# Al Programming CS662-2008F-20 

## Neural Networks

David Galles

Department of Computer Science
University of San Francisco

## 20-0: Symbolic Al

- Most of this class has been focused on Symbolic AI
- Focus or symbols and relationships between them
- Search, logic, decision trees, etc.
- Assumption: Key requirement for intelligent behavior is the manipulation of symbols
- Neural networks are a little different: subsymbolic behavior


## 20-1: Biological Neurons



## 20-2: Biological Neurons

- Biological neurons transmit (more-or-less) electrical signals
- Each Nerve cell is connected to the "outputs" of several other neurons
- When there is a sufficient total input from all inputs, the cell "fires", and sends ouputs to other cells
- Extreme oversimplification, simple version is the model for Artificial Neural Networks


## 20-3: Artificial Neural Networks



## 20-4: Activation Function

- Neurons are mostly binary
- Fire, or don't fire
- Not "fire at 37\%"
- Model this with an activation function
- Step Function
- Sigmoid function: $f(x)=\frac{1}{1+e-x}$
- Talk about why the sigmoid function can be better than the step function when we do training


## 20-5: Single Neuron NNs



- A single Neuron can compute a simple function
- What functions do each of these neurons compute?


## 20-6: Single Neuron NNs



- A single Neuron can compute a simple function
- What functions do each of these neurons compute?


## 20-7: Neural Networks

- Of course, things get more fun when we connect individual neurons together into a network
- Ouputs of some neurons feed into the inputs of other neurons
- Add special "input nodes", used for input


## 20-8: Neural Networks

Hidden Nodes


## 20-9: Neural Networks

- Feed Forward Networks
- No cycles, signals flow in one direction
- Recurrent Networks
- Cycles in signal propagation
- Much more complicated: Need to deal with time, learning is much harder
- We will focus on Feed Forward networks


## 20-10: Function Approximators

- Feed Forward Neural Networks are Nonlinear Function Approximators
- Output of the network is a function of its inputs
- Activation function is non-linear, allows for representation of non-linear functions
- Adjust weights, change function
- Neural Networks are used to efficiently approximate complex functions


## 20-11: Classification

- Common use for Neural Networks is classification
- We've already seen classification with decision trees and naive bayes
- Map inputs into one or more outputs
- Output range is split into discrete "classes" (like "spam" and "not spam"
- Useful for learning tasks where "what to look for" is unknown
- Face recognition
- Handwriting recognition


## 20-12: Perceptrons

- Feed Forward
- Single-layer network
- Each input is directly connected to one or more outputs


## 20-13: Perceptrons



## 20-14: Perceptrons

- For each perceptron:
- Threshold firing function is used (not sigmoid)
- Output function $o$ :
- $o\left(x_{1}, \ldots x_{n}\right)=1$ if
$w_{o}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{n} x_{n}>0$
- $o\left(x_{1}, \ldots x_{n}\right)=0$ if
$w_{o}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{n} x_{n} \leq 0$


## 20-15: Perceptrons

- Since each perceptron is independent of others, we can examine each in isolation
- Output of a single perceptrion:
- $\sum_{j=1}^{n} W_{j} x_{j}>0$
- (or, $W \cdot x>0$ )
- Perceptrons can represent any linearly separable function
- Perceptrons can only represent linearly separable functions


## 20-16: Linearly Seperable



Function: X1 or X2


Function: X1 and X2

## 20-17: Linearly Seperable



Function: X1 or X2


Function: X1 and X2

## 20-18: Linearly Seperable



Function: X1 xor X2

## 20-19: Perceptron Learning

inptuts : in1, in2, ..., inj
weights : w1, w2, ... wn
training examples: t1 = (tin1, to1),
t2 $=(\mathrm{tin} 2, \mathrm{to} 2), \ldots$
do
for t in training examples
inputs = tin
o = compute output with current weights
E = to - o
for eacxh wi in weight
wi = wi + alpha * tin[i] * E
while notConverged

## 20-20: Perceptron Learning

- If the output signal is too high, weights need to be reduced
- "Turn down" weights that contributed to output
- Weights with zero input are not affected
- If output is too low, weights need to be increased
- "Turn up" weights that contribute to output
- Zero-input weights not affected
- Doing a hill-climbing search through weight space


## 20-21: Perceptron Example

- Learn the majority function with 3 inputs
- (plus bias input)
- out = 1 if $\sum_{j} w_{j} i n_{j}>0,0$ otherwise
- $\alpha=0.2$
- Initially, all weights 0


## 20-22: Perceptron Example

| bias | inputs | expected <br> out |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 |

## 20-23: Perceptron Example

| bias inputs |  | expected <br> out | w0 | w1 | w2 | $w 3$ | actual <br> out | new weights |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 |  |  |  |  |  |  |  |  |
| 1 | 0 | 1 | 0 | 0 |  |  |  |  |  |  |  |  |
| 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 1 | 0 |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 | 1 |  |  |  |  |  |  |  |  |
| 1 | 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |

## 20-24: Perceptron Example

| bias | inputs |  |  | expected out | w0 | w1 | w2 | w3 | actual out | new weights |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.2 | 0.2 |
| 1 | 0 | 1 | 0 | 0 |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 1 | 0 |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 | 1 |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |

## 20-25: Perceptron Example

| bias | inputs |  |  | expected out | w0 | w1 | w2 | w3 | actual out | new weights |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.2 | 0.2 |
| 1 | 0 | 1 | 0 | 0 | 0.2 | 0 | 0.2 | 0.2 | 1 | 0 | 0 | 0 | 0.2 |
| 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 1 | 0 |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 | 1 |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |

## 20-26: Perceptron Example

| bias | inputs |  |  | expected <br> out | w0 | w1 | w2 | w3 | actual out | new weights |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.2 | 0.2 |
| 1 | 0 | 1 | 0 | 0 | 0.2 | 0 | 0.2 | 0.2 | 1 | 0 | 0 | 0 | 0.2 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0.2 | 1 | 0 | 0 | 0 | 0.2 |
| 1 | 0 | 0 | 1 | 0 |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 | 1 |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |

## 20-27: Perceptron Example

| bias | inputs |  |  | expected <br> out | w0 | w1 | w2 | w3 | actual out | new weights |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.2 | 0.2 |
| 1 | 0 | 1 | 0 | 0 | 0.2 | 0 | 0.2 | 0.2 | 1 | 0 | 0 | 0 | 0.2 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0.2 | 1 | 0 | 0 | 0 | 0.2 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0.2 | 1 | -0.2 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |

## 20-28: Perceptron Example

| bias | inputs |  | expected <br> out | w0 | w1 | w2 | w3 | actual <br> out | new weights |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.2 | 0.2 |
| 1 | 0 | 1 | 0 | 0 | 0.2 | 0 | 0.2 | 0.2 | 1 | 0 | 0 | 0 | 0.2 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0.2 | 1 | 0 | 0 | 0 | 0.2 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0.2 | 1 | -0.2 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 | -0.2 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.2 |
| 1 | 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |

## 20-29: Perceptron Example

| bias | inputs |  | expected <br> out | w0 | w1 | w2 | w3 | actual <br> out | new weights |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.2 | 0.2 |
| 1 | 0 | 1 | 0 | 0 | 0.2 | 0 | 0.2 | 0.2 | 1 | 0 | 0 | 0 | 0.2 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0.2 | 1 | 0 | 0 | 0 | 0.2 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0.2 | 1 | -0.2 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 | -0.2 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.2 |
| 1 | 1 | 1 | 0 | 1 | 0 | 0.2 | 0 | 0.2 | 1 | 0 | 0.2 | 0 | 0.2 |
| 1 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |

## 20-30: Perceptron Example

| bias | inputs |  | expected <br> out | w0 | w1 | w2 | w3 | actual <br> out | new weights |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.2 | 0.2 |
| 1 | 0 | 1 | 0 | 0 | 0.2 | 0 | 0.2 | 0.2 | 1 | 0 | 0 | 0 | 0.2 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0.2 | 1 | 0 | 0 | 0 | 0.2 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0.2 | 1 | -0.2 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 | -0.2 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.2 |
| 1 | 1 | 1 | 0 | 1 | 0 | 0.2 | 0 | 0.2 | 1 | 0 | 0.2 | 0 | 0.2 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.2 | 0 | 0 | 0.2 | 0 | 0.2 |

Still hasn't converged, need more iterations

## 20-31: Perceptron Example

After 3 more iterations (of all weights):

| bias inputs | expected <br> out | w0 | w1 | w2 | w3 | actual <br> out |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 | 0 | -0.4 | 0.2 | 0.4 | 0.4 | 0 |
| 1 | 0 | 1 | 1 | 1 | -0.4 | 0.2 | 0.4 | 0.4 | 1 |
| 1 | 0 | 1 | 0 | 0 | -0.4 | 0.2 | 0.4 | 0.4 | 0 |
| 1 | 1 | 1 | 1 | 1 | -0.4 | 0.2 | 0.4 | 0.4 | 1 |
| 1 | 0 | 0 | 1 | 0 | -0.4 | 0.2 | 0.4 | 0.4 | 0 |
| 1 | 1 | 0 | 1 | 1 | -0.4 | 0.2 | 0.4 | 0.4 | 1 |
| 1 | 1 | 1 | 0 | 1 | -0.4 | 0.2 | 0.4 | 0.4 | 1 |
| 1 | 0 | 0 | 0 | 0 | -0.4 | 0.2 | 0.4 | 0.4 | 0 |

## 20-32: Gradient Descent \& Delta Rule

- What if we can't learn the function exactly?
- Function is not linearly seperable
- Want to do "as well as possible"
- Minimize the sum of the squared error
- $E=\sum\left(t_{d}-o_{d}\right)^{2}$ for $d$ in the training set


## 20-33: Gradient Descent \& Delta Rule

- Searching through a space of weights
- Much like local search, define an error $E$ as a function of the weights
- Find values of weights to minimize $E$
- Follow the gradient - largest negative change in $E$
- Alas, $E$ is discontinuous, hard to differentiate
- Instead of using actual output, use unthresholded output


## 20-34: Gradient Descent \& Delta Rule

- Garient descent: follow the steepest slope down the error surface
- Consider the derivative of $E$ with respect to each weight
- $E=\sum\left(t_{d}-o_{d}\right)^{2}$ for $d$ in the training set

$$
\frac{d E}{d w_{i}}=\sum 2\left(t_{d}-o_{d}\right) \frac{d\left(t_{d}-o_{d}\right)}{d w_{i}}
$$

First, we will simplify for looking at a single training data point (then we can sum over all of them, since the derivative of a sum is the sum of the derivatives)

## 20-35: Gradient Descent \& Delta Rule

- For a single training example:

$$
\begin{aligned}
\frac{d E}{d w_{i}} & =\frac{d\left(t_{d}-o_{d}\right)^{2}}{d w_{i}} \\
& =2\left(t_{d}-o_{d}\right) \frac{d\left(t_{d}-o_{d}\right)}{d w_{i}}
\end{aligned}
$$

since $\frac{d\left(f(x)^{2}\right)}{d x}=2 f(x) \frac{d(f(x))}{d x}$

## 20-36: Gradient Descent \& Delta Rule

- For a single training example:

$$
\begin{aligned}
\frac{d E}{d w_{i}} & =2\left(t_{d}-o_{d}\right) \frac{d\left(t_{d}-o_{d}\right)}{d w_{i}} \\
& =2\left(d_{d}-o_{d}\right) \frac{d\left(-x_{i d} w_{i}\right)}{d w_{i}}
\end{aligned}
$$

- $t_{d}$ doesn't involve $w_{i}$, so $\frac{d\left(t_{t}\right)}{d w_{i}}=0$
- $o_{d}=w_{1} x_{1 d}+w_{2} x_{2 d}+w_{3} x_{3 d}+\ldots$, the only term that involves $w_{i}$ is $w_{i} x_{i d}$


## 20-37: Gradient Descent \& Delta Rule

- For a single training example:

$$
\begin{aligned}
\frac{d E}{d w_{i}} & =2\left(d_{d}-o_{d}\right) \frac{d\left(-x_{i d} w_{i}\right)}{d w_{i}} \\
& =2\left(t_{d}-o_{d}\right)\left(-x_{i d}\right)
\end{aligned}
$$

- Since $\frac{d(c x)}{d x}=c$


## 20-38: Gradient Descent \& Delta Rule

- Garient descent: follow the steepest slope down the error surface
- Consider the derivative of $E$ with respect to each weight
- $E=\sum\left(t_{d}-o_{d}\right)^{2}$ for $d$ in the training set

$$
\begin{aligned}
\frac{d E}{d w_{i}} & =\sum 2\left(t_{d}-o_{d}\right) \frac{d\left(t_{d}-o_{d}\right)}{d w_{i}} \\
& =\sum 2\left(t_{d}-o_{d}\right)\left(-x_{i d}\right)
\end{aligned}
$$

- Want to go down the gradiant,

$$
\Delta w_{i}=\alpha \sum_{d \in D}\left(t_{d}-o_{d}\right) x_{i d}
$$

## 20-39: Gradient Descent \& Delta Rule

- Garient descent: follow the steepest slope down the error surface
- Consider the derivative of $E$ with respect to each weight
- After derivation, updating rule (called the Delta Rule) is:

$$
\Delta w_{i}=\alpha \sum_{d \in D}\left(t_{d}-o_{d}\right) x_{i d}
$$

- $D$ is the training set, $\alpha$ is the training rate, $t_{d}$ is the expected output, and $o_{d}$ is the actual output, $x_{i} d$ is the input along weight $w_{i}$.


## 20-40: Incremental Learning

- Often not practical to compute global weight change for entire training set
- Instead, update weights incrementally
- Observe one piece of data, then update
- Update rule: $w_{i}=\alpha(t-o) x_{i}$
- Like perceptron learning rule - except uses unthresholded output
- Smaller training rate $\alpha$ typically used
- No theoretical guarantees of convergence


## 20-41: Multilayer Networks

- While perceptrons have the advantage of a simple learning algorithm, their computational limitations are a problem.
- What if we add another "hidden" layer?
- Computational power increases
- With one hidden layer, can represent any continuous function
- With two hidden layers, can represent any function
- Example: Create a multi-layer network that computes XOR



## 20-43: Multilayer Networks

- While perceptrons have the advantage of a simple learning algorithm, their computational limitations are a problem.
- What if we add another "hidden" layer?
- Computational power increases
- With one hidden layer, can represent any continuous function
- With two hidden layers, can represent any function
- Problem: How to find the correct weights for hidden nodes?


## 20-44: Multilayer Network Example



## 20-45: More on computing error

- Backpropagation is an extension of the perceptron learning algorithm to deal with multiple layers of nodes.
- Our goal is to minimize the error function.
- To do this, we want to change the weights so as to reduce the error.
- We define error as a function of the weights like so:
- $E(\mathbf{w})=$ expected - actual
- $E(\mathbf{w})=$ expected $-g($ input $)$
- So, to determine how to change the weights, we compute the derivative of error with respect to the weights.
- This tells us the slope of the error curve at that


## 20-46: Backpropagation

- Nodes use sigmoid activation function, rather than the step function
- Sigmoid function works in much the same way, but is differentiable.
- $g\left(\right.$ input $\left._{i}\right)=\frac{1}{1+e^{- \text {inp }_{\text {m }}}}$.
- $g^{\prime}\left(\right.$ input $\left._{i}\right)=g\left(\right.$ input $\left._{i}\right)\left(1-g\left(\right.\right.$ input $\left.\left._{i}\right)\right)($ good news here -calculating the derivative only requires knowing the output!)


## 20-47: More on computing error

- Recall that our goal is to minimize the error function.
- To do this, we want to change the weights so as to reduce the error.
- We define error as a function of the weights like so:
- $E(\mathbf{w})=$ expected - actual
- $E(\mathbf{w})=$ expected $-g($ input $)$
- So, to determine how to change the weights, we compute the derivative of error with respect to the weights.
- This tells us the slope of the error curve at that point.


## 20-48: More on computing error

- $E(\mathbf{w})=$ expected $-g($ input $)$
- $E(\mathbf{w})=\operatorname{expected}-g(\mathbf{w} * \mathbf{i})$
- $\frac{d E}{d W}=0-g^{\prime}($ input $) \mathrm{i}$
- $\delta_{w}=\frac{d E}{d W}=-g($ input $) *(1-g($ input $)) * \mathbf{i}$


## 20-49: Updating hidden weights

- Each weight is updated by $\alpha * \Delta_{i}$
- $W_{j, i}=W_{j, i}+\alpha * a_{j} * \Delta_{i}$


## 20-50: Backpropagation

- Updating input-hidden weights:
- Idea: each hidden node is responsible for a fraction of the error in $\delta_{i}$.
- Divide $\delta_{i}$ according to the strength of the connection between the hidden and output node.
- For each hidden node $j$
- $\delta_{j}=g($ input $)(1-g($ input $)) \sum_{i \in o u t p u t s} W_{j, i} \delta_{i}$
- Update rule for input-hidden weights:
- $W_{k, j}=W_{k, j}+\alpha *$ input $_{k} * \delta_{j}$


## 20-51: Backpropagation Algorithm

- The whole algorithm can be summed up as: While not done:
for d in training set
Apply inputs of d , propagate forward.
for node $i$ in output layer

$$
\delta_{i}=\text { output } *(1-\text { output }) *\left(t_{\text {exp }}-\text { output }\right)
$$

for each hidden node $j$

$$
\delta_{j}=\text { output } *(1-\text { output }) * \sum W_{j, i} \delta_{i}
$$

Adjust each weight

$$
W_{j, i}=W_{j, i}+\alpha * \delta_{i} * \text { input }_{j}
$$

## 20-52: Theory vs Practice

- In the definition of backpropagation, a single update for all weights is computed for all data points at once.
- Find the update that minimizes total sum of squared error.
- Guaranteed to converge in this case.
- Problem: This is often computationally space-intensive.
- Requires creating a matrix with one row for each data point and inverting it.
- In practice, updates are done incrementally instead.


## 20-53: Stopping conditions

- Unfortunately, incremental updating is not guaranteed to converge.
- Also, convergence can take a long time.
- When to stop training?
- Fixed number of iterations
- Total error below a set threshold
- Convergence - no change in weights


## 20-54: Backpropagation

- Also works for multiple hidden layers
- Backpropagation is only guaranteed to converge to a local minimum
- May not find the absolute best set of weights
- Low initial weights can help with this
- Makes the network act more linearly - fewer minima
- Can also use random restart - train multiple times with different initial weights.


## 20-55: Momentum

- Since backpropagation is a hillclimbing algorithm, it is susceptible to getting stuck in plateaus
- Areas where local weight changes don't produce an improvement in the error function.
- A common extension to backpropagation is the addition of a momentum term.
- Carries the algorithm through minima and plateaus.
- Idea: remember the "direction" you were going in, and by default keep going that way.
- Mathematically, this means using the second derivative.


## 20-56: Momentum

- Implementing momentum typically means remembering what update was done in the previous iteration.
- Our update rule becomes:
- $\Delta w_{j i}(n)=\alpha \Delta_{j} x_{j i}+\beta \Delta \mathbf{w}_{\mathrm{ji}}(\mathbf{n}-\mathbf{1})$
- To consider the effect, imagine that our new delta is zero (we haven't made any improvement)
- Momentum will keep the weights "moving" in the same direction.
- Also gradually increases step size in areas where gradient is unchanging.
- This speeds up convergence, helps escape plateaus and local minima.


## 20-57: Design issues

- One difficulty with neural nets is determining how to encode your problem
- Inputs must be 1 and 0 , or else real-valued numbers.
- Same for outputs
- Symbolic variables can be given binary encodings
- More complex concepts may require care to represent correctly.


## 20-58: Design issues

- Like some of the other algorithms we've studied, neural nets have a number of paramters that must be tuned to get good performance.
- Number of layers
- Number of hidden units
- Learning rate
- Initial weights
- Momentum term
- Training regimen
- These may require trial and error to determine


## 20-59: Design issues

- The more hidden nodes you have, the more complex function you can approximate
- Is this always a good thing? That is, are more hidden nodes better?


## 20-60: Overfitting

- Overfitting
- Conisder a network with $i$ input nodes, o output nodes, and $k$ hidden nodes
- Training set has $k$ examples
- Could end up learning a lookup table


## 20-61: Overfitting



Training Data 1101100 0110010<br>1111001<br>0011100 0000010

## 20-62: Overfitting



Training Data<br>1101100 0110010<br>1111001 0011100 0000010

## 20-63: Overfitting



## Training Data 1101100 <br> 0110010 <br> 1111001 0011100 0000010

## 20-64: Overfitting



Training Data 1101100 0110010 1111001 0011100 0000010

## 20-65: Overfitting



## Training Data 1101100 0110010 1111001 0011100 0000010

## 20-66: Overfitting



## Training Data 1101100 <br> 0110010 <br> 1111001 0011100 0000010

$$
794
$$

## 20-68: Number Recognition



Each pixel is an input unit

## 20-69: Number Recognition



## 20-70: Recurrent NNs

- So far, we've talked only about feedforward networks.
- Signals propagate in one direction
- Output is immediately available
- Well-understood training algorithms
- There has also been a great deal of work done on recurrent neural networks.
- At least some of the outputs are connected back to the inputs.


## 20-71: Recurrent NNs

- This is a single-layer recurrent neural network



## 20-72: Hopfield networks

- A Hopfield network has no special input or output nodes.
- Every node receives an input and produces an output
- Every node connected to every other node.
- Typically, threshold functions are used.
- Network does not immediately produce an output.
- Instead, it oscillates
- Under some easy-to-achieve conditions, the network will eventually stabilize.
- Weights are found using simulated annealing.


## 20-73: Hopfield networks

- Hopfield networks can be used to build an associative memory
- A portion of a pattern is presented to the network, and the net "recalls" the entire pattern.
- Useful for letter recognition
- Also for optimization problems
- Often used to model brain activity


## 20-74: Neural nets - summary

- Key idea: simple computational units are connected together using weights.
- Globally complex behavior emerges from their interaction.
- No direct symbol manipulation
- Straightforward training methods
- Useful when a machine that approximates a function is needed
- No need to understand the learned hypothesis

