
AI Programming
CS662-2008F-20

Neural Networks

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

20-0: Symbolic AI

Most of this class has been focused on Symbolic
AI

Focus or symbols and relationships between
them

Search, logic, decision trees, etc.

Assumption: Key requirement for intelligent
behavior is the manipulation of symbols

Neural networks are a little different: subsymbolic
behavior

20-1: Biological Neurons

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

20-2: Biological Neurons

Biological neurons transmit (more-or-less)
electrical signals

Each Nerve cell is connected to the “outputs” of
several other neurons

When there is a sufficient total input from all inputs,
the cell “fires”, and sends ouputs to other cells

Extreme oversimplification, simple version is the
model for Artificial Neural Networks

20-3: Artificial Neural Networks

Σ

w
0

w
1

w
2

w
3

Inputs

Threshold

Function

or

Activation

Function

Ouput

Bias

weight
-1

Input

weights

20-4: Activation Function

Neurons are mostly binary

Fire, or don’t fire

Not “fire at 37%”

Model this with an activation function

Step Function

Sigmoid function: f (x) = 1
1+e−x

Talk about why the sigmoid function can be better
than the step function when we do training

20-5: Single Neuron NNs

Σ

1

1
w = 1

2
w = 1

0
w = -1.5

Σ

1

1
w = 1

2
w = 1

0
w = -0.5

Σ

1

1
w = -1

0
w = 0.5

A single Neuron can compute a simple function

What functions do each of these neurons
compute?

20-6: Single Neuron NNs

Σ

1

1
w = 1

2
w = 1

0
w = -1.5

Σ

1

1
w = 1

2
w = 1

0
w = -0.5

Σ

1

1
w = -1

0
w = 0.5

AND OR NOT

A single Neuron can compute a simple function

What functions do each of these neurons
compute?

20-7: Neural Networks

Of course, things get more fun when we connect
individual neurons together into a network

Ouputs of some neurons feed into the inputs of
other neurons

Add special “input nodes”, used for input

20-8: Neural Networks

Σ

Σ

Σ

Σ

Σ

Σ

Σ
Σ

Input Nodes

Output Nodes

Hidden Nodes

20-9: Neural Networks

Feed Forward Networks

No cycles, signals flow in one direction

Recurrent Networks

Cycles in signal propagation

Much more complicated: Need to deal with
time, learning is much harder

We will focus on Feed Forward networks

20-10: Function Approximators

Feed Forward Neural Networks are Nonlinear
Function Approximators

Output of the network is a function of its inputs

Activation function is non-linear, allows for
representation of non-linear functions

Adjust weights, change function

Neural Networks are used to efficiently
approximate complex functions

20-11: Classification

Common use for Neural Networks is classification

We’ve already seen classification with decision
trees and naive bayes

Map inputs into one or more outputs

Output range is split into discrete “classes” (like
“spam” and “not spam”

Useful for learning tasks where “what to look for” is
unknown

Face recognition

Handwriting recognition

20-12: Perceptrons

Feed Forward

Single-layer network

Each input is directly connected to one or more
outputs

20-13: Perceptrons

Input
Units

Output
Units

Weights

20-14: Perceptrons

For each perceptron:

Threshold firing function is used (not sigmoid)

Output function o:
o(x1, . . . xn) = 1 if
wo + w1x1 + w2x2 + . . . + wnxn > 0

o(x1, . . . xn) = 0 if
wo + w1x1 + w2x2 + . . . + wnxn ≤ 0

20-15: Perceptrons

Since each perceptron is independent of others,
we can examine each in isolation

Output of a single perceptrion:∑n
j=1 W jx j > 0

(or, W · x > 0)

Perceptrons can represent any linearly separable
function

Perceptrons can only represent linearly separable
functions

20-16: Linearly Seperable

X1

X2

0

1

0 1

Function: X1 or X2

X1

X2

0

1

0 1

Function: X1 and X2

20-17: Linearly Seperable

X1

X2

0

1

0 1

Function: X1 or X2

X1

X2

0

1

0 1

Function: X1 and X2

20-18: Linearly Seperable

X1

X2

0

1

0 1

Function: X1 xor X2

20-19: Perceptron Learning

inptuts : in1, in2, ..., inj

weights : w1, w2, ... wn

training examples: t1 = (tin1, to1),

t2 = (tin2, to2), ...

do

for t in training examples

inputs = tin

o = compute output with current weights

E = to - o

for eacxh wi in weight

wi = wi + alpha * tin[i] * E

while notConverged

20-20: Perceptron Learning

If the output signal is too high, weights need to be
reduced

“Turn down” weights that contributed to output

Weights with zero input are not affected

If output is too low, weights need to be increased

“Turn up” weights that contribute to output

Zero-input weights not affected

Doing a hill-climbing search through weight space

20-21: Perceptron Example

Learn the majority function with 3 inputs

(plus bias input)

out = 1 if
∑

j w jin j > 0, 0 otherwise

α = 0.2

Initially, all weights 0

20-22: Perceptron Example

bias inputs expected

out

1 1 0 0 0

1 0 1 1 1

1 0 1 0 0

1 1 1 1 1

1 0 0 1 0

1 1 0 1 1

1 1 1 0 1

1 0 0 0 0

20-23: Perceptron Example

bias inputs expected w0 w1 w2 w3 actual new weights

out out

1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1

1 0 1 0 0

1 1 1 1 1

1 0 0 1 0

1 1 0 1 1

1 1 1 0 1

1 0 0 0 0

20-24: Perceptron Example

bias inputs expected w0 w1 w2 w3 actual new weights

out out

1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 0.2 0 0.2 0.2

1 0 1 0 0

1 1 1 1 1

1 0 0 1 0

1 1 0 1 1

1 1 1 0 1

1 0 0 0 0

20-25: Perceptron Example

bias inputs expected w0 w1 w2 w3 actual new weights

out out

1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 0.2 0 0.2 0.2

1 0 1 0 0 0.2 0 0.2 0.2 1 0 0 0 0.2

1 1 1 1 1

1 0 0 1 0

1 1 0 1 1

1 1 1 0 1

1 0 0 0 0

20-26: Perceptron Example

bias inputs expected w0 w1 w2 w3 actual new weights

out out

1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 0.2 0 0.2 0.2

1 0 1 0 0 0.2 0 0.2 0.2 1 0 0 0 0.2

1 1 1 1 1 0 0 0 0.2 1 0 0 0 0.2

1 0 0 1 0

1 1 0 1 1

1 1 1 0 1

1 0 0 0 0

20-27: Perceptron Example

bias inputs expected w0 w1 w2 w3 actual new weights

out out

1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 0.2 0 0.2 0.2

1 0 1 0 0 0.2 0 0.2 0.2 1 0 0 0 0.2

1 1 1 1 1 0 0 0 0.2 1 0 0 0 0.2

1 0 0 1 0 0 0 0 0.2 1 -0.2 0 0 0

1 1 0 1 1

1 1 1 0 1

1 0 0 0 0

20-28: Perceptron Example

bias inputs expected w0 w1 w2 w3 actual new weights

out out

1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 0.2 0 0.2 0.2

1 0 1 0 0 0.2 0 0.2 0.2 1 0 0 0 0.2

1 1 1 1 1 0 0 0 0.2 1 0 0 0 0.2

1 0 0 1 0 0 0 0 0.2 1 -0.2 0 0 0

1 1 0 1 1 -0.2 0 0 0 0 0 0.2 0 0.2

1 1 1 0 1

1 0 0 0 0

20-29: Perceptron Example

bias inputs expected w0 w1 w2 w3 actual new weights

out out

1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 0.2 0 0.2 0.2

1 0 1 0 0 0.2 0 0.2 0.2 1 0 0 0 0.2

1 1 1 1 1 0 0 0 0.2 1 0 0 0 0.2

1 0 0 1 0 0 0 0 0.2 1 -0.2 0 0 0

1 1 0 1 1 -0.2 0 0 0 0 0 0.2 0 0.2

1 1 1 0 1 0 0.2 0 0.2 1 0 0.2 0 0.2

1 0 0 0 0

20-30: Perceptron Example

bias inputs expected w0 w1 w2 w3 actual new weights

out out

1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 0.2 0 0.2 0.2

1 0 1 0 0 0.2 0 0.2 0.2 1 0 0 0 0.2

1 1 1 1 1 0 0 0 0.2 1 0 0 0 0.2

1 0 0 1 0 0 0 0 0.2 1 -0.2 0 0 0

1 1 0 1 1 -0.2 0 0 0 0 0 0.2 0 0.2

1 1 1 0 1 0 0.2 0 0.2 1 0 0.2 0 0.2

1 0 0 0 0 0 0.2 0 0.2 0 0 0.2 0 0.2

Still hasn’t converged, need more iterations

20-31: Perceptron Example

After 3 more iterations (of all weights):

bias inputs expected w0 w1 w2 w3 actual

out out

1 1 0 0 0 -0.4 0.2 0.4 0.4 0

1 0 1 1 1 -0.4 0.2 0.4 0.4 1

1 0 1 0 0 -0.4 0.2 0.4 0.4 0

1 1 1 1 1 -0.4 0.2 0.4 0.4 1

1 0 0 1 0 -0.4 0.2 0.4 0.4 0

1 1 0 1 1 -0.4 0.2 0.4 0.4 1

1 1 1 0 1 -0.4 0.2 0.4 0.4 1

1 0 0 0 0 -0.4 0.2 0.4 0.4 0

20-32: Gradient Descent & Delta Rule

What if we can’t learn the function exactly?

Function is not linearly seperable

Want to do “as well as possible”

Minimize the sum of the squared error

E =
∑

(td − od)2 for d in the training set

20-33: Gradient Descent & Delta Rule

Searching through a space of weights

Much like local search, define an error E as a
function of the weights

Find values of weights to minimize E

Follow the gradient – largest negative change in E

Alas, E is discontinuous, hard to differentiate

Instead of using actual output, use
unthresholded output

20-34: Gradient Descent & Delta Rule

Garient descent: follow the steepest slope down
the error surface

Consider the derivative of E with respect to each
weight

E =
∑

(td − od)2 for d in the training set

dE

dwi

=

∑
2(td − od)

d(td − od)

dwi

First, we will simplify for looking at a single training
data point (then we can sum over all of them, since
the derivative of a sum is the sum of the
derivatives)

20-35: Gradient Descent & Delta Rule

For a single training example:

dE

dwi

=
d(td − od)2

dwi

= 2(td − od)
d(td − od)

dwi

since
d(f (x)2)

dx
= 2 f (x)

d(f (x))

dx

20-36: Gradient Descent & Delta Rule

For a single training example:

dE

dwi

= 2(td − od)
d(td − od)

dwi

= 2(dd − od)
d(−xidwi)

dwi

td doesn’t involve wi, so d(tt)

dwi
= 0

od = w1x1d + w2x2d + w3x3d + ..., the only term
that involves wi is wixid

20-37: Gradient Descent & Delta Rule

For a single training example:

dE

dwi

= 2(dd − od)
d(−xidwi)

dwi

= 2(td − od)(−xid)

Since d(cx)

dx
= c

20-38: Gradient Descent & Delta Rule

Garient descent: follow the steepest slope down
the error surface

Consider the derivative of E with respect to each
weight

E =
∑

(td − od)2 for d in the training set

dE

dwi

=

∑
2(td − od)

d(td − od)

dwi

=

∑
2(td − od)(−xid)

Want to go down the gradiant,
∆wi = α

∑
d∈D(td − od)xid

20-39: Gradient Descent & Delta Rule

Garient descent: follow the steepest slope down
the error surface

Consider the derivative of E with respect to each
weight

After derivation, updating rule (called the Delta
Rule) is:

∆wi = α
∑

d∈D

(td − od)xid

D is the training set, α is the training rate, td is
the expected output, and od is the actual output,
xid is the input along weight wi.

20-40: Incremental Learning

Often not practical to compute global weight
change for entire training set

Instead, update weights incrementally

Observe one piece of data, then update

Update rule: wi = α(t − o)xi

Like perceptron learning rule – except uses
unthresholded output

Smaller training rate α typically used

No theoretical guarantees of convergence

20-41: Multilayer Networks

While perceptrons have the advantage of a simple
learning algorithm, their computational limitations
are a problem.

What if we add another “hidden” layer?

Computational power increases

With one hidden layer, can represent any
continuous function

With two hidden layers, can represent any
function

Example: Create a multi-layer network that
computes XOR

20-42: XOR

Input
Units

Output
Unit

Hidden
Units

1

1

-1

0.6

0.6

--.04

0.5

0.5

1

-0.3

0.4

-0.3

20-43: Multilayer Networks

While perceptrons have the advantage of a simple
learning algorithm, their computational limitations
are a problem.

What if we add another “hidden” layer?

Computational power increases

With one hidden layer, can represent any
continuous function

With two hidden layers, can represent any
function

Problem: How to find the correct weights for
hidden nodes?

20-44: Multilayer Network Example

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak

20-45: More on computing error

Backpropagation is an extension of the perceptron
learning algorithm to deal with multiple layers of
nodes.

Our goal is to minimize the error function.

To do this, we want to change the weights so as to
reduce the error.

We define error as a function of the weights like so:

E(w) = expected − actual

E(w) = expected − g(input)

So, to determine how to change the weights, we
compute the derivative of error with respect to the
weights.

This tells us the slope of the error curve at that
point.

20-46: Backpropagation

Nodes use sigmoid activation function, rather than
the step function

Sigmoid function works in much the same way, but
is differentiable.

g(inputi) =
1

1+e−inputi
.

g′(inputi) = g(inputi)(1 − g(inputi)) (good news
here -calculating the derivative only requires
knowing the output!)

20-47: More on computing error

Recall that our goal is to minimize the error
function.

To do this, we want to change the weights so as to
reduce the error.

We define error as a function of the weights like so:

E(w) = expected − actual

E(w) = expected − g(input)

So, to determine how to change the weights, we
compute the derivative of error with respect to the
weights.

This tells us the slope of the error curve at that
point.

20-48: More on computing error

E(w) = expected − g(input)

E(w) = expected − g(w ∗ i)

dE
dW
= 0 − g′(input)i

δw =
dE
dW
= −g(input) ∗ (1 − g(input)) ∗ i

20-49: Updating hidden weights

Each weight is updated by α ∗ ∆i

W j,i = W j,i + α ∗ a j ∗ ∆i

20-50: Backpropagation

Updating input-hidden weights:

Idea: each hidden node is responsible for a
fraction of the error in δi.

Divide δi according to the strength of the
connection between the hidden and output node.

For each hidden node j

δ j = g(input)(1 − g(input))
∑

i∈outputs W j,iδi

Update rule for input-hidden weights:

Wk, j = Wk, j + α ∗ inputk ∗ δ j

20-51: Backpropagation Algorithm

The whole algorithm can be summed up as:
While not done:

for d in training set
Apply inputs of d, propagate forward.
for node i in output layer
δi = output ∗ (1 − output) ∗ (texp − output)

for each hidden node j

δ j = output ∗ (1 − output) ∗
∑

W j,iδi
Adjust each weight

W j,i = W j,i + α ∗ δi ∗ input j

20-52: Theory vs Practice

In the definition of backpropagation, a single
update for all weights is computed for all data
points at once.

Find the update that minimizes total sum of
squared error.

Guaranteed to converge in this case.

Problem: This is often computationally
space-intensive.

Requires creating a matrix with one row for
each data point and inverting it.

In practice, updates are done incrementally
instead.

20-53: Stopping conditions

Unfortunately, incremental updating is not
guaranteed to converge.

Also, convergence can take a long time.

When to stop training?

Fixed number of iterations

Total error below a set threshold

Convergence - no change in weights

20-54: Backpropagation

Also works for multiple hidden layers

Backpropagation is only guaranteed to converge to
a local minimum

May not find the absolute best set of weights

Low initial weights can help with this

Makes the network act more linearly - fewer
minima

Can also use random restart - train multiple times
with different initial weights.

20-55: Momentum

Since backpropagation is a hillclimbing algorithm,
it is susceptible to getting stuck in plateaus

Areas where local weight changes don’t
produce an improvement in the error function.

A common extension to backpropagation is the
addition of a momentum term.

Carries the algorithm through minima and
plateaus.

Idea: remember the “direction” you were going in,
and by default keep going that way.

Mathematically, this means using the second
derivative.

20-56: Momentum

Implementing momentum typically means
remembering what update was done in the
previous iteration.

Our update rule becomes:

∆w ji(n) = α∆ jx ji + β∆wji(n − 1)

To consider the effect, imagine that our new delta
is zero (we haven’t made any improvement)

Momentum will keep the weights “moving” in the
same direction.

Also gradually increases step size in areas where
gradient is unchanging.

This speeds up convergence, helps escape
plateaus and local minima.

20-57: Design issues

One difficulty with neural nets is determining how
to encode your problem

Inputs must be 1 and 0, or else real-valued
numbers.

Same for outputs

Symbolic variables can be given binary encodings

More complex concepts may require care to
represent correctly.

20-58: Design issues

Like some of the other algorithms we’ve studied,
neural nets have a number of paramters that must
be tuned to get good performance.

Number of layers

Number of hidden units

Learning rate

Initial weights

Momentum term

Training regimen

These may require trial and error to determine

20-59: Design issues

The more hidden nodes you have, the more
complex function you can approximate

Is this always a good thing? That is, are more
hidden nodes better?

20-60: Overfitting

Overfitting

Conisder a network with i input nodes, o output
nodes, and k hidden nodes

Training set has k examples

Could end up learning a lookup table

20-61: Overfitting

Training Data
1101 100
0110 010
1111 001
0011 100
0000 010

bias

bias

bias

20-62: Overfitting

Training Data
1101 100
0110 010
1111 001
0011 100
0000 010

-2.5

1

1

-1

1

1

-1

-1

20-63: Overfitting

Training Data
1101 100
0110 010
1111 001
0011 100
0000 010

-1

1

1

-1

-1.5

-1

1

-1

20-64: Overfitting

Training Data
1101 100
0110 010
1111 001
0011 100
0000 010

1

1

1

1

-3.5 -1

-1

1

20-65: Overfitting

Training Data
1101 100
0110 010
1111 001
0011 100
0000 010

-1-1

1

1

-1.5 1
-1

-1

20-66: Overfitting

Training Data
1101 100
0110 010
1111 001
0011 100
0000 010

-1
-1

-1

-1

0.5

-1
1

-1

20-67: Number Recognition

20-68: Number Recognition

Each pixel is an input unit

20-69: Number Recognition

0

1

2

3

4

5

6

7

8

9

...

Fully

Connected

...

... ...

20-70: Recurrent NNs

So far, we’ve talked only about feedforward
networks.

Signals propagate in one direction

Output is immediately available

Well-understood training algorithms

There has also been a great deal of work done on
recurrent neural networks.

At least some of the outputs are connected
back to the inputs.

20-71: Recurrent NNs

This is a single-layer recurrent neural network

In1

In2

In3

Out1

Out2

Out3

20-72: Hopfield networks

A Hopfield network has no special input or output
nodes.

Every node receives an input and produces an
output

Every node connected to every other node.

Typically, threshold functions are used.

Network does not immediately produce an output.

Instead, it oscillates

Under some easy-to-achieve conditions, the
network will eventually stabilize.

Weights are found using simulated annealing.

20-73: Hopfield networks

Hopfield networks can be used to build an
associative memory

A portion of a pattern is presented to the network,
and the net “recalls” the entire pattern.

Useful for letter recognition

Also for optimization problems

Often used to model brain activity

20-74: Neural nets - summary

Key idea: simple computational units are
connected together using weights.

Globally complex behavior emerges from their
interaction.

No direct symbol manipulation

Straightforward training methods

Useful when a machine that approximates a
function is needed

No need to understand the learned hypothesis

	{small lecturenumber -	heblocknumber :} Symbolic AIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Biological Neuronsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Biological Neuronsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Artificial Neural Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Activation Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Neuron NNsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Neuron NNsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Neural Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Neural Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Neural Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Function Approximatorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Classificationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptronsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptronsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptronsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptronsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Linearly Seperableaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Linearly Seperableaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Linearly Seperableaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptron Learningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptron Learningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptron Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptron Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptron Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptron Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptron Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptron Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptron Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptron Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptron Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptron Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Perceptron Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gradient Descent & Delta Ruleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gradient Descent & Delta Ruleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gradient Descent & Delta Ruleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gradient Descent & Delta Ruleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gradient Descent & Delta Ruleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gradient Descent & Delta Ruleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gradient Descent & Delta Ruleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gradient Descent & Delta Ruleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Incremental Learningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multilayer Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} XORaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multilayer Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multilayer Network Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More on computing erroraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Backpropagationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More on computing erroraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More on computing erroraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Updating hidden weightsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Backpropagationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Backpropagation Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Theory vs Practiceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stopping conditionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Backpropagationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Momentumaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Momentumaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Design issuesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Design issuesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Design issuesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overfittingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overfittingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overfittingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overfittingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overfittingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overfittingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overfittingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Number Recognitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Number Recognitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Number Recognitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recurrent NNsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recurrent NNsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hopfield networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hopfield networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Neural nets - summaryaddtocounter {blocknumber}{1}

