Al Programming
CS662-2013S-18

Markov Decision Processes

Davi |

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

18-0: Making Sequential Decisions

® Previously, we've talked about:

* Making one-shot decisions in a deterministic
environment

* Making sequential decisions in a deterministic
environment
+ Search
- Inference

 Making one-shot decisions in a stochastic
environment
 Probability and Belief Networks
- Expected Utility

® What about sequential decisions in a stochastic
environment?

18-1: EXpected Utility

® Recall that the expected utility of an action is the
utility of each possible outcome, weighted by the
probability of that outcome occurring.

® More formally, from state s, an agent may take
actions ay, a, ..., a,.

® Fach action g; can lead to states s;q, si, ..., s;,,,, With
prObablllty pila piZa e pim

EU(a;) = Z PijSij

® We call the set of probabilities and associated
states the state transition model.

® The agent should choose the action 4’ that
maximizes EU.

18-2: Markovian environments

® We can extend this idea to sequential environments.

® Problem: How to determine transition probabilities?

* The probability of reaching state s given action a
might depend on previous actions that were taken.

* Reasoning about long chains of probabilities can be
complex and expensive.

® The Markov assumption says that state transition
probabilities depend only on a finite number of parents.

® Simplest: a first-order Markov process. State transition
probabilities depend only on the previous state.

* This is what we’ll focus on.

18-3: Stationary Distributions

® We'll also assume a stationary distribution

® This says that the probability of reaching a state s’
given action a from state s with history H does not
change.

® Different histories may produce different
probabilities

® Given identical histories, the state transitions will
be the same.

® We'll also assume that the utility of a state does
not change throughout the course of the problem.

* |n other words, our model of the world does not
change while we are solving the problem.

18-4: Solving sequential problems

® |f we have to solve a sequential problem, the total
utility will depend on a sequence of states
$15 525 ooy Sy

® | et’s assign each state a utility or reward R(s;).
® Agent wants to maximize the sum of rewards.

® We call this formulation a Markov decision process.
 Formally:
* An initial state s
* A discrete set of states and actions

e A Transition model: T'(s, a, s’) that indicates the
probability of reaching state s’ from s when
taking action a.

A reward function: R(s)

18-5: Example grid problem

2 +1 0.8
5 . 1 O.1<—L>O.1
1

1 2 3 4

® Agent moves in the “intended” direction with

probability 0.8, and at a right angle with probability
0.2

® What should an agent do at each state to
maximize reward?

18-6: MDP solutions

® Since the environment is stochastic, a solution will
not be an action sequence.

® |nstead, we must specify what an agent should do
In any reachable state.
® We call this specification a policy
e “If you're below the goal, move up.”
* “If you're in the left-most column, move right.”

® We denote a policy with 7, and z(s) indicates the
policy for state s.

18-7. MDP solutions

® Things to note:

 We've wrapped the goal formulation into the
problem

- Different goals will require different policies.

 We are assuming a great deal of (correct)
knowledge about the world.
- State transition models, rewards
- We’ll touch on how to learn these without a
model.

18-8: Comparing policies

® \We can compare policies according to the
expected utility of the histories they produce.

® The policy with the highest expected utility is the
optimal policy.

® Once an optimal policy is found, the agent can just
look up the best action for any state.

;] O

-1 0.1 < 1 > 0.1

18-0: Example grid problem

3| —» | — | — | +1

0 EE

1 T -— | — l

1 2 3 4

® Assumes no cost for non-goal states
® No benifit for faster solutions

18-10: Non-Goal Costs

® Spending unlimited time trying to find th best
solution is not always the best idea.

® \We can give a cost (negative utility) to each
non-goal state

® penalized for taking too long to find the goal state

18-11: Non-Goal Costs

R(S) = Reward for non-goal state

3| > | > | > | +1 3| — | — | — | +1 3| — | = | — | 1
0 EEEN DOED DE
ot ==]| 2t =t || Yt |||
1 2 3 4 1 2 3 4 1 2 3 4
-0.221 < R(S) <= 0 -0.428 < R(S) < 0.0850 R(S) = -0.04

3 +1 3 -«— | +1

) =] 2 -«— | -1

1 1 1 l

1 2 3 4 1 2 3 4

R(S) < -1.6284 R(S) >0

® \ery high cost: Agent tries to exit immediately
® Middle ground: Agent tries to avoid bad exit
® Positive reward: Agent doesn't try to exit.

18-12: More on reward functions

® |n solving an MDP, an agent must consider the
value of future actions.

® There are different types of problems to consider:

® Horizon - does the world go on forever?

* Finite horizon: after N actions, the world stops
and no more reward can be earned.

* |nfinite horizon; World goes on indefinitely, or
we don’t know when it stops.
- Infinite horizon is simpler to deal with, as
policies don’t change over time.

18-13: More on reward functions

® \\Ne also need to think about how to value future
reward.

® $100 is worth more to me today than in a year.

® We model this by discounting future rewards.
* vy Is a discount factor

® U(so, S1, 52, 83, -..) =
R(s0) + YR(s1) + ¥*R(s2) + Y’R(s3) + ...,y € [0,1]

® |f yis large, we value future states
® if yis low, we focus on near-term reward

® |n monetary terms, a discount factor of y is
equivalent to an interest rate of (1/y) — 1

18-14: More on reward functions

® Discounting lets us deal sensibly with infinite
horizon problems.

e Otherwise, all EUs would approach infinity.

® Expected utilities will be finite if rewards are finite
and bounded and y < 1.

® \We can now describe the optimal policy 7* as:

= argmax,EU (Z V' R(s,)|r)
=0

18-15: Value Iiteration

® How to find an optimal policy?

® We'll begin by calculating the expected utility of
each state and then selecting actions that
maximize expected utility.

® |n a sequential problem, the utility of a state is the
expected utility of all the state sequences that
follow from fit.

® This depends on the policy 7 being executed.

® Essentially, U(s) is the expected utility of executing
an optimal policy from state s.

18-16: Utilities of States

0.812

0. 868

0. 918

0. 762 0. 660
0. 705 | 0. 655 [0. 611 | 0. 388
1 2 3 4

y =1
R(S) = -0.04
(non- goal s)

® Notice that utilities are highest for states close to
the +1 exit.

18-17: Utilities of States

® The utility of a state is the immediate reward for
that state plus the expected discounted utility of
the next state, assuming that the agent chooses
the optimal action.

U(s) = R(s) + ymax, Z T(s,a,s)U(s")

® This is called the Bellman equation
® Example:

U(1,1) = —0.04 + ymax(0.8U(1,2) + 0.1U(2, 1) + 0.1U(1, 1)
0.9U(1,1) +0.1U(1,2),

0.9U(1,1) + 0.1U(2, 1),

0.8U(2,1) + 0.1U(1,2) + 0.1U(1, 1))

18-18: Dynamic Programming

® Solving the Bellman equation is a dynamic
programming problem

® |n an acyclic transition graph, you can solve these
recursively by working backward from the final
state to the initial states.

® Can’t do this directly for transition graphs with
loops.

18-19: Value lteration

® Since state utilities are defined in terms of other
state utilities, how to find a closed-form solution?
® \We can use an iterative approach:
e (Give each state random initial utilities.

e Calculate the new left-hand side for a state
based on its neighbors’ values.

* Propagate this to update the right-nand-side for
other states,

e Update rule:
Uis1(s) = R(s) + ymax,)¢ T(s,a, s")U;(s")

® This is guaranteed to converge to the solutions to
the Bellman equations.

18-20: Value Iteration algorithm

Assing random utilities to each state

do
for s 1n states
U(s) = R(s) + gamma * max T(s,a,s’) U(s’)

until
all utilities change by less then delta

® where § = error * (1 —y)/y

18-21: Example

3| 0.1 |-0.1]0.05

2 -0.02. 0. 15

1 0.0 0.1 | -0.1 | 0.15

1 2 3 4
® |nitially, use random values

y = 0.8

R(S =-0.04

error = 0.01
o0 = 0.0025

18-22: Example

3 | O.

03

1 | 0.

02

-0. 02

0. 02

0.

62

0.

08

0. 06

® After 1 iteration

1

2

3

y = 0.8

R(S =-0.04

error = 0.01
o0 = 0.0025

18-23: EXample

3 |-0.

02

1 |-0.

02

0.

0.

35

01

0.

65

0.

)

0.01

1

2

3

® After 2 iterations

y = 0.8

R(S =-0.04

error = 0.01
o0 = 0.0025

18-24: ExXample

3 | O.

19

1 |-0.

04

0. 43

-0. 03

0.

69

2 -0.06‘IIIIII 0. 32

0.

14

- 0. 03

1

2

3

® After 3 iterations

y = 0.8

R(S =-0.04

error = 0.01
o0 = 0.0025

18-25: EXample

3 | O.

25

1 |-0.

07

0.47

0. 04

0.

68

0.

16

- 0. 03

1

2

3

® After 4 iterations

y = 0.8

R(S =-0.04

error = 0.01
o0 = 0.0025

18-26: EXample

3 | O.

27

1 | o.

0

0.47

0. 07

0.

68

0.

18

- 0. 02

1

2

3

® After 5 iterations

y = 0.8

R(S =-0.04

error = 0.01
o0 = 0.0025

18-27: EXample

3 | 0.

29

1 | 0.

04

0.47

0. 08

0.

68

0.

18

-0. 01

1

2

3

A4

y = 0.8

R(S =-0.04

error = 0.01
o0 = 0.0025

® After 6 iterations — almost converged

18-28: DIscussion

® Strengths of Value iteration
* Guaranteed to converge to correct solution
e Simple iterative algorithm

® \Weaknesses:
e Convergence can be slow
* We really don’t need all this information
e Just need what to do at each state.

18-20: Policy iteration

® Policy iteration helps address these weaknesses.

® Searches directly for optimal policies, rather than
state utilities.

® Same idea: iteratively update policies for each
state.

® Two steps:
e Given a policy, compute the utilities for each
state.
e Compute a new policy based on these new
utilities.

18-30: Policy iteration algorithm

Initialize all state utilities to zero
Pi1 = random policy vector indexed by state

do
U = evaluate the utility of each state for Pi

for s 1n states
a = find action that maximizes expected
utility for that state
Pi(s) = a
while some action changed

18-31: Policy Iter. Example

0.

0

0.

0

0.

0

0.0 0.0 0.0 0.0
— - T P
1 2 3 4

All non-goal utilities 0

Random policies

18-32: Policy Iter. Example

-0.04(-0.04| 0.04 -
+1

vl T

-0. 04 -0. 68

- .

-0. 04 -0.04|-0. 12
—

1

1 2 3 4

Assign new utilities
based on old utilies
and policy

18-33: Policy Iter. Example

-0.07(-0.07| 0.04

+
e
-0. 07 -0. 68 -
<+ T -1
-0.07(-0.07(-0.04|-0.12
E— 4+ 4 4
1 2 3 4

Create a new policy
based on new Utilities

18-34: Policy Iter. Example

-0.7 [-0.02] 0.55

+
i
-0. 07 -0. 14
- \
-0.071-0.07(-0.12(-0.12
— 4+ 4+ 4+
1 2 3 4

Create new Utilities
based on policy
and previous Utilities

18-35: Policy Iter. Example

-0.07(-0.02| 0. 55
+

RGN I
- 0. 07 -0. 14 -
<+ T ~ 1
-0.07(-0.07(-0.12|-0.12
—> - - ¢

1 2 3 4

Create policies
based on previous Utilities

18-36: Policy Iter. Example

- 0. 06

—>

0.31

E—

0. 63

—>

-0. 09 0. 22
2 1
-0.09(-0.09(-0.10(-0.12
—> - D ¢
1 2 3 4

Create new Utilities
using old Utilities
and Policy

18-37: Policy Iter. Example

- 0. 06

—

0.31

—

0. 63

—

-0. 09 0. 22
-0.09(-0.09|-0.10|-0.12
1 2 3 4

Use new utility
estimates to construct
new policies

18-38: Policy Iter. Example

0.15

—»

0. 41

—»

0. 67

—»

0. 04 0. 30
f 4
-0.111-0.11 0.08 |[-0.13
1 2 3 4

Create new utility
esitmates using

old Utilities &
current policies

18-39: Policy Iter. Example

0.15

—>

0.41

—

0. 67

—»

0. 04 0. 30
-0.11(-0.11| 0.08 |-0.13
bl — | | —
1 2 3 4

Use new Utilities
to update policy

18-40: Policy Iter. Example

0. 23

—>

0. 45

E—

0. 68

—>

0. 06 0. 33
-0.03|-0.01 0.13 |-0.07
bl — 0t | —
1 2 3 4

Update utilities
based on old Utilites
and Policies

18-41: Policy Iter. Example

0. 23

—»

0.45

—»

0. 68

—>

0. 06 0. 33
-0.03(-0.01| 0.13 |-0. 07
bl — |t] —
1 2 3 4

Update policices
No change.

18-42: DIscussion

® Advantages:
* Faster convergence.

* Solves the actual problem we’re interested in.
We don't really care about utility estimates
except as a way to construct a policy.

18-43: Learning a Policy

® MDPs assume that we know a model of the world
e Specifically, the transition function T

® We can also learn a policy through interaction with
the environment.

® This is known as reinforcement learning.
® We'll talk about this in a couple of weeks.

18-44: SUMMary

® Markov decision policies provide an agent with a
description of how to act optimally for any state in
a problem.

 Must know state space, have a fixed goal.

® Value iteration and policy iteration can be applied
to solve this.

	{small lecturenumber -	heblocknumber :} Making Sequential Decisionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Expected Utilityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Markovian environmentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stationary Distributionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving sequential problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Example grid problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} MDP solutionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} MDP solutionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Comparing policiesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Example grid problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Non-Goal Costsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Non-Goal Costsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More on reward functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More on reward functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More on reward functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Value iterationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Utilities of Statesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Utilities of Statesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Programmingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Value Iterationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Value Iteration algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Discussionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy iterationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy iteration algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Discussionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Learning a Policyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Summaryaddtocounter {blocknumber}{1}

