
CS662-2013S-18 Markov Decision Processes 1

18-0: Making Sequential Decisions

• Previously, we’ve talked about:

• Making one-shot decisions in a deterministic environment

• Making sequential decisions in a deterministic environment

• Search

• Inference

• Making one-shot decisions in a stochastic environment

• Probability and Belief Networks

• Expected Utility

• What about sequential decisions in a stochastic environment?

18-1: Expected Utility

• Recall that the expected utility of an action is the utility of each possible outcome, weighted by the probability

of that outcome occurring.

• More formally, from state s, an agent may take actions a1, a2, ..., an.

• Each action ai can lead to states si1, si2, ..., sim, with probability pi1, pi2, ..., pim

EU(ai) =
∑

pi jsi j

• We call the set of probabilities and associated states the state transition model.

• The agent should choose the action a′ that maximizes EU.

18-2: Markovian environments

• We can extend this idea to sequential environments.

• Problem: How to determine transition probabilities?

• The probability of reaching state s given action a might depend on previous actions that were taken.

• Reasoning about long chains of probabilities can be complex and expensive.

• The Markov assumption says that state transition probabilities depend only on a finite number of parents.

• Simplest: a first-order Markov process. State transition probabilities depend only on the previous state.

• This is what we’ll focus on.

18-3: Stationary Distributions

• We’ll also assume a stationary distribution

• This says that the probability of reaching a state s′ given action a from state s with history H does not change.

• Different histories may produce different probabilities

• Given identical histories, the state transitions will be the same.

• We’ll also assume that the utility of a state does not change throughout the course of the problem.

• In other words, our model of the world does not change while we are solving the problem.

18-4: Solving sequential problems

CS662-2013S-18 Markov Decision Processes 2

• If we have to solve a sequential problem, the total utility will depend on a sequence of states s1, s2, ..., sn.

• Let’s assign each state a utility or reward R(si).

• Agent wants to maximize the sum of rewards.

• We call this formulation a Markov decision process.

• Formally:

• An initial state s0

• A discrete set of states and actions

• A Transition model: T (s, a, s′) that indicates the probability of reaching state s′ from s when taking action

a.

• A reward function: R(s)

18-5: Example grid problem

+1

-1

1 2 3 4

1

2

3
0.8

0.10.1

• Agent moves in the “intended” direction with probability 0.8, and at a right angle with probability 0.2

• What should an agent do at each state to maximize reward?

18-6: MDP solutions

• Since the environment is stochastic, a solution will not be an action sequence.

• Instead, we must specify what an agent should do in any reachable state.

• We call this specification a policy

• “If you’re below the goal, move up.”

• “If you’re in the left-most column, move right.”

• We denote a policy with π, and π(s) indicates the policy for state s.

18-7: MDP solutions

• Things to note:

• We’ve wrapped the goal formulation into the problem

• Different goals will require different policies.

• We are assuming a great deal of (correct) knowledge about the world.

• State transition models, rewards

• We’ll touch on how to learn these without a model.

CS662-2013S-18 Markov Decision Processes 3

18-8: Comparing policies

• We can compare policies according to the expected utility of the histories they produce.

• The policy with the highest expected utility is the optimal policy.

• Once an optimal policy is found, the agent can just look up the best action for any state.

+1

-1

1 2 3 4

1

2

3
0.8

0.10.1

18-9: Example grid problem

+1

-1

1 2 3 4

1

2

3

• Assumes no cost for non-goal states

• No benifit for faster solutions

18-10: Non-Goal Costs

• Spending unlimited time trying to find th best solution is not always the best idea.

• We can give a cost (negative utility) to each non-goal state

• penalized for taking too long to find the goal state

18-11: Non-Goal Costs

+1

-1

1 2 3 4

1

2

3

R(S) = Reward for non-goal state

+1

-1

1 2 3 4

1

2

3 +1

-1

1 2 3 4

1

2

3

+1

-1

1 2 3 4

1

2

3 +1

-1

1 2 3 4

1

2

3

-0.221 < R(S) <= 0

R(S) > 0R(S) < -1.6284

-0.428 < R(S) < 0.0850 R(S) = -0.04

• Very high cost: Agent tries to exit immediately

CS662-2013S-18 Markov Decision Processes 4

• Middle ground: Agent tries to avoid bad exit

• Positive reward: Agent doesn’t try to exit.

18-12: More on reward functions

• In solving an MDP, an agent must consider the value of future actions.

• There are different types of problems to consider:

• Horizon - does the world go on forever?

• Finite horizon: after N actions, the world stops and no more reward can be earned.

• Infinite horizon; World goes on indefinitely, or we don’t know when it stops.

• Infinite horizon is simpler to deal with, as policies don’t change over time.

18-13: More on reward functions

• We also need to think about how to value future reward.

• $100 is worth more to me today than in a year.

• We model this by discounting future rewards.

• γ is a discount factor

• U(s0, s1, s2, s3, ...) = R(s0) + γR(s1) + γ2R(s2) + γ3R(s3) + ..., γ ∈ [0, 1]

• If γ is large, we value future states

• if γ is low, we focus on near-term reward

• In monetary terms, a discount factor of γ is equivalent to an interest rate of (1/γ) − 1

18-14: More on reward functions

• Discounting lets us deal sensibly with infinite horizon problems.

• Otherwise, all EUs would approach infinity.

• Expected utilities will be finite if rewards are finite and bounded and γ < 1.

• We can now describe the optimal policy π∗ as:

•

π∗ = argmaxπEU(

∞∑

t=0

γtR(st)|π)

18-15: Value iteration

• How to find an optimal policy?

• We’ll begin by calculating the expected utility of each state and then selecting actions that maximize expected

utility.

• In a sequential problem, the utility of a state is the expected utility of all the state sequences that follow from it.

• This depends on the policy π being executed.

CS662-2013S-18 Markov Decision Processes 5

• Essentially, U(s) is the expected utility of executing an optimal policy from state s.

18-16: Utilities of States

+1

-1

1 2 3 4

1

2

3 0.918

0.660

0.611 0.388

0.868

0.705 0.655

0.812

0.762

γ = 1
R(S) = -0.04
 (non-goals)

• Notice that utilities are highest for states close to the +1 exit.

18-17: Utilities of States

• The utility of a state is the immediate reward for that state plus the expected discounted utility of the next state,

assuming that the agent chooses the optimal action.

•

U(s) = R(s) + γmaxa

∑

s′

T (s, a, s′)U(s′)

• This is called the Bellman equation

• Example:

U(1, 1) = −0.04 + γmax(0.8U(1, 2) + 0.1U(2, 1) + 0.1U(1, 1)

0.9U(1, 1) + 0.1U(1, 2),

0.9U(1, 1) + 0.1U(2, 1),

0.8U(2, 1) + 0.1U(1, 2) + 0.1U(1, 1))

18-18: Dynamic Programming

• Solving the Bellman equation is a dynamic programming problem

• In an acyclic transition graph, you can solve these recursively by working backward from the final state to the

initial states.

• Can’t do this directly for transition graphs with loops.

18-19: Value Iteration

• Since state utilities are defined in terms of other state utilities, how to find a closed-form solution?

• We can use an iterative approach:

• Give each state random initial utilities.

• Calculate the new left-hand side for a state based on its neighbors’ values.

• Propagate this to update the right-hand-side for other states,

CS662-2013S-18 Markov Decision Processes 6

• Update rule: Ui+1(s) = R(s) + γmaxa

∑
s′ T (s, a, s′)Ui(s′)

• This is guaranteed to converge to the solutions to the Bellman equations.

18-20: Value Iteration algorithm

Assing random utilities to each state

do

for s in states

U(s) = R(s) + gamma * max T(s,a,s’) U(s’)

until

all utilities change by less then delta

• where δ = error ∗ (1 − γ)/γ

18-21: Example

+1

-1

1 2 3 4

1

2

3 0.05

0.15

-0.1 0.15

-0.1

0.0 0.1

0.1

-0.02

γ = 0.8
R(S) = -0.04
error = 0.01
 δ = 0.0025

• Initially, use random values

18-22: Example

+1

-1

1 2 3 4

1

2

3 0.62

0.05

0.08 0.06

-0.02

0.02 0.02

0.03

0.02

γ = 0.8
R(S) = -0.04
error = 0.01
 δ = 0.0025

• After 1 iteration

CS662-2013S-18 Markov Decision Processes 7

18-23: Example

+1

-1

1 2 3 4

1

2

3 0.65

0.28

0.02 0.01

0.35

-0.02 0.01

-0.02

-0.02

γ = 0.8
R(S) = -0.04
error = 0.01
 δ = 0.0025

• After 2 iterations

18-24: Example

+1

-1

1 2 3 4

1

2

3 0.69

0.32

0.14 -0.03

0.43

-0.04 -0.03

0.19

-0.06

γ = 0.8
R(S) = -0.04
error = 0.01
 δ = 0.0025

• After 3 iterations

18-25: Example

+1

-1

1 2 3 4

1

2

3 0.68

0.34

0.16 -0.03

0.47

-0.07 0.04

0.25

0.07

γ = 0.8
R(S) = -0.04
error = 0.01
 δ = 0.0025

• After 4 iterations

CS662-2013S-18 Markov Decision Processes 8

18-26: Example

+1

-1

1 2 3 4

1

2

3 0.68

0.34

0.18 -0.02

0.47

0.0 0.07

0.27

0.13

γ = 0.8
R(S) = -0.04
error = 0.01
 δ = 0.0025

• After 5 iterations

18-27: Example

+1

-1

1 2 3 4

1

2

3 0.68

0.34

0.18 -0.01

0.47

0.04 0.08

0.29

0.15

γ = 0.8
R(S) = -0.04
error = 0.01
 δ = 0.0025

• After 6 iterations – almost converged

18-28: Discussion

• Strengths of Value iteration

• Guaranteed to converge to correct solution

• Simple iterative algorithm

• Weaknesses:

• Convergence can be slow

• We really don’t need all this information

• Just need what to do at each state.

18-29: Policy iteration

• Policy iteration helps address these weaknesses.

• Searches directly for optimal policies, rather than state utilities.

• Same idea: iteratively update policies for each state.

• Two steps:

• Given a policy, compute the utilities for each state.

CS662-2013S-18 Markov Decision Processes 9

• Compute a new policy based on these new utilities.

18-30: Policy iteration algorithm

Initialize all state utilities to zero

Pi = random policy vector indexed by state

do

U = evaluate the utility of each state for Pi

for s in states

a = find action that maximizes expected

utility for that state

Pi(s) = a

while some action changed

18-31: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0
All non-goal utilities 0

Random policies

18-32: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.04

-0.68

-0.04 -0.12

-0.04

-0.04 -0.04

-0.04

-0.04

Assign new utilities
based on old utilies

and policy

CS662-2013S-18 Markov Decision Processes 10

18-33: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.04

-0.68

-0.04 -0.12

-0.07

-0.07 -0.07

-0.07

-0.07

Create a new policy
based on new Utilities

18-34: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.55

-0.14

-0.12 -0.12

-0.02

-0.07 -0.07

-0.7

-0.07

Create new Utilities
based on policy

and previous Utilities

18-35: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.55

-0.14

-0.12 -0.12

-0.02

-0.07 -0.07

-0.07

-0.07

Create policies
based on previous Utilities

CS662-2013S-18 Markov Decision Processes 11

18-36: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.63

0.22

-0.10 -0.12

0.31

-0.09 -0.09

-0.06

-0.09

Create new Utilities
using old Utilities

and Policy

18-37: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.63

0.22

-0.10 -0.12

0.31

-0.09 -0.09

-0.06

-0.09

Use new utility
estimates to construct

new policies

18-38: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.67

0.30

0.08 -0.13

0.41

-0.11 -0.11

0.15

0.04

Create new utility
esitmates using
old Utilities &

current policies

CS662-2013S-18 Markov Decision Processes 12

18-39: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.67

0.30

0.08 -0.13

0.41

-0.11 -0.11

0.15

0.04

Use new Utilities
to update policy

18-40: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.68

0.33

0.13 -0.07

0.45

-0.03 -0.01

0.23

0.06

Update utilities
based on old Utilites

and Policies

18-41: Policy Iter. Example

+1

-1

1 2 3 4

1

2

3
0.68

0.33

0.13 -0.07

0.45

-0.03 -0.01

0.23

0.06

Update policices
No change.

18-42: Discussion

• Advantages:

• Faster convergence.

• Solves the actual problem we’re interested in. We don’t really care about utility estimates except as a way

to construct a policy.

CS662-2013S-18 Markov Decision Processes 13

18-43: Learning a Policy

• MDPs assume that we know a model of the world

• Specifically, the transition function T

• We can also learn a policy through interaction with the environment.

• This is known as reinforcement learning.

• We’ll talk about this in a couple of weeks.

18-44: Summary

• Markov decision policies provide an agent with a description of how to act optimally for any state in a problem.

• Must know state space, have a fixed goal.

• Value iteration and policy iteration can be applied to solve this.

