CS662-2013S-18

18-0: Making Sequential Decisions

- Previously, we've talked about:
 - Making one-shot decisions in a deterministic environment
 - Making sequential decisions in a deterministic environment
 - Search
 - Inference
 - Making one-shot decisions in a stochastic environment
 - Probability and Belief Networks
 - Expected Utility
- What about sequential decisions in a stochastic environment?

18-1: Expected Utility

- Recall that the expected utility of an action is the utility of each possible outcome, weighted by the probability of that outcome occurring.
- More formally, from state s, an agent may take actions $a_1, a_2, ..., a_n$.
- Each action a_i can lead to states $s_{i1}, s_{i2}, ..., s_{im}$, with probability $p_{i1}, p_{i2}, ..., p_{im}$

$$EU(a_i) = \sum p_{ij}s_{ij}$$

- We call the set of probabilities and associated states the state transition model.
- The agent should choose the action a' that maximizes EU.

18-2: Markovian environments

- We can extend this idea to sequential environments.
- Problem: How to determine transition probabilities?
 - The probability of reaching state s given action a might depend on previous actions that were taken.
 - Reasoning about long chains of probabilities can be complex and expensive.
- The Markov assumption says that state transition probabilities depend only on a finite number of parents.
- Simplest: a first-order Markov process. State transition probabilities depend only on the previous state.
 - This is what we'll focus on.

18-3: Stationary Distributions

- We'll also assume a stationary distribution
- This says that the probability of reaching a state s' given action a from state s with history H does not change.
- · Different histories may produce different probabilities
- Given identical histories, the state transitions will be the same.
- We'll also assume that the utility of a state does not change throughout the course of the problem.
 - In other words, our model of the world does not change while we are solving the problem.

18-4: Solving sequential problems

- If we have to solve a sequential problem, the total utility will depend on a sequence of states $s_1, s_2, ..., s_n$.
- Let's assign each state a utility or *reward* $R(s_i)$.
- Agent wants to maximize the sum of rewards.
- We call this formulation a Markov decision process.
 - Formally:
 - An initial state *s*₀
 - A discrete set of states and actions
 - A Transition model: T(s, a, s') that indicates the probability of reaching state s' from s when taking action a.
 - A reward function: *R*(*s*)

18-5: Example grid problem

- Agent moves in the "intended" direction with probability 0.8, and at a right angle with probability 0.2
- What should an agent do at each state to maximize reward?

18-6: MDP solutions

- Since the environment is stochastic, a solution will not be an action sequence.
- Instead, we must specify what an agent should do in any reachable state.
- We call this specification a *policy*
 - "If you're below the goal, move up."
 - "If you're in the left-most column, move right."
- We denote a policy with π , and $\pi(s)$ indicates the policy for state *s*.

18-7: MDP solutions

- Things to note:
 - We've wrapped the goal formulation into the problem
 - Different goals will require different policies.
 - We are assuming a great deal of (correct) knowledge about the world.
 - State transition models, rewards
 - We'll touch on how to learn these without a model.

18-8: Comparing policies

- We can compare policies according to the expected utility of the histories they produce.
- The policy with the highest expected utility is the *optimal policy*.
- Once an optimal policy is found, the agent can just look up the best action for any state.

18-9: Example grid problem

- Assumes no cost for non-goal states
- No benifit for faster solutions

18-10: Non-Goal Costs

- Spending unlimited time trying to find th best solution is not always the best idea.
- We can give a cost (negative utility) to each non-goal state
- penalized for taking too long to find the goal state

18-11: Non-Goal Costs

• Very high cost: Agent tries to exit immediately

- · Middle ground: Agent tries to avoid bad exit
- Positive reward: Agent doesn't try to exit.

18-12: More on reward functions

- In solving an MDP, an agent must consider the value of future actions.
- There are different types of problems to consider:
- Horizon does the world go on forever?
 - Finite horizon: after N actions, the world stops and no more reward can be earned.
 - Infinite horizon; World goes on indefinitely, or we don't know when it stops.
 - Infinite horizon is simpler to deal with, as policies don't change over time.

18-13: More on reward functions

- We also need to think about how to value future reward.
- \$100 is worth more to me today than in a year.
- We model this by *discounting* future rewards.
 - γ is a discount factor
- $U(s_0, s_1, s_2, s_3, ...) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \gamma^3 R(s_3) + ..., \gamma \in [0, 1]$
- If γ is large, we value future states
- if γ is low, we focus on near-term reward
- In monetary terms, a discount factor of γ is equivalent to an interest rate of $(1/\gamma) 1$

18-14: More on reward functions

- Discounting lets us deal sensibly with infinite horizon problems.
 - Otherwise, all EUs would approach infinity.
- Expected utilities will be finite if rewards are finite and bounded and $\gamma < 1$.
- We can now describe the optimal policy π^* as:
- •

$$\pi^* = argmax_{\pi} EU(\sum_{t=0}^{\infty} \gamma^t R(s_t) | \pi)$$

18-15: Value iteration

- How to find an optimal policy?
- We'll begin by calculating the expected utility of each state and then selecting actions that maximize expected utility.
- In a sequential problem, the utility of a state is the expected utility of all the state sequences that follow from it.
- This depends on the policy π being executed.

3	0.812	0.868	0.918	+1	$\gamma = 1$ R(S) = -0.04
2	0.762		0.660	-1	(non-goals)
1	0.705	0.655	0.611	0.388	
	1	2	3	4	

• Essentially, U(s) is the expected utility of executing an optimal policy from state s.

18-16: Utilities of States

• Notice that utilities are highest for states close to the +1 exit.

18-17: Utilities of States

• The utility of a state is the immediate reward for that state plus the expected discounted utility of the next state, assuming that the agent chooses the optimal action.

$$U(s) = R(s) + \gamma max_a \sum_{s'} T(s, a, s')U(s')$$

• This is called the Bellman equation

Example:

```
\begin{split} U(1,1) &= -0.04 + \gamma max(0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1) \\ & 0.9U(1,1) + 0.1U(1,2), \\ & 0.9U(1,1) + 0.1U(2,1), \\ & 0.8U(2,1) + 0.1U(1,2) + 0.1U(1,2) \end{split}
```

18-18: Dynamic Programming

- Solving the Bellman equation is a dynamic programming problem
- In an acyclic transition graph, you can solve these recursively by working backward from the final state to the initial states.
- Can't do this directly for transition graphs with loops.

18-19: Value Iteration

- Since state utilities are defined in terms of other state utilities, how to find a closed-form solution?
- We can use an iterative approach:
 - Give each state random initial utilities.
 - Calculate the new left-hand side for a state based on its neighbors' values.
 - Propagate this to update the right-hand-side for other states,

- Update rule: $U_{i+1}(s) = R(s) + \gamma max_a \sum_{s'} T(s, a, s') U_i(s')$
- This is guaranteed to converge to the solutions to the Bellman equations.

18-20: Value Iteration algorithm

```
Assing random utilities to each state
do
for s in states
U(s) = R(s) + gamma * max T(s,a,s') U(s')
until
```

all utilities change by less then delta

• where $\delta = error * (1 - \gamma)/\gamma$

3	0.1	-0.1	0.05	+1	$\gamma = 0.8$ R(S) = -0.04
2	-0.02		0.15	-1	error = 0.01 δ = 0.0025
1	0.0	0.1	-0.1	0.15	
	1	2	2	Д	

18-21: Example

• Initially, use random values

3	0.03	-0.02	0.62	+1	$\gamma = 0.8$ R(S) = -0.04
2	0.02		0.05	-1	error = 0.01 δ = 0.0025
1	0.02	0.02	0.08	0.06	
	1	2	3	4	

18-22: **Example**

• After 1 iteration

0.0025

	1	2	3	4	
1	-0.02	0.01	0.02	0.01	
2	-0.02		0.28	-1	error = 0.01 δ = 0.0025
3	-0.02	0.35	0.65	+1	$\gamma = 0.8$ R(S) = -0.04

18-23: Example

• After 2 iterations

	1	2	3	4	
1	-0.04	-0.03	0.14	-0.03	
2	-0.06		0.32	-1	error = 0.01 δ = 0.002
3	0.19	0.43	0.69	+1	$\gamma = 0.8$ R(S) = -0.04

18-24: Example

• After 3 iterations

L					
1	-0.07	0.04	0.16	-0.03	
2	0.07		0.34	-1	error = 0.01 δ = 0.0025
3	0.25	0.47	0.68	+1	$\gamma = 0.8$ R(S) = -0.04

18-25: Example

• After 4 iterations

3	0.27	0.47	0.68	+1	$\gamma = 0.8$ R(S) = -0.04
2	0.13		0.34	-1	error = 0.01 δ = 0.0025
1	0.0	0.07	0.18	-0.02	
	1	2	3	4	

18-26: Example

• After 5 iterations

3	0.29	0.47	0.68	+1	$\gamma = 0.8$ R(S) = -0.04
2	0.15		0.34	-1	error = 0.01 δ = 0.0025
1	0.04	0.08	0.18	-0.01	
	1	2	3	4	

18-27: Example

• After 6 iterations – almost converged

18-28: Discussion

- Strengths of Value iteration
 - Guaranteed to converge to correct solution
 - Simple iterative algorithm
- Weaknesses:
 - Convergence can be slow
 - We really don't need all this information
 - Just need what to do at each state.

18-29: Policy iteration

- Policy iteration helps address these weaknesses.
- Searches directly for optimal policies, rather than state utilities.
- Same idea: iteratively update policies for each state.
- Two steps:
 - Given a policy, compute the utilities for each state.

• Compute a new policy based on these new utilities.

18-30: Policy iteration algorithm

Initialize all state utilities to zero
Pi = random policy vector indexed by state
do
U = evaluate the utility of each state for Pi
for s in states
a = find action that maximizes expected
utility for that state
Pi(s) = a

while some action changed

All non-goal utilities 0

Random policies

18-31: Policy Iter. Example

3	-0.04	-0.04	0.04	+1
2	-0.04		-0.68 	-1
1	-0.04	-0.04	-0.04	-0.12
	1	2	2	4

Assign new utilities based on old utilies and policy

18-32: Policy Iter. Example

	3 2 1	-0.07 -0.07 -0.07 -0.07	-0.07 -0.07 -0.07	0.04 -0.68 1 -0.04	+1 -1 -0.12	Create a new policy based on new Utilities
18-33: Policy Iter. Example		1	2	3	4	I
	3	-0.7 ↓	-0.02	0.55	+1	Create new Utilities
	2	-0.07		-0.14	-1	based on policy and previous Utilities
	1	-0.07	-0.07	-0.12	-0.12	
18-34: Policy Iter. Example		1	2	3	4	
	3	-0.07	-0.02	0.55	+1	Create policies
	2	-0.07		-0.14 †	-1	based on previous Utilities
	1	-0.07	-0.07	-0.12	-0.12 ↓	

18-35: Policy Iter. Example

3 -0.0	5 0.31	0.63	+1	Create new Utilities
2 -0.0	9	0.22	-1	using old Utilities and Policy
1 -0.0	9 -0.09	-0.10	-0.12	
Example 1	2	3	4	
3	5 0.31	0.63	+1	Use new utility
2	9	0.22 1	-1	estimates to construct new policies
1 -0.0	9 -0.09	-0.10	-0.12 ↓	
Example 1	2	3	4	
3 0.15	0.41	0.67	+1	Create new utility
2 0.04		0.30	I -1	esitmates using old Utilities &

current policies
current ponetes

18-36: Policy Iter. Example

18-37: Policy Iter. Example

	1	2	3	4
1	-0.11	-0.11	0.08 1	-0.13
2	0.04		0.30	-1
3	0.15	0.41	0.67	+1

18-38: Policy Iter. Example

	3	0.15	0.41	0.67	+1	Use new Utilities	
	2	0.04		0.30	-1	to update policy	
	1	-0.11	-0.11	0.08 1	-0.13		
18-39: Policy Iter. Example		1	2	3	4		
	3	0.23	0.45	0.68	+1	Update utilities based on old Utilites and Policies	
	2	0.06		0.33 †	-1		
	1	-0.03	-0.01	0.13 †	-0.07		
18-40: Policy Iter. Example		1	2	3	4		
	3	0.23	0.45	0.68	+1	Update policices No change.	
	2	0.06		0.33	-1		

18-41: Policy Iter. Example

18-42: Discussion

- Advantages:
 - Faster convergence.
 - Solves the actual problem we're interested in. We don't really care about utility estimates except as a way to construct a policy.

0.13

1

3

-0.07

4

-0.01

2

-0.03

┫

1

1

18-43: Learning a Policy

- MDPs assume that we know a model of the world
 - Specifically, the transition function T
- We can also learn a policy through interaction with the environment.
- This is known as *reinforcement learning*.
- We'll talk about this in a couple of weeks.

18-44: Summary

- Markov decision policies provide an agent with a description of how to act optimally for any state in a problem.
 - Must know state space, have a fixed goal.
- Value iteration and policy iteration can be applied to solve this.