18-0: Making decisions

- At this point, we know how to describe the probability of events occuring.
- Or states being reached, in agent terms.
- Knowing the probabilities of events is only part of the battle.
- Agents are really interested in maximizing performance.
- This means making the correct decisions as to what to do.
- Often, performance can be captured by utility.
- Utility indicates the relative value of a state.

18-1: Expected Utility

- In episodic, stochastic worlds, we can use expected utility to select actions.
- An agent will know that an action can lead to one of a set S of states.
- The agent has a utility for each of these states.
- The agent also has a probability that these states will be reached.
- The expected utility of an action is:
- $\sum_{s \in S} P(s) U(s)$
- The principle of maximum expected utility says that an agent should choose the action that maximizes expected utility.

18-2: Example

- Let's say there are two levers.
- Lever 1 costs $\$ 1$ to pull. With $p=0.4$, you win $\$ 2$. With $p=0.6$ you win nothing.
- Lever 2 costs $\$ 2$ to pull. With $p=0.1$ you win $\$ 10$. with $p=0.9$ you lose $\$ 1$ (on top of the charge to pull).
- Should you a) pull lever 1 b) pull lever 2 c) pull neither?

18-3: Example

- $\mathrm{EU}($ lever 1$)=0.4 * 1+0.6 *-1=-0.2$
- $\mathrm{EU}($ lever 2$)=0.1 * 8+0.9 *-3=-1.9$
- $\mathrm{EU}($ neither $)=0$
- Lever 3 gives the maximum EU.
- TV digression - this is the choice contestants are faced with on "Deal or No Deal." The banker offers them a price slightly above the expected utility, and yet most contestants don't take it. Why?

18-4: Example: Vegas

- The typical roulette wheel has 38 numbers. (1-36, plus 0 and 00).
- 1-36 are either red or black.
- The payoff for betting on a single number is $35: 1$
- In other words, if the number you picked comes up, you win $\$ 35$. Otherwise, you lose $\$ 1$.
- What is the expected utility of betting on a single number?

18-5: Example: Vegas

- The typical roulette wheel has 38 numbers. (1-36, plus 0 and 00).
- 1-36 are either red or black.
- The payoff for betting on a single number is $35: 1$
- In other words, if the number you picked comes up, you win $\$ 35$. Otherwise, you lose $\$ 1$.
- What is the expected utility of betting on a single number?
- $\frac{1}{38} * 35+\frac{37}{38} *-1=-0.052$

18-6: Example: Vegas

- The typical roulette wheel has 38 numbers. (1-36, plus 0 and 00).
- 1-36 are either red or black.
- The payoff for betting on a single number is $35: 1$
- In other words, if the number you picked comes up, you win $\$ 35$. Otherwise, you lose $\$ 1$.
- What if you decide to "spread the risk" and bet on two numbers?

18-7: Example: Vegas

- The typical roulette wheel has 38 numbers. (1-36, plus 0 and 00).
- 1-36 are either red or black.
- The payoff for betting on a single number is $35: 1$
- In other words, if the number you picked comes up, you win $\$ 35$. Otherwise, you lose $\$ 1$.
- What if you decide to "spread the risk" and bet on two numbers?
- $\frac{2}{38} * 34+\frac{36}{38} *-2=-0.105$

18-8: Example: Vegas

- The typical roulette wheel has 38 numbers. (1-36, plus 0 and 00).
- 1-36 are either red or black.
- The payoff for betting on color (red or black) is $1: 1$
- In other words, if you bet 'red' and a red number comes up, you win $\$ 1$. Otherwise, you lose $\$ 1$.
- What is the expected utility of betting on 'red'?

18-9: Example: Vegas

- The typical roulette wheel has 38 numbers. (1-36, plus 0 and 00).
- 1-36 are either red or black.
- The payoff for betting on color (red or black) is $1: 1$
- In other words, if you bet 'red' and a red number comes up, you win $\$ 1$. Otherwise, you lose $\$ 1$.
- What is the expected utility of betting on 'red'?
- $\frac{18}{38} * 1+\frac{20}{38} *-1=-0.052$

18-10: Regarding Preferences

- In order for MEU to make sense, we need to specify some (hopefully reasonable) constraints on agent preferences.
- Orderability. We must be able to say that A is preferred to B, B is preferred to A, or they are equally preferable. We cannot have the case where A and B are incomparable.
- Transitivity. If $A<B$ and $B<C$, then $A<C$.
- Continuity. If $A<B<C$, then there is a scenario where the agent is indifferent to getting B and having a probability p of getting A and $1-p$ chance of getting C.

18-11: Rational Preferences

- Monotonicity. If two actions A and B have the same outcomes, and I prefer A to B, I should still prefer A if the probability of A increases.
- Decomposability. Utilities over a sequence of actions can be decomposed into utilities for atomic events.
- These preferences are (for the most part) quite reasonable, and allow an agent to avoid making foolish mistakes.

18-12: Utility, Money, and Risk

- Utility comes from economics
- Money is often used as a substitute for utility.
- Preferences for money behave oddly when dealing with small or large amounts.

18-13: Utility, Money, and Risk

- You have two choices:
- Choice \# 1
- Win $\$ 1$ Million for sure
- Choice \#2
- Win $\$ 2$ Million with probability 0.51
- Win nothing with probability 0.49
- Which do you pick?

18-14: Utility, Money, and Risk

- You have two choices:
- Choice \# 1
- Win $\$ 1$ Million for sure
- Expected winnings of $\$ 1$ Million
- Choice \#2
- Win $\$ 2$ Million with probability 0.51
- Win nothing with probability 0.49
- Expected winnings of $>\$ 1$ Million
- Most people pick Choice \#1
- First $\$ 1$ Million has huge impact, second $\$ 1$ Million less so

18-15: Utility, Money, and Risk

- Flip a coin.
- On heads, you win $\$ 4$
- On tails, you win nothing
- How much would you be willing to pay to play this game?

18-16: Utility, Money, and Risk

- Flip a coin until it comes up tails.
- Count the number of heads h
- Win $\$ 2^{h}$
- How much would you be willing to pay to play this game?

18-17: Utility, Money, and Risk

- Flip a coin until it comes up tails.
- Count the number of heads h
- Win $\$ 2^{h}$
- Expected return:

$$
\begin{gathered}
1 / 2 * 1+1 / 4 * 2+1 / 8 * 4+1 / 16 * 8+\ldots \\
\sum_{i=1}^{\infty} 1 / 2=\infty
\end{gathered}
$$

18-18: Utility, Money, and Risk

- Does this mean utility theory is broken?

18-19: Utility, Money, and Risk

- Does this mean utility theory is broken?
- No, just that the Utility of money is non-linear
- Closer to logarithmic

18-20: Utility, Money, and Risk

- Utility comes from economics
- Money is often used as a substitute for utility.
- Preferences for money behave oddly when dealing with small or large amounts.
- For example, you will often take more chance with small amounts, and be very conservative with very large amounts.
- This is called your risk profile
- convex - risk-seeking (Vegas)
- concave - risk-averse (Insurance)
- Typically, we say that we have a quasilinear utility function regarding money.

18-21: Gathering information

- When an agent has all the information it can get and just needs to select a single action, things are straightforward.
- Find the action with the largest expected utility.
- What if an agent can choose to gather more information about the world?
- Now we have a sequential decision problem:
- Should we just act, or gather information first?
- What questions should we ask?
- Agents should ask questions that give them useful information.
- "Useful" means increasing expected utility.
- Gathering information can cost time/money.

18-22: Example

- An agent can recommend to a prospecting company that they buy one of n plots of land.
- One of the plots has oil worth C dollars; the others are empty.
- Each block costs C / n dollars.
- Initially, agent is indifferent between buying and not buying. (why is that?)

18-23: Example

- Suppose the agent can perform a survey on a block that will indicate whether that block contains oil.
- How much should the agent pay to perform that survey?

18-24: Example

- How much should the agent pay to perform that survey?
- $P($ oil $)=1 / n . P(\neg o i l)=(n-1) / n$
- If oil found, buy for C / n. Profit $=C-C / n=(n-1) C / n$
- If oil not found, buy a different block.
- Probability of picking the oil block is now: $1 /(n-1)$ Expected Profit: $C /(n-1)-C / n=C /(n *(n-1))$.
- So, the expected profit, given the information is:
- $\frac{1}{n} \frac{(n-1) C}{n}+\frac{n-1}{n} \frac{C}{n(n-1)}=\frac{C}{n}$

18-25: Example

- Without doing the survey, expected profit is 0
- With doing the survey, expected profit is $\frac{C}{n}$
- Company is willing to pay up to C / n (the expected value of the plot itself) to do the test.
- This is the value of that information.

18-26: Value of Perfect Information

- Let's formalize this.
- We find the best action α in general with:
- $E U(\alpha)=$ max $_{a \in \text { actions }} \sum_{i \in \text { outcomes }} U(i) P(i \mid a)$
- Let's say we acquire some new information E.
- Then we find the best action with:
- $E U(\alpha \mid E)=\max _{a \in \text { actions }} \sum_{i \in o u t c o m e s} U(i) P(i \mid a, E)$
- The value of E is the difference between these two.

18-27: Value of Perfect Information

- However, before we do the test, we don't know what E will be.
- We must average over all possible values of E.
- $\operatorname{VPI}(E)=\left(\sum_{j \in \text { values }} P(E=j) E U(\alpha \mid E=j)\right)-E U(\alpha)$
- In words, consider the possibility of each observation, along with the usefulness of that observation, to compute the expected information gain from this test.
- In general, information will be valuable to the extent that it changes the agent's decision.

18-28: Example

- Imagine that you are on a game show and are given a choice of three possible doors to open.
- If you open door number 1 , you will win $\$ 10$.
- If you open door number 2 , you have a 50% change of winning nothing, and a 50% chance of winning $\$ 25$.
- If you open door number 3, you have a 20% of winning $\$ 20$, and an 80% chance of winning $\$ 10$.
- Which door should you choose?

18-29: Example

- $\mathrm{EU}($ door 1$)=10$
- $\mathrm{EU}($ door 2$)=0.5 * 0+0.5 * 25=12.5$
- $\mathrm{EU}($ door 3$)=0.2 * 20+0.8+10=12$
- Door 2 is best.

18-30: Example

- Now, suppose that the host offers to tell you honestly what you'll get if you open door number 2. How much would you pay for this information?
- Note: you can change your mind about which door to open after the host gives you this information.

18-31: Example

- There are two cases: either door 2 pays 0 or it pays 25 .
- If it pays 25 , we should choose it. This happens 50% of the time.
- If it pays 0 , we should choose door3, which has an expected payment of 12 . This happens 50% of the time.
- So, our utility will be: $0.5 * 25+0.5 * 12=18.5$
- Our EU before we asked was 12.5 , so the information is worth 6 .

18-32: Example II

- Drive across canyon
- Go around, takes 10 hours
- Go through the canyon, takes 2 hours without traffic, and 15 hours with traffic. $\mathrm{P}($ traffic $)=0.5$
- Which route should you take, to minimize the expected travel time?

18-33: Example II

- Drive across canyon
- Go around, takes 10 hours
- Expected time $=10$ hours
- Go through the canyon, takes 2 hours without traffic, and 15 hours with traffic. $\mathrm{P}($ traffic $)=0.5$
- Expected time $=2 * 0.5+15 * 0.5=8.5$ hours

18-34: Example II

- Drive across canyon
- Go around, takes 10 hours
- Go through the canyon, takes 2 hours without traffic, and 15 hours with traffic. $\mathrm{P}($ traffic $)=0.5$
- Drive to an overlook, see if there is traffic
- How long could you spend driving to / from the overlook, and have it still be worthwhile?

18-35: Example II

- Takes time n to drive to overlook and back
- If there is traffic, go around, for a total time of $10+n$
- If there is no traffic, go through, for a total time of $2+n$
- Expected time $=0.5 *(10+n)+0.5 *(2+n)=6+n$
- Without driving to overlook, best expected time $=8.5$ hours
- As long as driving to the overlook takes less than 2.5 hours, worth it

