Al Programming CS662-2013S-18

Markov Decision Processes

David Galles

Department of Computer Science
University of San Francisco

18-0: Making Sequential Decisions

- Previously, we've talked about:
- Making one-shot decisions in a deterministic environment
- Making sequential decisions in a deterministic environment
- Search
- Inference
- Making one-shot decisions in a stochastic environment
- Probability and Belief Networks
- Expected Utility
- What about sequential decisions in a stochastic environment?

18-1: Expected Utility

- Recall that the expected utility of an action is the utility of each possible outcome, weighted by the probability of that outcome occurring.
- More formally, from state s, an agent may take actions $a_{1}, a_{2}, \ldots, a_{n}$.
- Each action a_{i} can lead to states $s_{i 1}, s_{i 2}, \ldots, s_{i m}$, with probability $p_{i 1}, p_{i 2}, \ldots, p_{i m}$

$$
E U\left(a_{i}\right)=\sum p_{i j} s_{i j}
$$

- We call the set of probabilities and associated states the state transition model.
- The agent should choose the action a^{\prime} that maximizes EU.

18-2: Markovian environments

- We can extend this idea to sequential environments.
- Problem: How to determine transition probabilities?
- The probability of reaching state s given action a might depend on previous actions that were taken.
- Reasoning about long chains of probabilities can be complex and expensive.
- The Markov assumption says that state transition probabilities depend only on a finite number of parents.
- Simplest: a first-order Markov process. State transition probabilities depend only on the previous state.
- This is what we'll focus on.

18-3: Stationary Distributions

- We'll also assume a stationary distribution
- This says that the probability of reaching a state s^{\prime} given action a from state s with history H does not change.
- Different histories may produce different probabilities
- Given identical histories, the state transitions will be the same.
- We'll also assume that the utility of a state does not change throughout the course of the problem.
- In other words, our model of the world does not change while we are solving the problem.

18-4: Solving sequential problems

- If we have to solve a sequential problem, the total utility will depend on a sequence of states $s_{1}, s_{2}, \ldots, s_{n}$.
- Let's assign each state a utility or reward $R\left(s_{i}\right)$.
- Agent wants to maximize the sum of rewards.
- We call this formulation a Markov decision process.
- Formally:
- An initial state s_{0}
- A discrete set of states and actions
- A Transition model: $T\left(s, a, s^{\prime}\right)$ that indicates the probability of reaching state s^{\prime} from s when taking action a.
- A reward function: $R(s)$

18-5: Example grid problem

- Agent moves in the "intended" direction with probability 0.8 , and at a right angle with probability 0.2
- What should an agent do at each state to maximize reward?

18-6: MDP solutions

- Since the environment is stochastic, a solution will not be an action sequence.
- Instead, we must specify what an agent should do in any reachable state.
- We call this specification a policy
- "If you're below the goal, move up."
- "If you're in the left-most column, move right."
- We denote a policy with π, and $\pi(s)$ indicates the policy for state s.

18-7: MDP solutions

- Things to note:
- We've wrapped the goal formulation into the problem
- Different goals will require different policies.
- We are assuming a great deal of (correct) knowledge about the world.
- State transition models, rewards
- We'll touch on how to learn these without a model.

18-8: Comparing policies

- We can compare policies according to the expected utility of the histories they produce.
- The policy with the highest expected utility is the optimal policy.
- Once an optimal policy is found, the agent can just look up the best action for any state.

18-9: Example grid problem

- Assumes no cost for non-goal states
- No benifit for faster solutions

18-10: Non-Goal Costs

- Spending unlimited time trying to find th best solution is not always the best idea.
- We can give a cost (negative utility) to each non-goal state
- penalized for taking too long to find the goal state

18-11: Non-Goal Costs

$R(S)=$ Reward for non-goal state

- Very high cost: Agent tries to exit immediately
- Middle ground: Agent tries to avoid bad exit
- Positive reward: Agent doesn't try to exit.

18-12: More on reward functions

- In solving an MDP, an agent must consider the value of future actions.
- There are different types of problems to consider:
- Horizon - does the world go on forever?
- Finite horizon: after N actions, the world stops and no more reward can be earned.
- Infinite horizon; World goes on indefinitely, or we don't know when it stops.
- Infinite horizon is simpler to deal with, as policies don't change over time.

18-13: More on reward functions

- We also need to think about how to value future reward.
- \$100 is worth more to me today than in a year.
- We model this by discounting future rewards.
- γ is a discount factor
- $U\left(s_{0}, s_{1}, s_{2}, s_{3}, \ldots\right)=$ $R\left(s_{0}\right)+\gamma R\left(s_{1}\right)+\gamma^{2} R\left(s_{2}\right)+\gamma^{3} R\left(s_{3}\right)+\ldots, \gamma \in[0,1]$
- If γ is large, we value future states
- if γ is low, we focus on near-term reward
- In monetary terms, a discount factor of γ is equivalent to an interest rate of $(1 / \gamma)-1$

18-14: More on reward functions

- Discounting lets us deal sensibly with infinite horizon problems.
- Otherwise, all EUs would approach infinity.
- Expected utilities will be finite if rewards are finite and bounded and $\gamma<1$.
- We can now describe the optimal policy π^{*} as:

$$
\pi^{*}=\operatorname{argmax}_{\pi} E U\left(\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}\right) \mid \pi\right)
$$

18-15: Value iteration

- How to find an optimal policy?
- We'll begin by calculating the expected utility of each state and then selecting actions that maximize expected utility.
- In a sequential problem, the utility of a state is the expected utility of all the state sequences that follow from it.
- This depends on the policy π being executed.
- Essentially, $U(s)$ is the expected utility of executing an optimal policy from state s.

18-16: Utilities of States

3	0.812	0.868	0.918	+1
2	0.762		0.660	-1
1	0.705	0.655	0.611	0.388
	1	2	3	4

$$
\begin{aligned}
& \gamma=1 \\
& \mathrm{R}(\mathrm{~S})=-0.04 \\
& \quad \text { (non-goals) }
\end{aligned}
$$

- Notice that utilities are highest for states close to the +1 exit.

18-17: Utilities of States

- The utility of a state is the immediate reward for that state plus the expected discounted utility of the next state, assuming that the agent chooses the optimal action.

O

$$
U(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U\left(s^{\prime}\right)
$$

- This is called the Bellman equation
- Example:

$$
\begin{array}{r}
U(1,1)=-0.04+\gamma \max (0.8 U(1,2)+ \\
0.1 U(2,1)+0.1 U(1,1) \\
0.9 U(1,1)+0.1 U(1,2), \\
0.9 U(1,1)+0.1 U(2,1), \\
0.8 U(2,1)+0.1 U(1,2)+0.1 U(1,1))
\end{array}
$$

18-18: Dynamic Programming

- Solving the Bellman equation is a dynamic programming problem
- In an acyclic transition graph, you can solve these recursively by working backward from the final state to the initial states.
- Can't do this directly for transition graphs with loops.

18-19: Value Iteration

- Since state utilities are defined in terms of other state utilities, how to find a closed-form solution?
- We can use an iterative approach:
- Give each state random initial utilities.
- Calculate the new left-hand side for a state based on its neighbors' values.
- Propagate this to update the right-hand-side for other states,
- Update rule:
$U_{i+1}(s)=R(s)+\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U_{i}\left(s^{\prime}\right)$
- This is guaranteed to converge to the solutions to the Bellman equations.

18-20: Value Iteration algorithm

Assing random utilities to each state do
for s in states
$\mathrm{U}(\mathrm{s})=\mathrm{R}(\mathrm{s})+\operatorname{gamma}$ * max $\mathrm{T}\left(\mathrm{s}, \mathrm{a}, \mathrm{s}^{\prime}\right) \mathrm{U}\left(\mathrm{s}^{\prime}\right)$
until
all utilities change by less then delta

- where $\delta=$ error * $(1-\gamma) / \gamma$

18-21: Example

$$
\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}
$$

$$
\begin{aligned}
& \gamma=0.8 \\
& \mathrm{R}(\mathrm{~S})=-0.04 \\
& \text { error }=0.01 \\
& \quad \delta=0.0025
\end{aligned}
$$

- Initially, use random values

18-22: Example

$$
\begin{aligned}
& \gamma=0.8 \\
& \mathrm{R}(\mathrm{~S})=-0.04 \\
& \text { error }=0.01 \\
& \quad \delta=0.0025
\end{aligned}
$$

- After 1 iteration

18-23: Example

- After 2 iterations

18-24: Example

- After 3 iterations

18-25: Example

- After 4 iterations

18-26: Example

- After 5 iterations

18-27: Example

- After 6 iterations - almost converged

18-28: Discussion

- Strengths of Value iteration
- Guaranteed to converge to correct solution
- Simple iterative algorithm
- Weaknesses:
- Convergence can be slow
- We really don't need all this information
- Just need what to do at each state.

18-29: Policy iteration

- Policy iteration helps address these weaknesses.
- Searches directly for optimal policies, rather than state utilities.
- Same idea: iteratively update policies for each state.
- Two steps:
- Given a policy, compute the utilities for each state.
- Compute a new policy based on these new utilities.

18-30: Policy iteration algorithm

Initialize all state utilities to zero Pi = random policy vector indexed by state do
$\mathrm{U}=$ evaluate the utility of each state for Pi for s in states
$a=$ find action that maximizes expected utility for that state
Pi(s) = a
while some action changed

18-31: Policy Iter. Example

3	$\begin{gathered} 0.0 \\ \downarrow \end{gathered}$	$\xrightarrow{0.0}$	$\begin{gathered} 0.0 \\ \downarrow \end{gathered}$	+1
2	$\stackrel{0}{\sim}$		$\xrightarrow{0.0}$	-1
1	$\xrightarrow{0.0}$	0.0	0.0	0.0
	1	2	3	4

All non-goal utilities 0 Random policies

18-32: Policy Iter. Example

Assign new utilities based on old utilies and policy

18-33: Policy Iter. Example

3	-0.07	$\begin{gathered} -0.07 \\ \longrightarrow \end{gathered}$	$\xrightarrow{0.04}$	$+1$
2	$\stackrel{-0.07}{\longleftarrow}$		-0.68	-1
1	$\begin{gathered} -0.07 \\ \longrightarrow \end{gathered}$	$\begin{gathered} -0.07 \\ \longleftarrow \end{gathered}$	$\begin{gathered} -0.04 \\ \longleftarrow \end{gathered}$	$\begin{gathered} -0.12 \\ \longleftarrow \end{gathered}$
	1	2	3	4

Create a new policy based on new Utilities

18-34: Policy Iter. Example

3	-0.7	$\xrightarrow{-0.02}$	$\begin{gathered} 0.55 \\ \longrightarrow \end{gathered}$	+1
2	-0.07		-0.14	-1
1	$\begin{gathered} -0.07 \\ \longrightarrow \end{gathered}$	$\stackrel{-0.07}{\longleftarrow}$	$\underset{4}{-0.12}$	$-$
	1	2	3	4

Create new Utilities based on policy and previous Utilities

18-35: Policy Iter. Example

Create policies based on previous Utilities

18-36: Policy Iter. Example

Create new Utilities using old Utilities and Policy

18-37: Policy Iter. Example

3	-0.06 \longrightarrow	0.31	0.63 -0.09	+1
$\mathbf{1}$	0.22 \uparrow	$\boxed{-1}$		
-0.09 \longrightarrow	-0.09 4	-0.10 \uparrow	-0.12 \downarrow	

Use new utility estimates to construct new policies

18-38: Policy Iter. Example

Create new utility esitmates using old Utilities \& current policies

18-39: Policy Iter. Example

3	0.15 \rightarrow	0.41	0.67	$\boxed{+1}$
1	0.30 \uparrow	$\boxed{-1}$		
-0.11 \uparrow	-0.11	0.08 \uparrow	-0.13	$\mathbf{2}$

Use new Utilities to update policy

18-40: Policy Iter. Example

3	0.23 \rightarrow	0.45	0.68 \uparrow	+1
-06 \uparrow \uparrow	0.33 \uparrow	$\boxed{-1}$		
1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	

Update utilities based on old Utilites and Policies

18-41: Policy Iter. Example

3	0.23 \rightarrow	0.45	0.68	+1
1	0.06 \uparrow	0.03 \uparrow	-0.01	0.13 \uparrow

Update policices No change.

18-42: Discussion

- Advantages:
- Faster convergence.
- Solves the actual problem we're interested in. We don't really care about utility estimates except as a way to construct a policy.

18-43: Learning a Policy

- MDPs assume that we know a model of the world
- Specifically, the transition function T
- We can also learn a policy through interaction with the environment.
- This is known as reinforcement learning.
- We'll talk about this in a couple of weeks.

18-44: Summary

- Markov decision policies provide an agent with a description of how to act optimally for any state in a problem.
- Must know state space, have a fixed goal.
- Value iteration and policy iteration can be applied to solve this.

