Al Programming CS662-2008F-20 Neural Networks

David Galles

Department of Computer Science University of San Francisco

20-0: Symbolic Al

- Most of this class has been focused on Symbolic AI
 - Focus or symbols and relationships between them
 - Search, logic, decision trees, etc.
- Assumption: Key requirement for intelligent behavior is the manipulation of symbols
- Neural networks are a little different: *subsymbolic* behavior

20-1: Biological Neurons

20-2: Biological Neurons

- Biological neurons transmit (more-or-less) electrical signals
- Each Nerve cell is connected to the "outputs" of several other neurons
- When there is a sufficient total input from all inputs, the cell "fires", and sends ouputs to other cells
- Extreme oversimplification, simple version is the model for Artificial Neural Networks

20-3: Artificial Neural Networks

20-4: Activation Function

Neurons are mostly binary

- Fire, or don't fire
- Not "fire at 37%"
- Model this with an activation function
 - Step Function
 - Sigmoid function: $f(x) = \frac{1}{1+e-x}$
- Talk about why the sigmoid function can be better than the step function when we do training

20-5: Single Neuron NNs

- A single Neuron can compute a simple function
- What functions do each of these neurons compute?

20-6: Single Neuron NNs

- A single Neuron can compute a simple function
- What functions do each of these neurons compute?

20-7: Neural Networks

- Of course, things get more fun when we connect individual neurons together into a network
 - Ouputs of some neurons feed into the inputs of other neurons
- Add special "input nodes", used for input

20-8: Neural Networks

Hidden Nodes

20-9: Neural Networks

- Feed Forward Networks
 - No cycles, signals flow in one direction
- Recurrent Networks
 - Cycles in signal propagation
 - Much more complicated: Need to deal with time, learning is much harder
- We will focus on Feed Forward networks

20-10: Function Approximators

- Feed Forward Neural Networks are *Nonlinear Function Approximators*
- Output of the network is a function of its inputs
- Activation function is non-linear, allows for representation of non-linear functions
- Adjust weights, change function
- Neural Networks are used to efficiently approximate complex functions

20-11: Classification

- Common use for Neural Networks is classification
 - We've already seen classification with decision trees and naive bayes
 - Map inputs into one or more outputs
 - Output range is split into discrete "classes" (like "spam" and "not spam"
 - Useful for learning tasks where "what to look for" is unknown
 - Face recognition
 - Handwriting recognition

20-12: Perceptrons

- Feed Forward
- Single-layer network
- Each input is directly connected to one or more outputs

20-13: Perceptrons

20-14: Perceptrons

- For each perceptron:
 - Threshold firing function is used (not sigmoid)
 - Output function *o*:

•
$$o(x_1, \dots, x_n) = 1$$
 if
 $w_o + w_1 x_1 + w_2 x_2 + \dots + w_n x_n > 0$

•
$$o(x_1, \dots, x_n) = 0$$
 If
 $w_o + w_1 x_1 + w_2 x_2 + \dots + w_n x_n \le 0$

20-15: Perceptrons

- Since each perceptron is independent of others, we can examine each in isolation
- Output of a single perceptrion:
 - $\sum_{j=1}^{n} W_j x_j > 0$
 - (or, $W \cdot x > 0$)
- Perceptrons can represent any linearly separable function
- Perceptrons can *only* represent linearly separable functions

20-16: Linearly Seperable

Function: X1 or X2

Function: X1 and X2

20-17: Linearly Seperable

Function: X1 or X2

Function: X1 and X2

20-18: Linearly Seperable

Function: X1 xor X2

20-19: Perceptron Learning

```
inptuts : in1, in2, ..., inj
weights : w1, w2, ... wn
training examples: t1 = (tin1, to1),
t2 = (tin2, to2), ...
```

```
do
  for t in training examples
    inputs = tin
    o = compute output with current weights
    E = to - o
    for eacxh wi in weight
    wi = wi + alpha * tin[i] * E
while notConverged
```

20-20: Perceptron Learning

- If the output signal is too high, weights need to be reduced
 - "Turn down" weights that contributed to output
 - Weights with zero input are not affected
- If output is too low, weights need to be increased
 - "Turn up" weights that contribute to output
 - Zero-input weights not affected
- Doing a hill-climbing search through weight space

20-21: Perceptron Example

- Learn the majority function with 3 inputs
 (plus bias input)
- out = 1 if $\sum_{j} w_{j} i n_{j} > 0$, 0 otherwise
- $\alpha = 0.2$
- Initially, all weights 0

20-22: Perceptron Example

bias	in	outs	5	expected
				out
1	1	0	0	0
1	0	1	1	1
1	0	1	0	0
1	1	1	1	1
1	0	0	1	0
1	1	0	1	1
1	1	1	0	1
1	0	0	0	0

20-23: Perceptron Example

bias	inputs			expected	w0	w1	w2	w3	actual	ne۱	w we	ights	;
				out					out				
1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	1									
1	0	1	0	0									
1	1	1	1	1									
1	0	0	1	0									
1	1	0	1	1									
1	1	1	0	1									
1	0	0	0	0									

20-24: Perceptron Example

bias	inp	uts		expected	w0	w1	w2	w3	actual	new weights			
				out					out				
1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0	0	0.2	0	0.2	0.2
1	0	1	0	0									
1	1	1	1	1									
1	0	0	1	0									
1	1	0	1	1									
1	1	1	0	1									
1	0	0	0	0									

20-25: Perceptron Example

bias	inp	uts		expected	w0	w1	w2	w3	actual	new	weig	hts	
				out					out				
1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0	0	0.2	0	0.2	0.2
1	0	1	0	0	0.2	0	0.2	0.2	1	0	0	0	0.2
1	1	1	1	1									
1	0	0	1	0									
1	1	0	1	1									
1	1	1	0	1									
1	0	0	0	0									

20-26: Perceptron Example

bias	inp	uts		expected	w0	w1	w2	w3	actual	new	weig	hts	
				out					out				
1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0	0	0.2	0	0.2	0.2
1	0	1	0	0	0.2	0	0.2	0.2	1	0	0	0	0.2
1	1	1	1	1	0	0	0	0.2	1	0	0	0	0.2
1	0	0	1	0									
1	1	0	1	1									
1	1	1	0	1									
1	0	0	0	0									

20-27: Perceptron Example

bias	inp	uts		expected	w0	w1	w2	w3	actual	new v	veigh	its	
				out					out				
1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0	0	0.2	0	0.2	0.2
1	0	1	0	0	0.2	0	0.2	0.2	1	0	0	0	0.2
1	1	1	1	1	0	0	0	0.2	1	0	0	0	0.2
1	0	0	1	0	0	0	0	0.2	1	-0.2	0	0	0
1	1	0	1	1									
1	1	1	0	1									
1	0	0	0	0									

20-28: Perceptron Example

bias	inp	uts		expected	w0	w1	w2	w3	actual	new v	veights		
				out					out				
1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0	0	0.2	0	0.2	0.2
1	0	1	0	0	0.2	0	0.2	0.2	1	0	0	0	0.2
1	1	1	1	1	0	0	0	0.2	1	0	0	0	0.2
1	0	0	1	0	0	0	0	0.2	1	-0.2	0	0	0
1	1	0	1	1	-0.2	0	0	0	0	0	0.2	0	0.2
1	1	1	0	1									
1	0	0	0	0									

20-29: Perceptron Example

bias	inp	uts		expected	w0	w1	w2	w3	actual	new weights			
				out					out				
1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0	0	0.2	0	0.2	0.2
1	0	1	0	0	0.2	0	0.2	0.2	1	0	0	0	0.2
1	1	1	1	1	0	0	0	0.2	1	0	0	0	0.2
1	0	0	1	0	0	0	0	0.2	1	-0.2	0	0	0
1	1	0	1	1	-0.2	0	0	0	0	0	0.2	0	0.2
1	1	1	0	1	0	0.2	0	0.2	1	0	0.2	0	0.2
1	0	0	0	0									

20-30: Perceptron Example

bias	inp	outs		expected	w0	w1	w2	w3	actual	new weights			
				out					out				
1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0	0	0.2	0	0.2	0.2
1	0	1	0	0	0.2	0	0.2	0.2	1	0	0	0	0.2
1	1	1	1	1	0	0	0	0.2	1	0	0	0	0.2
1	0	0	1	0	0	0	0	0.2	1	-0.2	0	0	0
1	1	0	1	1	-0.2	0	0	0	0	0	0.2	0	0.2
1	1	1	0	1	0	0.2	0	0.2	1	0	0.2	0	0.2
1	0	0	0	0	0	0.2	0	0.2	0	0	0.2	0	0.2

Still hasn't converged, need more iterations

20-31: Perceptron Example

After 3 more iterations (of all weights):

bias	inp	inputs		expected	w0	w1	w2	w3	actual
				out					out
1	1	0	0	0	-0.4	0.2	0.4	0.4	0
1	0	1	1	1	-0.4	0.2	0.4	0.4	1
1	0	1	0	0	-0.4	0.2	0.4	0.4	0
1	1	1	1	1	-0.4	0.2	0.4	0.4	1
1	0	0	1	0	-0.4	0.2	0.4	0.4	0
1	1	0	1	1	-0.4	0.2	0.4	0.4	1
1	1	1	0	1	-0.4	0.2	0.4	0.4	1
1	0	0	0	0	-0.4	0.2	0.4	0.4	0

20-32: Gradient Descent & Delta Rule

- What if we can't learn the function exactly?
 - Function is not linearly seperable
- Want to do "as well as possible"
- Minimize the sum of the squared error
- $E = \sum (t_d o_d)^2$ for *d* in the training set

20-33: Gradient Descent & Delta Rule

- Searching through a space of weights
- Much like local search, define an error *E* as a function of the weights
- Find values of weights to minimize *E*
- Follow the gradient largest negative change in *E*
 - Alas, *E* is discontinuous, hard to differentiate
 - Instead of using actual output, use unthresholded output

20-34: Gradient Descent & Delta Rule

- Garient descent: follow the steepest slope down the error surface
- Consider the derivative of *E* with respect to each weight
- $E = \sum (t_d o_d)^2$ for *d* in the training set

$$\frac{dE}{dw_i} = \sum 2(t_d - o_d) \frac{d(t_d - o_d)}{dw_i}$$

First, we will simplify for looking at a single training data point (then we can sum over all of them, since the derivative of a sum is the sum of the derivatives)
20-35: Gradient Descent & Delta Rule

• For a single training example:

$$\frac{dE}{dw_i} = \frac{d(t_d - o_d)^2}{dw_i}$$
$$= 2(t_d - o_d)\frac{d(t_d - o_d)}{dw_i}$$

since
$$\frac{d(f(x)^2)}{dx} = 2f(x)\frac{d(f(x))}{dx}$$

• For a single training example:

$$\frac{dE}{dw_i} = 2(t_d - o_d) \frac{d(t_d - o_d)}{dw_i}$$
$$= 2(d_d - o_d) \frac{d(-x_{id}w_i)}{dw_i}$$

- t_d doesn't involve w_i , so $\frac{d(t_i)}{dw_i} = 0$
- $o_d = w_1 x_{1d} + w_2 x_{2d} + w_3 x_{3d} + ...,$ the only term that involves w_i is $w_i x_{id}$

20-37: Gradient Descent & Delta Rule

• For a single training example:

$$\frac{dE}{dw_i} = 2(d_d - o_d) \frac{d(-x_{id}w_i)}{dw_i}$$
$$= 2(t_d - o_d)(-x_{id})$$

• Since
$$\frac{d(cx)}{dx} = c$$

20-38: Gradient Descent & Delta Rule

- Garient descent: follow the steepest slope down the error surface
- Consider the derivative of *E* with respect to each weight
- $E = \sum (t_d o_d)^2$ for *d* in the training set

$$\frac{dE}{dw_i} = \sum 2(t_d - o_d) \frac{d(t_d - o_d)}{dw_i}$$
$$= \sum 2(t_d - o_d)(-x_{id})$$

• Want to go *down* the gradiant, $\Delta w_i = \alpha \sum_{d \in D} (t_d - o_d) x_{id}$

20-39: Gradient Descent & Delta Rule

- Garient descent: follow the steepest slope down the error surface
- Consider the derivative of *E* with respect to each weight
- After derivation, updating rule (called the Delta Rule) is:

$$\Delta w_i = \alpha \sum_{d \in D} (t_d - o_d) x_{id}$$

 D is the training set, α is the training rate, t_d is the expected output, and o_d is the actual output, x_id is the input along weight w_i.

20-40: Incremental Learning

- Often not practical to compute global weight change for entire training set
- Instead, update weights incrementally
 - Observe one piece of data, then update
- Update rule: $w_i = \alpha(t o)x_i$
 - Like perceptron learning rule except uses unthresholded output
- Smaller training rate α typically used
- No theoretical guarantees of convergence

20-41: Multilayer Networks

- While perceptrons have the advantage of a simple learning algorithm, their computational limitations are a problem.
- What if we add another "hidden" layer?
- Computational power increases
 - With one hidden layer, can represent any continuous function
 - With two hidden layers, can represent any function
- Example: Create a multi-layer network that computes XOR

20-42: XOR

20-43: Multilayer Networks

- While perceptrons have the advantage of a simple learning algorithm, their computational limitations are a problem.
- What if we add another "hidden" layer?
- Computational power increases
 - With one hidden layer, can represent any continuous function
 - With two hidden layers, can represent any function
- Problem: How to find the correct weights for hidden nodes?

20-44: Multilayer Network Example

20-45: More on computing error

- Backpropagation is an extension of the perceptron learning algorithm to deal with multiple layers of nodes.
- Our goal is to minimize the error function.
- To do this, we want to change the weights so as to reduce the error.
- We define error as a function of the weights like so:
 - $E(\mathbf{w}) = expected actual$
 - $E(\mathbf{w}) = expected g(input)$
- So, to determine how to change the weights, we compute the derivative of error with respect to the weights.
 - This tells us the slope of the error curve at that

20-46: Backpropagation

- Nodes use sigmoid activation function, rather than the step function
- Sigmoid function works in much the same way, but is differentiable.

•
$$g(input_i) = \frac{1}{1+e^{-input_i}}$$
.

 g'(input_i) = g(input_i)(1 - g(input_i)) (good news here -calculating the derivative only requires knowing the output!)

20-47: More on computing error

- Recall that our goal is to minimize the error function.
- To do this, we want to change the weights so as to reduce the error.
- We define error as a function of the weights like so:
 - $E(\mathbf{w}) = expected actual$
 - $E(\mathbf{w}) = expected g(input)$
- So, to determine how to change the weights, we compute the derivative of error with respect to the weights.
 - This tells us the slope of the error curve at that point.

20-48: More on computing error

•
$$E(\mathbf{w}) = expected - g(input)$$

•
$$E(\mathbf{w}) = expected - g(\mathbf{w} * \mathbf{i})$$

•
$$\frac{dE}{dW} = 0 - g'(input)\mathbf{i}$$

•
$$\delta_w = \frac{dE}{dW} = -g(input) * (1 - g(input)) * \mathbf{i}$$

20-49: Updating hidden weights

- Each weight is updated by $\alpha * \Delta_i$
- $\overline{W_{j,i}} = \overline{W_{j,i}} + \alpha * a_j * \overline{\Delta_i}$

20-50: Backpropagation

- Updating input-hidden weights:
- Idea: each hidden node is responsible for a fraction of the error in δ_i .
- Divide δ_i according to the strength of the connection between the hidden and output node.
- For each hidden node j
- $\delta_j = g(input)(1 g(input)) \sum_{i \in outputs} W_{j,i}\delta_i$
- Update rule for input-hidden weights:
- $W_{k,j} = W_{k,j} + \alpha * input_k * \delta_j$

20-51: Backpropagation Algorithm

• The whole algorithm can be summed up as: While not done: for d in training set Apply inputs of d, propagate forward. for node *i* in output layer $\delta_i = output * (1 - output) * (t_{exp} - output)$ for each hidden node *j* $\delta_i = output * (1 - output) * \sum W_{i,i}\delta_i$ Adjust each weight

 $W_{j,i} = W_{j,i} + \alpha * \delta_i * input_j$

20-52: Theory vs Practice

- In the definition of backpropagation, a single update for all weights is computed for all data points at once.
 - Find the update that minimizes total sum of squared error.
- Guaranteed to converge in this case.
- Problem: This is often computationally space-intensive.
 - Requires creating a matrix with one row for each data point and inverting it.
- In practice, updates are done incrementally instead.

20-53: Stopping conditions

- Unfortunately, incremental updating is not *guaranteed* to converge.
- Also, convergence can take a long time.
- When to stop training?
 - Fixed number of iterations
 - Total error below a set threshold
 - Convergence no change in weights

20-54: Backpropagation

- Also works for multiple hidden layers
- Backpropagation is only guaranteed to converge to a local minimum
 - May not find the absolute best set of weights
- Low initial weights can help with this
 - Makes the network act more linearly fewer minima
- Can also use random restart train multiple times with different initial weights.

20-55: Momentum

- Since backpropagation is a hillclimbing algorithm, it is susceptible to getting stuck in plateaus
 - Areas where local weight changes don't produce an improvement in the error function.
- A common extension to backpropagation is the addition of a momentum term.
 - Carries the algorithm through minima and plateaus.
- Idea: remember the "direction" you were going in, and by default keep going that way.
- Mathematically, this means using the second derivative.

20-56: Momentum

- Implementing momentum typically means remembering what update was done in the previous iteration.
- Our update rule becomes:
- $\Delta w_{ji}(n) = \alpha \Delta_j x_{ji} + \beta \Delta w_{ji}(n-1)$
- To consider the effect, imagine that our new delta is zero (we haven't made any improvement)
- Momentum will keep the weights "moving" in the same direction.
- Also gradually increases step size in areas where gradient is unchanging.
 - This speeds up convergence, helps escape plateaus and local minima.

20-57: Design issues

- One difficulty with neural nets is determining how to *encode* your problem
 - Inputs must be 1 and 0, or else real-valued numbers.
 - Same for outputs
- Symbolic variables can be given binary encodings
- More complex concepts may require care to represent correctly.

20-58: Design issues

- Like some of the other algorithms we've studied, neural nets have a number of paramters that must be tuned to get good performance.
 - Number of layers
 - Number of hidden units
 - Learning rate
 - Initial weights
 - Momentum term
 - Training regimen

• These may require trial and error to determine

20-59: Design issues

- The more hidden nodes you have, the more complex function you can approximate
- Is this always a good thing? That is, are more hidden nodes better?

20-60: Overfitting

• Overfitting

- Conisder a network with *i* input nodes, *o* output nodes, and *k* hidden nodes
- Training set has *k* examples
- Could end up learning a lookup table

20-61: Overfitting

20-62: Overfitting

 Training Data

 1101
 100

 0110
 010

 1111
 001

 0011
 100

 0000
 010

20-63: Overfitting

20-64: Overfitting

20-65: **Overfitting**

20-66: Overfitting

20-67: Number Recognition

20-68: Number Recognition

Each pixel is an input unit

20-69: Number Recognition

20-70: Recurrent NNs

- So far, we've talked only about feedforward networks.
 - Signals propagate in one direction
 - Output is immediately available
 - Well-understood training algorithms
- There has also been a great deal of work done on recurrent neural networks.
 - At least some of the outputs are connected back to the inputs.
20-71: Recurrent NNs

• This is a single-layer recurrent neural network

20-72: Hopfield networks

- A Hopfield network has no special input or output nodes.
- Every node receives an input and produces an output
- Every node connected to every other node.
- Typically, threshold functions are used.
- Network does not immediately produce an output.
 - Instead, it oscillates
- Under some easy-to-achieve conditions, the network will eventually stabilize.
- Weights are found using simulated annealing.

20-73: Hopfield networks

- Hopfield networks can be used to build an associative memory
- A portion of a pattern is presented to the network, and the net "recalls" the entire pattern.
- Useful for letter recognition
- Also for optimization problems
- Often used to model brain activity

20-74: Neural nets - summary

- Key idea: simple computational units are connected together using weights.
- Globally complex behavior emerges from their interaction.
- No direct symbol manipulation
- Straightforward training methods
- Useful when a machine that approximates a function is needed
 - No need to understand the learned hypothesis