
AI Programming
CS662-2013S-18

Markov Decision Processes

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

18-0: Making Sequential Decisions

Previously, we’ve talked about:

Making one-shot decisions in a deterministic
environment

Making sequential decisions in a deterministic
environment

Search
Inference

Making one-shot decisions in a stochastic
environment

Probability and Belief Networks
Expected Utility

What about sequential decisions in a stochastic
environment?

18-1: Expected Utility

Recall that the expected utility of an action is the
utility of each possible outcome, weighted by the
probability of that outcome occurring.

More formally, from state s, an agent may take
actions a1, a2, ..., an.

Each action ai can lead to states si1, si2, ..., sim, with
probability pi1, pi2, ..., pim

EU(ai) =
∑

pi jsi j

We call the set of probabilities and associated
states the state transition model.

The agent should choose the action a′ that
maximizes EU.

18-2: Markovian environments

We can extend this idea to sequential environments.

Problem: How to determine transition probabilities?

The probability of reaching state s given action a

might depend on previous actions that were taken.

Reasoning about long chains of probabilities can be

complex and expensive.

The Markov assumption says that state transition

probabilities depend only on a finite number of parents.

Simplest: a first-order Markov process. State transition

probabilities depend only on the previous state.

This is what we’ll focus on.

18-3: Stationary Distributions

We’ll also assume a stationary distribution

This says that the probability of reaching a state s′

given action a from state s with history H does not
change.

Different histories may produce different
probabilities

Given identical histories, the state transitions will
be the same.

We’ll also assume that the utility of a state does
not change throughout the course of the problem.

In other words, our model of the world does not
change while we are solving the problem.

18-4: Solving sequential problems

If we have to solve a sequential problem, the total
utility will depend on a sequence of states
s1, s2, ..., sn.

Let’s assign each state a utility or reward R(si).

Agent wants to maximize the sum of rewards.

We call this formulation a Markov decision process.

Formally:

An initial state s0

A discrete set of states and actions

A Transition model: T (s, a, s′) that indicates the
probability of reaching state s′ from s when
taking action a.

A reward function: R(s)

18-5: Example grid problem

+1

-1

1 2 3 4

1

2

3
0.8

0.10.1

Agent moves in the “intended” direction with
probability 0.8, and at a right angle with probability
0.2

What should an agent do at each state to
maximize reward?

18-6: MDP solutions

Since the environment is stochastic, a solution will
not be an action sequence.

Instead, we must specify what an agent should do
in any reachable state.

We call this specification a policy

“If you’re below the goal, move up.”

“If you’re in the left-most column, move right.”

We denote a policy with π, and π(s) indicates the
policy for state s.

18-7: MDP solutions

Things to note:

We’ve wrapped the goal formulation into the
problem

Different goals will require different policies.

We are assuming a great deal of (correct)
knowledge about the world.

State transition models, rewards
We’ll touch on how to learn these without a
model.

18-8: Comparing policies

We can compare policies according to the
expected utility of the histories they produce.

The policy with the highest expected utility is the
optimal policy.

Once an optimal policy is found, the agent can just
look up the best action for any state.

+1

-1

1 2 3 4

1

2

3
0.8

0.10.1

18-9: Example grid problem

+1

-1

1 2 3 4

1

2

3

Assumes no cost for non-goal states

No benifit for faster solutions

18-10: Non-Goal Costs

Spending unlimited time trying to find th best
solution is not always the best idea.

We can give a cost (negative utility) to each
non-goal state

penalized for taking too long to find the goal state

18-11: Non-Goal Costs

+1

-1

1 2 3 4

1

2

3

R(S) = Reward for non-goal state

+1

-1

1 2 3 4

1

2

3 +1

-1

1 2 3 4

1

2

3

+1

-1

1 2 3 4

1

2

3 +1

-1

1 2 3 4

1

2

3

-0.221 < R(S) <= 0

R(S) > 0R(S) < -1.6284

-0.428 < R(S) < 0.0850 R(S) = -0.04

Very high cost: Agent tries to exit immediately

Middle ground: Agent tries to avoid bad exit

Positive reward: Agent doesn’t try to exit.

18-12: More on reward functions

In solving an MDP, an agent must consider the
value of future actions.

There are different types of problems to consider:

Horizon - does the world go on forever?

Finite horizon: after N actions, the world stops
and no more reward can be earned.

Infinite horizon; World goes on indefinitely, or
we don’t know when it stops.

Infinite horizon is simpler to deal with, as
policies don’t change over time.

18-13: More on reward functions

We also need to think about how to value future
reward.

$100 is worth more to me today than in a year.

We model this by discounting future rewards.

γ is a discount factor

U(s0, s1, s2, s3, ...) =

R(s0) + γR(s1) + γ2R(s2) + γ3R(s3) + ..., γ ∈ [0, 1]

If γ is large, we value future states

if γ is low, we focus on near-term reward

In monetary terms, a discount factor of γ is
equivalent to an interest rate of (1/γ) − 1

18-14: More on reward functions

Discounting lets us deal sensibly with infinite
horizon problems.

Otherwise, all EUs would approach infinity.

Expected utilities will be finite if rewards are finite
and bounded and γ < 1.

We can now describe the optimal policy π∗ as:

π∗ = argmaxπEU(

∞∑

t=0

γtR(st)|π)

18-15: Value iteration

How to find an optimal policy?

We’ll begin by calculating the expected utility of
each state and then selecting actions that
maximize expected utility.

In a sequential problem, the utility of a state is the
expected utility of all the state sequences that
follow from it.

This depends on the policy π being executed.

Essentially, U(s) is the expected utility of executing
an optimal policy from state s.

18-16: Utilities of States

+1

-1

1 2 3 4

1

2

3 0.918

0.660

0.611 0.388

0.868

0.705 0.655

0.812

0.762

γ = 1
R(S) = -0.04
 (non-goals)

Notice that utilities are highest for states close to
the +1 exit.

18-17: Utilities of States

The utility of a state is the immediate reward for
that state plus the expected discounted utility of
the next state, assuming that the agent chooses
the optimal action.

U(s) = R(s) + γmaxa

∑

s′

T (s, a, s′)U(s′)

This is called the Bellman equation

Example:

U(1, 1) = −0.04 + γmax(0.8U(1, 2) + 0.1U(2, 1) + 0.1U(1, 1)

0.9U(1, 1) + 0.1U(1, 2),

0.9U(1, 1) + 0.1U(2, 1),

0.8U(2, 1) + 0.1U(1, 2) + 0.1U(1, 1))

18-18: Dynamic Programming

Solving the Bellman equation is a dynamic
programming problem

In an acyclic transition graph, you can solve these
recursively by working backward from the final
state to the initial states.

Can’t do this directly for transition graphs with
loops.

18-19: Value Iteration

Since state utilities are defined in terms of other
state utilities, how to find a closed-form solution?

We can use an iterative approach:

Give each state random initial utilities.

Calculate the new left-hand side for a state
based on its neighbors’ values.

Propagate this to update the right-hand-side for
other states,

Update rule:
Ui+1(s) = R(s) + γmaxa

∑
s′ T (s, a, s′)Ui(s′)

This is guaranteed to converge to the solutions to
the Bellman equations.

18-20: Value Iteration algorithm

Assing random utilities to each state

do

for s in states

U(s) = R(s) + gamma * max T(s,a,s’) U(s’)

until

all utilities change by less then delta

where δ = error ∗ (1 − γ)/γ

18-21: Example

+1

-1

1 2 3 4

1

2

3 0.05

0.15

-0.1 0.15

-0.1

0.0 0.1

0.1

-0.02

γ = 0.8
R(S) = -0.04
error = 0.01
 δ = 0.0025

Initially, use random values

18-22: Example

+1

-1

1 2 3 4

1

2

3 0.62

0.05

0.08 0.06

-0.02

0.02 0.02

0.03

0.02

γ = 0.8
R(S) = -0.04
error = 0.01
 δ = 0.0025

After 1 iteration

18-23: Example

+1

-1

1 2 3 4

1

2

3 0.65

0.28

0.02 0.01

0.35

-0.02 0.01

-0.02

-0.02

γ = 0.8
R(S) = -0.04
error = 0.01
 δ = 0.0025

After 2 iterations

18-24: Example

+1

-1

1 2 3 4

1

2

3 0.69

0.32

0.14 -0.03

0.43

-0.04 -0.03

0.19

-0.06

γ = 0.8
R(S) = -0.04
error = 0.01
 δ = 0.0025

After 3 iterations

18-25: Example

+1

-1

1 2 3 4

1

2

3 0.68

0.34

0.16 -0.03

0.47

-0.07 0.04

0.25

0.07

γ = 0.8
R(S) = -0.04
error = 0.01
 δ = 0.0025

After 4 iterations

18-26: Example

+1

-1

1 2 3 4

1

2

3 0.68

0.34

0.18 -0.02

0.47

0.0 0.07

0.27

0.13

γ = 0.8
R(S) = -0.04
error = 0.01
 δ = 0.0025

After 5 iterations

18-27: Example

+1

-1

1 2 3 4

1

2

3 0.68

0.34

0.18 -0.01

0.47

0.04 0.08

0.29

0.15

γ = 0.8
R(S) = -0.04
error = 0.01
 δ = 0.0025

After 6 iterations – almost converged

18-28: Discussion

Strengths of Value iteration

Guaranteed to converge to correct solution

Simple iterative algorithm

Weaknesses:

Convergence can be slow

We really don’t need all this information

Just need what to do at each state.

18-29: Policy iteration

Policy iteration helps address these weaknesses.

Searches directly for optimal policies, rather than
state utilities.

Same idea: iteratively update policies for each
state.

Two steps:

Given a policy, compute the utilities for each
state.

Compute a new policy based on these new
utilities.

18-30: Policy iteration algorithm

Initialize all state utilities to zero

Pi = random policy vector indexed by state

do

U = evaluate the utility of each state for Pi

for s in states

a = find action that maximizes expected

utility for that state

Pi(s) = a

while some action changed

18-31: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0
All non-goal utilities 0

Random policies

18-32: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.04

-0.68

-0.04 -0.12

-0.04

-0.04 -0.04

-0.04

-0.04

Assign new utilities
based on old utilies

and policy

18-33: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.04

-0.68

-0.04 -0.12

-0.07

-0.07 -0.07

-0.07

-0.07

Create a new policy
based on new Utilities

18-34: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.55

-0.14

-0.12 -0.12

-0.02

-0.07 -0.07

-0.7

-0.07

Create new Utilities
based on policy

and previous Utilities

18-35: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.55

-0.14

-0.12 -0.12

-0.02

-0.07 -0.07

-0.07

-0.07

Create policies
based on previous Utilities

18-36: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.63

0.22

-0.10 -0.12

0.31

-0.09 -0.09

-0.06

-0.09

Create new Utilities
using old Utilities

and Policy

18-37: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.63

0.22

-0.10 -0.12

0.31

-0.09 -0.09

-0.06

-0.09

Use new utility
estimates to construct

new policies

18-38: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.67

0.30

0.08 -0.13

0.41

-0.11 -0.11

0.15

0.04

Create new utility
esitmates using
old Utilities &

current policies

18-39: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.67

0.30

0.08 -0.13

0.41

-0.11 -0.11

0.15

0.04

Use new Utilities
to update policy

18-40: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.68

0.33

0.13 -0.07

0.45

-0.03 -0.01

0.23

0.06

Update utilities
based on old Utilites

and Policies

18-41: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.68

0.33

0.13 -0.07

0.45

-0.03 -0.01

0.23

0.06

Update policices
No change.

18-42: Discussion

Advantages:

Faster convergence.

Solves the actual problem we’re interested in.
We don’t really care about utility estimates
except as a way to construct a policy.

18-43: Learning a Policy

MDPs assume that we know a model of the world

Specifically, the transition function T

We can also learn a policy through interaction with
the environment.

This is known as reinforcement learning.

We’ll talk about this in a couple of weeks.

18-44: Summary

Markov decision policies provide an agent with a
description of how to act optimally for any state in
a problem.

Must know state space, have a fixed goal.

Value iteration and policy iteration can be applied
to solve this.

	{small lecturenumber -	heblocknumber :} Making Sequential Decisionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Expected Utilityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Markovian environmentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stationary Distributionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving sequential problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Example grid problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} MDP solutionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} MDP solutionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Comparing policiesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Example grid problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Non-Goal Costsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Non-Goal Costsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More on reward functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More on reward functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More on reward functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Value iterationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Utilities of Statesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Utilities of Statesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Programmingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Value Iterationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Value Iteration algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Discussionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy iterationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy iteration algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Policy Iter. Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Discussionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Learning a Policyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Summaryaddtocounter {blocknumber}{1}

