- $\alpha=1 /(0.08389595)$
- $B E L(D)=[0.991308,0.008692]$

17-67: Sending π Messages in Trees

- $\pi(x)=P\left(x \mid e_{x}^{+}\right)$
- That is, $\pi(x)$ is $P(X=x)$, given all upstream evidence from X

- $\pi(X)=P\left(P \mid e_{X}^{+}\right) P(X \mid P)$
- $\pi(P) * \lambda_{\text {other children of } \mathrm{P}}(P) M_{X \mid P}$
- $\left(B E L(P) / \lambda_{X}(P)\right) M_{X \mid P}$
- Pairwise division

17-68: Sending π Messages in Trees

- What is the probability that Courier 1 will give a positive result, given that Courier 2 gave a positive result?
- $P(C 1 \mid e)$
- Evidence e is the prior probability for disease, and the fact that Courier 2 gave a positive result

17-69: Sending π Messages in Trees

- What is the probability that Courier 1 will give a positive result, given that Courier 2 gave a positive result?
- $P(C 1 \mid e)$
- Evidence e is the prior probability for disease, and the fact that Courier 2 gave a positive result
- $\pi(C 1)=\alpha \pi(T) * \lambda_{C 2}(T) M_{C 1 \mid T}$

17-70: Computation for Trees

$$
\begin{aligned}
& \begin{array}{c|cc}
P(D) & D=\sim d & D=d \\
\hline & 0.999 & 0.001
\end{array} \\
& \pi(D)=[0.999,0.001] \\
& \text { Disease } \\
& \pi(T)=[0.8992,0.1008] \\
& \text { Test } \\
& \pi(\mathrm{T}) \lambda_{\mathrm{C} 2}(\mathrm{~T})=[.04496,0.09072] \\
& \text { Courier1 } \\
& \lambda_{\mathrm{C} 2}(\mathrm{~T})=[0.05,0.9] \\
& \text { Courier2 } \\
& \lambda(C 2)=[0,1] \\
& \pi(\mathrm{C} 1)=\alpha[0.051884,0.083896] \\
& =[0.382952,0.619232]
\end{aligned}
$$

17-71: Computation for Trees

- For root variable $R, \pi(R)=$ Prior on R
- For unobserved leaf variables $L, \lambda(L)=[1,1, \ldots, 1]$
- For leaf variables L observed to have the value l_{k}, $\lambda(L)=[0, \ldots, 0,1,0, \ldots 0]$ - the $k^{\text {th }}$ element is 1 , all others are 0
- Pass π and λ messages through the tree
- Multiply π message by λ messages from other childen, them multiply the result by the link matrix
- Multiply link matrix by λ messages
- Multiple Children - multiply λ messages

17-72: Multiple Parents (Polytrees)

- Add a gender variable
- Test for disease depends upon gender, as well as disease state
- Need to expand link matrix for test to include gender
- Need $P(t \mid g, d)$ for all values of t, g, d

17-73: Multiple Parents (Polytrees)

$$
\begin{array}{l|cc}
P(D) & D=\sim d & D=d \\
\hline & 0.999 & 0.001
\end{array}
$$

$\mathrm{P}(\mathrm{G})$	$\mathrm{G}=\mathrm{m}$	$\mathrm{G}=\mathrm{f}$
	0.5	0.5

Gender

$P(T \mid D, G)$	$T=\sim t$	$T=t$
$\sim d$,	m	0.9
$\sim d$,	f	0.8
d,	m	0.1
d,	f	0.2
	0.9	
	0.8	

Test
$\left\{\begin{array}{rl|ll}\mathrm{P}(\mathrm{C} \mid \mathrm{T}) & \mathrm{C}=\sim \mathrm{C} & \mathrm{C}=\mathrm{C} \\ \mathrm{T}=\sim \mathrm{t} & 0.95 & 0.05 \\ \mathrm{~T}=\mathrm{t} & 0.1 & 0.9\end{array}\right.$

Courier

17-74: Calculating $\pi()$ in Polytrees

- For each parent X, we have $P\left(X \mid e^{+}\right)$
- $P(D)=[0.999,0.001], P(G)=[0.5,0,5]$
- We need the probabilities for all combinations of parents
- $P(\neg d, m), P(\neg d, f), P(d, m), P(d, f)$
- Parents are independent given upstream evidence
- $P(\neg d, m)=P(\neg d) P(m)$

17-75: Calculating $\pi()$ in Polytrees

- We have $[P(\neg d), P(d)]$ and $[P(m), P(f)]$
- We need $[P(\neg d, m), P(\neg d, f), P(d, m), P(d, f)]$
- $P(\neg d, m)=P(\neg d) P(m), P(\neg d, f)=P(\neg d) P(f)$, etc.
- $P(\neg d, m)=0.999 * 0.5, P(\neg d, f)=0.999 * 0.5$, $P(d, m)=0.001 * 0.5, P(d, f)=0.001 * 0.5$
- $P(D, G)=[0.4995,0.4995,0.0005 .0 .0005]$
- $\pi(T)=$
$\left[\begin{array}{llll}\pi(\neg d, m) & \pi(\neg d, f) & \pi(d, m) & \pi(d, f)\end{array}\right]\left[\begin{array}{ll}P(\neg t \mid \neg d, m) & P(t \mid \neg d, m) \\ P(\neg t \mid \neg d, f) & P(t \mid \neg d, f) \\ P(\neg t \mid d, m) & P(t \mid d, m) \\ P(\neg t \mid d, f) & P(t \mid d, f)\end{array}\right]$

17-76: Calculating $\pi(T)$

17-77: Calculating $B E L(T)$

- What is our belief that the test actually is positive, given that the courier delivers a positive message?
- $\pi(T)=[0.8493,0.1507]$
- $\lambda(T)=\left[\begin{array}{ll}0.95 & 0.05 \\ 0.1 & 0.9\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- $\lambda(T)=[0.05,0.9]$
- $B E L(T)=\alpha[0.42465,0.13565](\alpha=1 / 0.5603)$
- $B E L(T)=[0.757898,0.242102]$

17-78: Calculating $\pi()$ in Polytrees

- To calculate $\pi(X)$, when X has multiple parents m :
- For each parent Y_{k} of X, calculate $P\left(Y_{k} \mid e_{X}^{+}\right)$
(Define message from Y_{k} to $X, \pi_{X}\left(Y_{k}\right)=\left(Y_{k} \mid e_{X}^{+}\right)$
- If X is the only child of $Y_{k}, \pi_{x}\left(Y_{k}\right)=\pi\left(Y_{k}\right)$
- If Y_{k} has children $C_{1} \ldots C_{j}$ other than X, then $\pi_{X}\left(Y_{k}\right)=\pi\left(Y_{k}\right) \prod_{i=i . . j} \lambda_{C_{i}}(Y)$
- (That is, $\pi_{X}\left(Y_{k}\right)=B E L(Y) / \lambda_{X}(Y)$)
- Combine the π_{X} messages from all the parents, and multiply the result by the link matrix $M_{X \mid Y_{1} \ldots Y_{m}}$ to get $\pi(X)$

17-79: Calculating $\lambda()$ in Polytrees

$$
\begin{array}{l|ll}
P(D) & D=\sim d & D=d \\
\hline & 0.999 & 0.001
\end{array}
$$

Disease

$P(T \mid D, G)$	$T=\sim t$	$T=t$
$\sim d, ~ m$	0.9	0.1
$\sim d$,	f	0.8
d,	0.2	
d,	f	0.1
	0.2	0.9

$\mathrm{P}(\mathrm{G})$	$\mathrm{G}=\mathrm{m}$	$\mathrm{G}=\mathrm{f}$
	0.5	0.5

Gender

Test
$\left\{\begin{array}{l|ll}\mathrm{P}(\mathrm{C} \mid \mathrm{T}) & \mathrm{C}=\sim \mathrm{C} & \mathrm{C}=\mathrm{C} \\ \mathrm{T}=\sim \mathrm{t} & 0.95 & 0.05 \\ \mathrm{~T}=\mathrm{t} & 0.1 & 0.9\end{array}\right.$

Courier

17-80: Calculating $\lambda()$ in Polytrees

- How do we send a λ message up to Disease, given the combined link matrix for Disease and

Gender?

$$
\left[\begin{array}{ll}
P(\neg t \mid \neg d, m) & P(t \mid \neg d, m) \\
P(\neg t \mid \neg d, f) & P(t \mid \neg d, f) \\
P(\neg t \mid d, m) & P(t \mid d, m) \\
P(\neg t \mid d, f) & P(t \mid d, f)
\end{array}\right]
$$

- If we knew that the gender was definitely male, then we could select the appropriate two rows, to create a 2x2 matrix: $\left[\begin{array}{ll}P(\neg t \mid \neg d, m) & P(t \mid \neg d, m) \\ P(\neg t \mid d, m) & P(t \mid d, m)\end{array}\right]$

17-81: Calculating $\lambda()$ in Polytrees

- How do we send a λ message up to Disease, given the combined link matrix for Disease and

Gender?

$$
\left[\begin{array}{ll}
P(\neg t \mid \neg d, m) & P(t \mid \neg d, m) \\
P(\neg t \mid \neg d, f) & P(t \mid \neg d, f) \\
P(\neg t \mid d, m) & P(t \mid d, m) \\
P(\neg t \mid d, f) & P(t \mid d, f)
\end{array}\right]
$$

- If we knew that the gender was definitely female, then we could select the appropriate two rows, to create a 2x2 matrix: $\left[\begin{array}{ll}P(\neg t \mid \neg d, f) & P(t \mid \neg d, f) \\ P(\neg t \mid d, f) & P(t \mid d, f)\end{array}\right]$

17-82: Calculating $\lambda()$ in Polytrees

- If we knew the value of Gender, we could select the correct rows to build the appropriate link matrix to send the lambda message.
- We don't know for certain the value of Gender, but we do know the probability G, given evidence upstream of T :

$$
\text { - } P\left(G \mid e_{T}^{+}\right)=\pi_{T}(G)=\pi(G)=\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right]
$$

- We can then average the rows:

$$
\left[\begin{array}{ll}
P(\neg t \mid \neg d, m) * P(m)+P(\neg t \mid \neg d, f) P(f) & P(t \mid \neg d, m) P(m)+P(t \mid \neg d, f) P(f) \\
P(\neg t \mid d, m) * P(m)+P(\neg t \mid d, f) P(f) & P(t \mid d, m) P(m)+P(t \mid d, f) P(f)
\end{array}\right]
$$

17-83: Calculating $\lambda()$ in Polytrees

Original Link Matrix $M_{T \mid D, C}$

$P(T \mid D, C)$	$T=\neg t$	$T=t$
$\neg d, m$	0.9	0.1
$\neg d, f$	0.8	0.2
d, m	0.1	0.9
d, f	0.2	0.8

Revised Link Matrix $M_{T \mid D}$

$P(T \mid D)$	$T=\neg t$	$T=t$
$\neg d$	0.85	0.15
d	0.15	0.85

17-84: Calculating $B E L(D)$

$$
\begin{aligned}
\lambda(D) & =\left[\begin{array}{ll}
0.85 & 0.15 \\
0.15 & 0.85
\end{array}\right]\left[\begin{array}{l}
0.05 \\
0.9
\end{array}\right] \\
& =\left[\begin{array}{ll}
0.1775 & 0.7725
\end{array}\right] \\
\pi(D) & =\left[\begin{array}{ll}
0.999 & 0.001
\end{array}\right] \\
\operatorname{BEL}(D) & =\alpha \pi(D) \lambda(D) \\
& =\alpha\left[\begin{array}{ll}
0.177323 & 0.0007725
\end{array}\right] \\
& =\left[\begin{array}{ll}
0.99566 & 0.00434
\end{array}\right]
\end{aligned}
$$

17-85: Complete Polytree Example

17-86: Complete Polytree Example

- Find $B E L(D)$, given that:
- Both couriers return a positive result
- Patients name is John

17-87: Polytree Example: $\lambda \mathbf{s}$

Test

Courier1 Courier2

- $\lambda\left(C_{1}\right)=\lambda\left(C_{2}\right)=[0,1]$
- $\lambda_{C_{1}}(T)=[0.1,0.9]$
- $\lambda_{C_{2}}(T)=[0.1,0.9]$
- $\lambda(T)=[0.01,0.81]$

17-88: Polytree Example: $\lambda \mathbf{s}$

Gender

$\mathrm{P}(\mathrm{N} \mid \mathrm{G})$	sue	chris	john
$\mathrm{G}=\mathrm{m}$	0.1	0.4	0.5
$\mathrm{~T}=\mathrm{f}$	0.5	0.4	0.1

Name

- $\lambda(N)=[0,0,1]$
- $\lambda(G)=[0.5,0.1]$

17-89: Polytree Example: $\lambda \mathbf{s}$

Test

17-90: Polytree Example: $\lambda \mathbf{s}$

17-91: Polytree Example: $\lambda \mathbf{s}$

17-92: Polytree Example: $\lambda \mathbf{s}$

$\lambda(D)=[0.1034,0.7166]$

17-93: Polytree Example: λs

$\lambda(D)=[0.1034,0.7166]$

$B E L(D)=\alpha \pi(D) \lambda(D)$
$B E L(D)=\alpha[0.999,0.001][0.1034,0.7166]$
$B E L(D)=\alpha[0.1033,0.0007]$
$B E L(D)=\alpha[0.9933,0.0067]$

17-94: Observing Non-Leaves

- What if we observe a variable that is not a leaf?
- For instance, we observe the actual test result
- Add a "phantom child"
- Set λ message from that child to $[0, \ldots, 0,1,0, \ldots, 0]$, where the 1 occurs at the observed value
- This λ message will override all other evidence for the node

17-95: Bayesian Network Failures

- Unfortunately, message passing only works for polytrees - DAGs whose underlying undirected graph has no cycles.
- There are systems that we would like to model (including many medical systems) whose Markovian DAG does not form a polytree.
- Message passing system is not guaranteed to produce correct results in non-polytrees.

17-96: Non-Polytree DAGs

- We can still calculate $P\left(X_{i} \mid P A_{i}\right) \ldots$

17-97: Non-Polytree DAGs

17-98: Monte Carlo Method

- For each root variable, pick a value for the variable according to the prior.
- For example:
- X is a root variable
- $\pi(X)=[0.3,0.2,0.5]$
- \Rightarrow Pick the value x_{1} for X with probability $0.3, x_{2}$ with probability 0.2 , and x_{3} with probability 0.5

17-99: Monte Carlo Method

- Once a value for all of the parents of a node Z have been chosen, pick a value for the node based on the value of the parents, and $P\left(Z \mid P A_{z}\right)$
- For example:
- If Z has a single parent W
- $W=[0,1,0]$,
- $P(Z \mid W)=$| $P(Z \mid W)$ | z_{1} | z_{2} | z_{3} |
| :--- | :--- | :--- | :--- |
| w_{1} | 0.1 | 0.2 | 0.8 |
| w_{2} | 0.3 | 0.4 | 0.3 |
| w_{3} | 0.9 | 0.1 | 0 |
- \Rightarrow Pick z_{1} with probability $0.3, z_{2}$ with probability 0.4 , and z_{3} with probability 0.3 .

17-100: Monte Carlo Method

- Once values have been chosen for all variables in the network, we have a single trial
- Do repeated trials, collect frequency information, and use that information to determine the values of queries.

17-101: Monte Carlo Method

- Once values have been chosen for all variables in the network, we have a single trial
- Do repeated trials, collect frequency information, and use that information to determine the values of queries.
- To determine $P(x \mid y)$, count the number of trials in which $X=x$ and $Y=y$, and the number of trials in which $Y=y$, and divide to get an estimate on $P(x \mid y)$
- Disadvantages of the Monte Carlo Method:

17-103: Monte Carlo Method

- Disadvantages of the Monte Carlo Method:
- Not guaranteed to find an exact probability in finite time.
- Can require exponential time to get good results.
- Calculating $P(x \mid y)$ when both x and y are unlikely can require a very large number of iterations to get good data.
- Advantages of the Monte Carlo Method:

17-105: Monte Carlo Method

- Advantages of the Monte Carlo Method:
- Does not require exponential space
- Do not need to modify the network (no node collapsing)
- Easy to implement
- And easy to parallelize
- Can get approximate answers "quickly", and can get better answers with more time

17-106: Other Techniques

- There are a plethora of other techniques for doing inference in non-polytrees
- Combining nodes to remove cycles
- Methods using undirected graphs
- Leave those methods unexplored
- Diagnosis (widely used in Microsoft's products)
- Medical diagnosis
- Spam filtering
- Expert systems applications (plant control, monitoring)
- Robotic control

