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18-0: Making Sequential Decisions

® Previously, we've talked about:

* Making one-shot decisions in a deterministic
environment

* Making sequential decisions in a deterministic
environment
+ Search
- Inference

 Making one-shot decisions in a stochastic
environment
 Probability and Belief Networks
- Expected Utility

® What about sequential decisions in a stochastic
environment?




18-1: EXpected Utility

® Recall that the expected utility of an action is the
utility of each possible outcome, weighted by the
probability of that outcome occurring.

® More formally, from state s, an agent may take
actions ay, a, ..., a,.

® Fach action g; can lead to states s;q, si, ..., s;,,,, With
prObablllty pila piZa e pim

EU(a;) = Z PijSij

® We call the set of probabilities and associated
states the state transition model.

® The agent should choose the action 4’ that
maximizes EU.




18-2: Markovian environments

® We can extend this idea to sequential environments.

® Problem: How to determine transition probabilities?

* The probability of reaching state s given action a
might depend on previous actions that were taken.

* Reasoning about long chains of probabilities can be
complex and expensive.

® The Markov assumption says that state transition
probabilities depend only on a finite number of parents.

® Simplest: a first-order Markov process. State transition
probabilities depend only on the previous state.

* This is what we’ll focus on.




18-3: Stationary Distributions

® We'll also assume a stationary distribution

® This says that the probability of reaching a state s’
given action a from state s with history H does not
change.

® Different histories may produce different
probabilities

® Given identical histories, the state transitions will
be the same.

® We'll also assume that the utility of a state does
not change throughout the course of the problem.

* |n other words, our model of the world does not
change while we are solving the problem.




18-4: Solving sequential problems

® |f we have to solve a sequential problem, the total
utility will depend on a sequence of states
$15 525 ooy Sy

® | et’s assign each state a utility or reward R(s;).
® Agent wants to maximize the sum of rewards.

® We call this formulation a Markov decision process.
 Formally:
* An initial state s
* A discrete set of states and actions

e A Transition model: T'(s, a, s’) that indicates the
probability of reaching state s’ from s when
taking action a.

A reward function: R(s)




18-5: Example grid problem
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® Agent moves in the “intended” direction with

probability 0.8, and at a right angle with probability
0.2

® What should an agent do at each state to
maximize reward?




18-6: MDP solutions

® Since the environment is stochastic, a solution will
not be an action sequence.

® |nstead, we must specify what an agent should do
In any reachable state.
® We call this specification a policy
e “If you're below the goal, move up.”
* “If you're in the left-most column, move right.”

® We denote a policy with 7, and z(s) indicates the
policy for state s.




18-7. MDP solutions

® Things to note:

 We've wrapped the goal formulation into the
problem

- Different goals will require different policies.

 We are assuming a great deal of (correct)
knowledge about the world.
- State transition models, rewards
- We’ll touch on how to learn these without a
model.




18-8: Comparing policies

® \We can compare policies according to the
expected utility of the histories they produce.

® The policy with the highest expected utility is the
optimal policy.

® Once an optimal policy is found, the agent can just
look up the best action for any state.

; ] O

-1 0.1 < 1 > 0.1




18-0: Example grid problem
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® Assumes no cost for non-goal states
® No benifit for faster solutions




18-10: Non-Goal Costs

® Spending unlimited time trying to find th best
solution is not always the best idea.

® \We can give a cost (negative utility) to each
non-goal state

® penalized for taking too long to find the goal state




18-11: Non-Goal Costs

R(S) = Reward for non-goal state
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® \ery high cost: Agent tries to exit immediately
® Middle ground: Agent tries to avoid bad exit
® Positive reward: Agent doesn't try to exit.




18-12: More on reward functions

® |n solving an MDP, an agent must consider the
value of future actions.

® There are different types of problems to consider:

® Horizon - does the world go on forever?

* Finite horizon: after N actions, the world stops
and no more reward can be earned.

* |nfinite horizon; World goes on indefinitely, or
we don’t know when it stops.
- Infinite horizon is simpler to deal with, as
policies don’t change over time.




18-13: More on reward functions

® \\Ne also need to think about how to value future
reward.

® $100 is worth more to me today than in a year.

® We model this by discounting future rewards.
* vy Is a discount factor

® U(so, S1, 52, 83, -..) =
R(s0) + YR(s1) + ¥*R(s2) + Y’R(s3) + ...,y € [0,1]

® |f yis large, we value future states
® if yis low, we focus on near-term reward

® |n monetary terms, a discount factor of y is
equivalent to an interest rate of (1/y) — 1




18-14: More on reward functions

® Discounting lets us deal sensibly with infinite
horizon problems.

e Otherwise, all EUs would approach infinity.

® Expected utilities will be finite if rewards are finite
and bounded and y < 1.

® \We can now describe the optimal policy 7* as:

= argmax,EU (Z V' R(s,)|r)
=0




18-15: Value Iiteration

® How to find an optimal policy?

® We'll begin by calculating the expected utility of
each state and then selecting actions that
maximize expected utility.

® |n a sequential problem, the utility of a state is the
expected utility of all the state sequences that
follow from fit.

® This depends on the policy 7 being executed.

® Essentially, U(s) is the expected utility of executing
an optimal policy from state s.




18-16: Utilities of States
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® Notice that utilities are highest for states close to
the +1 exit.




18-17: Utilities of States

® The utility of a state is the immediate reward for
that state plus the expected discounted utility of
the next state, assuming that the agent chooses
the optimal action.

U(s) = R(s) + ymax, Z T(s,a,s)U(s")

® This is called the Bellman equation
® Example:

U(1,1) = —0.04 + ymax(0.8U(1,2) + 0.1U(2, 1) + 0.1U(1, 1)
0.9U(1,1) +0.1U(1,2),

0.9U(1,1) + 0.1U(2, 1),

0.8U(2,1) + 0.1U(1,2) + 0.1U(1, 1))




18-18: Dynamic Programming

® Solving the Bellman equation is a dynamic
programming problem

® |n an acyclic transition graph, you can solve these
recursively by working backward from the final
state to the initial states.

® Can’t do this directly for transition graphs with
loops.




18-19: Value lteration

® Since state utilities are defined in terms of other
state utilities, how to find a closed-form solution?
® \We can use an iterative approach:
e (Give each state random initial utilities.

e Calculate the new left-hand side for a state
based on its neighbors’ values.

* Propagate this to update the right-nand-side for
other states,

e Update rule:
Uis1(s) = R(s) + ymax, )¢ T(s,a, s")U;(s")

® This is guaranteed to converge to the solutions to
the Bellman equations.




18-20: Value Iteration algorithm

Assing random utilities to each state

do
for s 1n states
U(s) = R(s) + gamma * max T(s,a,s’) U(s’)

until
all utilities change by less then delta

® where § = error * (1 —y)/y




18-21: Example
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® |nitially, use random values

y = 0.8

R(S =-0.04

error = 0.01
o0 = 0.0025




18-22: Example

3 | O.

03

1 | 0.

02

-0. 02

0. 02

0.

62

0.

08

0. 06

® After 1 iteration
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y = 0.8

R(S =-0.04

error = 0.01
o0 = 0.0025




18-23: EXample
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® After 2 iterations

y = 0.8

R(S =-0.04

error = 0.01
o0 = 0.0025




18-24: ExXample
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® After 3 iterations

y = 0.8

R(S =-0.04

error = 0.01
o0 = 0.0025




18-25: EXample
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® After 4 iterations

y = 0.8

R(S =-0.04

error = 0.01
o0 = 0.0025




18-26: EXample
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® After 5 iterations

y = 0.8

R(S =-0.04

error = 0.01
o0 = 0.0025




18-27: EXample
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y = 0.8

R(S =-0.04

error = 0.01
o0 = 0.0025

® After 6 iterations — almost converged




18-28: DIscussion

® Strengths of Value iteration
* Guaranteed to converge to correct solution
e Simple iterative algorithm

® \Weaknesses:
e Convergence can be slow
* We really don’t need all this information
e Just need what to do at each state.




18-20: Policy iteration

® Policy iteration helps address these weaknesses.

® Searches directly for optimal policies, rather than
state utilities.

® Same idea: iteratively update policies for each
state.

® Two steps:
e Given a policy, compute the utilities for each
state.
e Compute a new policy based on these new
utilities.




18-30: Policy iteration algorithm

Initialize all state utilities to zero
Pi1 = random policy vector indexed by state

do
U = evaluate the utility of each state for Pi

for s 1n states
a = find action that maximizes expected
utility for that state
Pi(s) = a
while some action changed




18-31: Policy Iter. Example
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Random policies




18-32: Policy Iter. Example
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18-33: Policy Iter. Example
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Create a new policy
based on new Utilities




18-34: Policy Iter. Example
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Create new Utilities
based on policy
and previous Utilities




18-35: Policy Iter. Example

-0.07(-0.02| 0. 55
+

RGN I
- 0. 07 -0. 14 -
<+ T ~ 1
-0.07(-0.07(-0.12|-0.12
—> - - ¢

1 2 3 4

Create policies
based on previous Utilities




18-36: Policy Iter. Example
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Create new Utilities
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and Policy




18-37: Policy Iter. Example
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Use new utility
estimates to construct
new policies




18-38: Policy Iter. Example
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18-39: Policy Iter. Example
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Use new Utilities
to update policy




18-40: Policy Iter. Example
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Update utilities
based on old Utilites
and Policies




18-41: Policy Iter. Example

0. 23

—»

0.45

—»

0. 68

—>

0. 06 0. 33
-0.03(-0.01| 0.13 |-0. 07
bl — |t ] —
1 2 3 4

Update policices
No change.




18-42: DIscussion

® Advantages:
* Faster convergence.

* Solves the actual problem we’re interested in.
We don't really care about utility estimates
except as a way to construct a policy.




18-43: Learning a Policy

® MDPs assume that we know a model of the world
e Specifically, the transition function T

® We can also learn a policy through interaction with
the environment.

® This is known as reinforcement learning.
® We'll talk about this in a couple of weeks.




18-44: SUMMary

® Markov decision policies provide an agent with a
description of how to act optimally for any state in
a problem.

 Must know state space, have a fixed goal.

® Value iteration and policy iteration can be applied
to solve this.
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