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20-0: Symbolic Al

® Most of this class has been focused on Symbolic
Al

* Focus or symbols and relationships between
them

e Search, logic, decision trees, etc.

® Assumption: Key requirement for intelligent
behavior is the manipulation of symbols

® Neural networks are a little different: subsymbolic
behavior




20-1: Biological Neurons




20-2: Biological Neurons

® Biological neurons transmit (more-or-less)
electrical signals

® Each Nerve cell is connected to the “outputs” of
several other neurons

® When there is a sufficient total input from all inputs,
the cell “fires”, and sends ouputs to other cells

® Extreme oversimplification, simple version is the
model for Artificial Neural Networks




20-3: Artificial Neural Networks
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20-4: Activation Function

® Neurons are mostly binary
* Fire, or don't fire
* Not “fire at 37%”

® Model this with an activation function
e Step Function

e Sigmoid function: f(x) = —

l4+e—x

® Talk about why the sigmoid function can be better
than the step function when we do training




20-5: Olngle Neuron NNs

® A single Neuron can compute a simple function

® \What functions do each of these neurons
compute?




20-6: Olngle Neuron NNs

W, = -1.5

TP

° A smgle Neuron can compute a simple funchon

® \What functions do each of these neurons
compute?




20-7: Neural Networks

® Of course, things get more fun when we connect
individual neurons together into a network

e Quputs of some neurons feed into the inputs of
other neurons

® Add special “input nodes”, used for input




20-8: Neural Networks

Hidden Nodes




20-9: Neural Networks

® Feed Forward Networks

* No cycles, signals flow in one direction
® Recurrent Networks

e Cycles in signal propagation

* Much more complicated: Need to deal with
time, learning is much harder

® \We will focus on Feed Forward networks




20-10: FUunction Approximators

® Feed Forward Neural Networks are Nonlinear
Function Approximators

® Qutput of the network is a function of its inputs

® Activation function is non-linear, allows for
representation of non-linear functions

® Adjust weights, change function

® Neural Networks are used to efficiently
approximate complex functions




20-11: Classification

® Common use for Neural Networks is classification
 We've already seen classification with decision
trees and naive bayes
* Map inputs into one or more outputs
e Qutput range is split into discrete “classes” (like
“spam” and “not spam”
® Useful for learning tasks where “what to look for” is
unknown
* Face recognition
* Handwriting recognition




20-12: Perceptrons

® Feed Forward
® Single-layer network

® Each input is directly connected to one or more
outputs




20-13: Perceptrons
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20-14: Perceptrons

® For each perceptron:
e Threshold firing function is used (not sigmoid)
e Qutput function o:
c o(x1,...x,) =11If
W, + Wixi +woxo +...+w,x, >0
c o(x1,...x,) =01If
W, +Wwix;i +woxo +...+w,x, <0




20-15: Perceptrons

® Since each perceptron is independent of others,
we can examine each in isolation

® Qutput of a single perceptrion:
e (or, W-x>0)

® Perceptrons can represent any linearly separable
function

® Perceptrons can only represent linearly separable
functions




20-16: Linearly Seperable
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20-17: Linearly Seperable
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20-18: Linearly Seperable
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20-19: Perceptron Learning

inptuts : inl, in2, ..., 1nj

weights : wl, w2, ... wn

training examples: tl = (tinl, tol),
t2 = (tin2, to2),

do
for t 1n training examples
inputs = tin
0 = compute output with current weights
E=1to -o0
for eacxh wi 1n weight
wli = wli + alpha * tin[1] * E
while notConverged




20-20: Perceptron Learning

® |f the output signal is too high, weights need to be
reduced

e “Turn down” weights that contributed to output
e Weights with zero input are not affected

® |f output is too low, weights need to be increased
* “Turn up” weights that contribute to output
e Zero-input weights not affected

® Doing a hill-climbing search through weight space




20-21: Perceptron Example

® | earn the majority function with 3 inputs
* (plus bias input)

® out=1If 3, w;in; > 0, 0 otherwise

® =0.2

® |nitially, all weights O




20-22: Perceptron Example

bias Inputs | expected
out

1 1 0 O 0

1 0 1 1 1

1 0 0 0

w 1 ‘ 1

1 0 O 0

w 10 1

7 110 1

1 0 0 O 0




20-23: Perceptron Example

bias inputs expected | wO wi1 w2 w3 | actual | new weights
out out ‘

1 1 0 0 0 0 0 0 0 0 |0 0 0 0]

1 0 1 1 1

1 0O 1 0 0

1 1 1 1 1

1 O 0 1 0

1 1 0 1 1

1 1 1 0 1

1 0O 0 O 0




20-24: Perceptron Example

bias inputs expected | wO wi1 w2 w3 | actual | new weights
out out

1 1 0 O 0 0 0

1 o 1 1 1 0 0.2 0.2 0.2
1 o 1 0 0

1 1 1 1 1

1 0O 0 1 0

1 1 0 1 1

1 1 1 0 1

1 0O 0 O 0




20-25: Perceptron Example

bias inputs expected | wO w1 w2 w3 | actual | new weights
out out

1 1 0 O 0 0 0 O 0
1 o 1 1 1 02 0 02 02
1 o 1 O 0 0.2 0.2 0.2 0 0 O 0.2
1 1T 1 1 1

1 0O 0 1 0

1 1 0 1 1

1 1 1 0 1

1 0O 0 O 0




20-26: Perceptron Example

bias inputs expected | wO w1 w2 w3 | actual | new weights
out out

1 1 0 O 0 0 0 0 O 0
1 o 1 1 1 0 0 02 0 02 02
1 o 1 0 0 02 0 02 0.2 1 0 0.2
1 1T 1 1 1 0 0 0 0.2 1 0 0.2
1 0O 0 1 0

1 1 0 1 1

1 1 1 0 1

1 0O 0 O 0




20-27: Perceptron Example

bias inputs expected | wO w1 w2 w3 | actual | new weights
out out

1 1 0 O 0 0 0 0 0 O 0
1 o 1 1 1 0 0 02 0 02 02
1 o 1 0 0 02 0 02 0.2 1 0 0 0.2
1 1T 1 1 1 0 0.2 1 0 0 0.2
1 0O 0 1 0 0 0.2 1 -02 0 O 0
1 1 0 1 1

1 1 1 0 1

1 0O 0 O 0




20-28: Perceptron Example

bias inputs expected | wO wi w2 w3 | actual | new weights
out out

1 1 0 O 0 0 0 0 0 0 0

1 o 1 1 1 0 0 02 0 0. 0.2
1 o 1 O 0 0.2 0 02 0.2 1 0 0 0 0.2
1 1T 1 1 1 0 0 0.2 1 0 0 0 0.2
1 0O 0 1 0 0 0 0.2 1 02 0 0 0

1 1 0 1 1 -02 0 0 0 0 0. 0 0.2
1 1 1 0 1

1 0O 0 O 0




20-29: Perceptron Example
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20-30: Perceptron Example

bias inputs expected | wO wi w2 w3 | actual | new weights
out out
1 1 0 O 0 0 0 0 0 0 0
1 o 1 1 1 0 0 02 0 0.2 0.2
1 o 1 O 0 0.2 0 0.2 0.2 1 0 0 0 0.2
1 1T 1 1 1 0 0 0 0.2 1 0 0 0.2
1 0O 0 1 0 0 0 0 0.2 1 02 0 0 0
1 1 0 1 1 -0.2 0 0 0 0 02 0 0.2
1 1 1 0 1 0 0.2 0 0.2 1 02 0 0.2
1 0O 0 O 0 0 0.2 0 0.2 0 02 0 0.2

Still hasn’t converged, need more iterations




20-31: Perceptron Example

After 3 more iterations (of all weights):

bias inputs expected | wO w1 w2 w3 | actual
out out
1 1 0 O 0 -04 0.2 04 04 0
1 0 1 1 1 -04 0.2 04 04 1
1 0 1 0 0 -04 0.2 04 04 0
1T 1 1 1 1 -04 0.2 04 04 1
1 0 0 1 0 -04 0.2 04 04 0
1 1 0 1 1 -04 02 04 04 1
1 1 1 0 1 -04 02 04 04 1
1 0 0 O 0 -04 0.2 04 04 0




20-32: Gradient Descent & Delta Rule

® What if we can't learn the function exactly?
e Function is not linearly seperable

® \Want to do “as well as possible”
® Minimize the sum of the squared error

® F =>(t; —o4)* for d in the training set




20-33: Gradient Descent & Delta Rule

® Searching through a space of weights

® Much like local search, define an error E as a
function of the weights

® Find values of weights to minimize E

® Follow the gradient — largest negative change in E
e Alas, E is discontinuous, hard to differentiate

* |Instead of using actual output, use
unthresholded output




20-34: Gradient Descent & Delta Rule

® (Garient descent: follow the steepest slope down
the error surface

® Consider the derivative of E with respect to each
weight

® F=>(t; —o0y) for d in the training set

dE _ Z 21 — Od)d(fc; _'Od)

dw; Wi

First, we will simplify for looking at a single training
data point (then we can sum over all of them, since
the derivative of a sum is the sum of the
derivatives)




20-35: Gradient Descent & Delta Rule

® For a single training example:

dE d(ty; — Od)2
dWi dW,'

d(ty — 0q)
dW,‘

= 2ty — 0q)

S|nce d(f(x) ) 2f(X) d(];gcx))




20-36: Gradient Descent & Delta Rule

® For a single training example:

dE d(t; — oy)
= 2t; —
™ (tq — 0q) o
d(—Xx;qw;
= 2ds - 0 "L
Wi

e 1, doesn’t involve w;, so 22 = 0

® 0, = WiX1g + WaXxag + W3Xx34 + ..., the onIy term
that involves Wi 1S WiXid




20-37: Gradient Descent & Delta Rule

® For a single training example:

dE d(—Xxigw;)
— 2d, -
™ (da — 04) .

= 2(tg — 04)(—Xiq)

e Since 42 =

= C




20-38: Gradient Descent & Delta Rule

® (Garient descent: follow the steepest slope down
the error surface

® Consider the derivative of E with respect to each
weight

® F=>(t; —o0y) for d in the training set

dE _ Z 21 — Od)d(fc; _.Od)

dW,’ Wi

= > 2ta — 04)(~xia)

® \Want to go down the gradiant,
Aw; = @ 2 gep(ta — 0a)Xid




20-39: Gradient Descent & Delta Rule

® (Garient descent: follow the steepest slope down
the error surface

® Consider the derivative of E with respect to each
weight

® After derivation, updating rule (called the Delta
Rule) is:

Awi = @ ) (ta = 04)%ia
deD
e D is the training set, « is the training rate, ¢, Is
the expected output, and o, is the actual output,
x;d 1S the input along weight w;.




20-40: Incremental Learning

® Often not practical to compute global weight
change for entire training set

® |nstead, update weights incrementally
* Observe one piece of data, then update

® Update rule: w; = a(r — o)x;

* Like perceptron learning rule — except uses
unthresholded output

® Smaller training rate a typically used
® No theoretical guarantees of convergence




20-a1: Multilayer Networks

® While perceptrons have the advantage of a simple
learning algorithm, their computational limitations
are a problem.

® What if we add another “hidden” layer?

® Computational power increases

* With one hidden layer, can represent any
continuous function

* With two hidden layers, can represent any
function

® Example: Create a multi-layer network that
computes XOR




20-42: XOR

/ 04 Output
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20-a3: Multilayer Networks

® While perceptrons have the advantage of a simple
learning algorithm, their computational limitations
are a problem.

® What if we add another “hidden” layer?

® Computational power increases

* With one hidden layer, can represent any
continuous function

* With two hidden layers, can represent any
function

® Problem: How to find the correct weights for
hidden nodes?




20-a2: Multilayer Network Example




20-45: More on computing error

® Backpropagation is an extension of the perceptron
learning algorithm to deal with multiple layers of
nodes.

® Qur goal is to minimize the error function.

® To do this, we want to change the weights so as to
reduce the error.
® We define error as a function of the weights like so:
e E(w) = expected — actual
e FE(w) = expected — g(input)
® So, to determine how to change the weights, we

compute the derivative of error with respect to the
weights.

* This tells us the slope of the error curve at that




20-46: Backpropagation

® Nodes use sigmoid activation function, rather than
the step function

® Sigmoid function works in much the same way, but

IS differentiable.

- _ 1
° g(lnputl) " |4 input;

o o'(input;) = g(input;)(1 — g(input;)) (good news
here -calculating the derivative only requires
knowing the output!)




20-47: More on computing error

® Recall that our goal is to minimize the error
function.

® To do this, we want to change the weights so as to
reduce the error.
® We define error as a function of the weights like so:
* E(w) = expected — actual
e E(w) = expected — g(input)

® S0, to determine how to change the weights, we
compute the derivative of error with respect to the

weights.
* This tells us the slope of the error curve at that
point.




20-48: More on computing error

® F(w) = expected — g(input)

® F(w) = expected — g(W *1)

* j—g, =0 — g’(input)i

® J, = —g(input) = (1 — g(input)) * i




20-49: Updating hidden weights

® Fach weight is updated by a * A;
* W,i=W;i+axa;=*A




20-50: Backpropagation

® Updating input-hidden weights:

® |dea: each hidden node is responsible for a
fraction of the error in o;.

® Divide ¢; according to the strength of the
connection between the hidden and output node.

® For each hidden node j
® 5j — g(lnput)(l i g(lnput)) Zieoutputs Wj,iéi
® Update rule for input-hidden weights:

¢ Wk,j = Wk,j + @ * Inputy, *5]'




20-51: Backpropagation Algorithm

® The whole algorithm can be summed up as:
While not done:
for d in training set
Apply inputs of d, propagate forward.
for node i in output layer
0; = output * (1 — output) * (tex, — output)
for each hidden node
0; = output * (1 — output) * 3, W;,0;
Adjust each weight
Wj,l' = Wj,i + @ * 0; * inputj




20-52: 1heory vs Practice

® |n the definition of backpropagation, a single
update for all weights is computed for all data
points at once.

* Find the update that minimizes total sum of
squared error.
® Guaranteed to converge in this case.
® Problem: This is often computationally
space-intensive.
* Requires creating a matrix with one row for
each data point and inverting it.

® |n practice, updates are done incrementally
iInstead.




20-53: Stopping conditions

® Unfortunately, incremental updating is not
guaranteed to converge.

® Also, convergence can take a long time.

® When to stop training?
e Fixed number of iterations
* Total error below a set threshold
e Convergence - no change in weights




20-54: Backpropagation

® Also works for multiple hidden layers

® Backpropagation is only guaranteed to converge to
a local minimum

 May not find the absolute best set of weights

® | ow Iinitial weights can help with this
* Makes the network act more linearly - fewer
minima
® Can also use random restart - train multiple times
with different initial weights.




20-55: Momentum

® Since backpropagation is a hillclimbing algorithm,
It Is susceptible to getting stuck in plateaus

e Areas where local weight changes don't
produce an improvement in the error function.

® A common extension to backpropagation is the
addition of a momentum term.

e Carries the algorithm through minima and
plateaus.

® |dea: remember the “direction” you were going in,
and by default keep going that way.

® Mathematically, this means using the second
derivative.




20-56: Momentum

® |mplementing momentum typically means
remembering what update was done in the
previous iteration.

® Qur update rule becomes:

¢ AWJ','(VZ) = CL’Aiji +,8AWji(ll — 1)

® To consider the effect, imagine that our new delta
IS zero (we haven’'t made any improvement)

® Momentum will keep the weights “moving” in the
same direction.

® Also gradually increases step size in areas where
gradient is unchanging.

* This speeds up convergence, helps escape
plateaus and local minima.




20-57: Design issues

® One difficulty with neural nets is determining how
to encode your problem

* |nputs must be 1 and 0, or else real-valued
numbers.

e Same for outputs
® Symbolic variables can be given binary encodings

® More complex concepts may require care to
represent correctly.




20-58: Design issues

® | ike some of the other algorithms we’ve studied,
neural nets have a number of paramters that must
be tuned to get good performance.

 Number of layers
 Number of hidden units
e |earning rate
* |nitial weights
e Momentum term
e Training regimen
® These may require trial and error to determine




20-59: Design issues

® The more hidden nodes you have, the more
complex function you can approximate

® |s this always a good thing? That is, are more
hidden nodes better?




20-60: Overfitting

® Qverfitting

e Conisder a network with i input nodes, o output
nodes, and k hidden nodes

* Jraining set has k examples
e Could end up learning a lookup table




20-61: OQverfitting
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20-62: Overfitting

- \ Training Data
1 1 1101 100
_ 0110 010
/ 2O 1111 ool
0011 100
1 () 0000 010




20-63: Overfitting

Training Data
1101 100
0110 010
1111 001
0011 100
0000 010




20-64: Overfitting

Training Data
1101 100
0110 010
1111 001
0011 100
0000 010




20-65: Overfitting

Training Data
1101 100
0110 010
1111 001
0011 100
0000 010




20-66: Overfitting

Training Data

1101 100
~ 0110 010
1111 001
0011 100
(O 0000 010




20-67: Number Recognition

>




20-68: Number Recognition

Each pixel is an input unit




20-69: Number Recognition

S = AN M

0000000

Fully
Connected

% 000000

i OOOOOOOOOO%O%

< 0 © b~ O O

¢** OOOOOOOOO




20-70: Recurrent NNs

® So far, we've talked only about feedforward
networks.

e Signals propagate in one direction
e Qutput is immediately available
* Well-understood training algorithms
® There has also been a great deal of work done on
recurrent neural networks.

* At least some of the outputs are connected
back to the inputs.




20-71: Recurrent NNs

® This is a single-layer recurrent neural network

Inl v =m » Outl
In2 v > » Out2
In3 v - » Out3




20-72: Hopfield networks

® A Hopfield network has no special input or output
nodes.

® Every node receives an input and produces an
output

® Every node connected to every other node.
® Typically, threshold functions are used.

® Network does not immediately produce an output.
* |nstead, it oscillates

® Under some easy-to-achieve conditions, the
network will eventually stabilize.

® Weights are found using simulated annealing.




20-73: Hopfield networks

® Hopfield networks can be used to build an
associative memory

® A portion of a pattern is presented to the network,
and the net “recalls” the entire pattern.

® Useful for letter recognition
® Also for optimization problems
® Often used to model brain activity




20-74: Neural nets - summary

Key idea: simple computational units are
connected together using weights.

Globally complex behavior emerges from their
interaction.

No direct symbol manipulation
Straightforward training methods

Useful when a machine that approximates a
function is needed

* No need to understand the learned hypothesis
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