
AI Programming
CS662-2008F-04

Agent Oriented Programming
David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles


04-0: Agents & Environments

What is an “Agent”

What is an “Environment”

Types of Agents



04-1: Agents

Agent Definition from textbook:
Perceives the enviornment (using sensors)
Acts upon the enviornment (using activators)



04-2: Qualities of an Agents

Autonomy

Adaptation

Goal-Directed behavoir

“beliefs” and “intentions”

Proactive

Situated in an environment
Potentially a simulated or virtual environmnet
Web is a fine “environment” for software agents



04-3: Autonomous Agent

Rely on its percepts and past expereience to make
decisions

Does not require direct user intervention

Agents usually do not have complete autonomy
Why would we not want an agent to have
complete autonomy?

Research Area: Designin an agent that can reason
about its own autonomy and know when to ask for
help



04-4: Agent Oriented Programming

“Objects” are passive: receive messages, return
data

Objects have no agenda, do what you ask of
them

“Agents” are active
Can percieve the world, or some part of the
world
Set of goals, things they want to accomplish
Act in the world to achieve those goals

Example simple “agent”: Thermostat



04-5: Agents as Functional Program-
ming

Could describe agents using functional
programming

Action = F(current-percept, percept-history)

Maps a percept sequence to an action



04-6: Agent Example: Vacuum-
cleaner world

Robot vacuum cleaner, cleans your carpet

Roomba

Reflex agent (for the most part)
Maps current percepts directly to actions
Doesn’t store past history



04-7: Agent Example: Vacuum-
cleaner world

Two rooms, A and B. Each can be clean or dirty

Agent’s environment

Agent has:
Sensors
Actuators
Percepts
Actions



04-8: Agent Example: Vacuum-
cleaner world

Could list all possible percept sequences and
associated actions

Table-base, lookup agent

Great for simple worlds – perfect behavior – but
doesn’t scale

Need a more compact representation of table
Give up some accuracy for tractable table size



04-9: Rationality

We want our agents to be Rational – that is, we
want them to do the “right thing”

What is the “right thing”? Performance measure
Condition or state of the world we want to
achieve
Vacuum cleaner world: “Both rooms are clean”
– could have additional criteria – minimize time
or power consumption



04-10: Rationality

Rationality is a specification of an outcome, rathen
than a set of behaviors

A rational agent tries to maximize its performance
measure, given percepts and actions

From text: For each possible percept sequence, a
rational agent should select an action that is
expected to maximize its performance measure,
given the evidence provided by the percept
sequence and whatever built-in knowledge the
agent has



04-11: Rationality

“expected” vs. actual – We don’t require that our
agent be able to predict the future, or predict
unlikely events

Information gathering might also be a rational
action

Crossing the street without looking is irrational

Rational agents must be able to learn, if they are
situated in complicated enviornments

“Learning” == improving the agents
performance int he current environment
Reducing uncertainty



04-12: Environments

All agents exist in an environment
Software agents can exist in a software
enviornment

Task Environment
Performance measure
Environment
Actuators available to the agent
Sensors available to the agent



04-13: Environments

Observability

Deterministic/stochasitic

Episodic vs sequential

Static vs Dynamic

Discrete vs continuous

Single-agent vs multi-agent



04-14: Observability

Fully Observable: Agents sensors always give
complete information

Don’t need to build a model of the world – can
directly view it

Chess Playing: Fully observable
Bridge / Poker: Partially observable
Vacuum cleaner world: Parially observable (if it
has only a local sensor – can’t see the other
room)



04-15: Deterministic / Stochastic

Word goes through state transitions

(CurrentState, AgentAction)→ NewState

Transition is unique, world is deterministic
Chess: Deterministic
Vacuum world (simplist form): Deterministic

In the real world, stochastic elements –
unreliable sensors, imperfect suction, etc

Driving a car (or just about any agent
embedded in the real world): Stochastic



04-16: Deterministic / Stochastic

We care about the agent’s point of view
We will avoid issues like “Is the world
deterministic with sufficient information”
Some overlap between Deterministic /
stochastic and observability

Strategic: Deterministic, except for the actions of
other agents



04-17: Episodic / Seqential

Episodic: Each action is independent
Perceive, decide, act. Repeat
Next decision does not depend on previous
states
Don’t need to think ahead
Many diagnosis problems: Spam filter, image
recognition, etc

Sequential: Current decision effects future
Make a series of actions to accomplish a goal
Involves planning
Chess, driving a car



04-18: Static / Dynamic

Static:
World does not change while agent is thinking
No time pressure
Chess (mostly), classification

Dynamic:
World changes while the agent is thinking
Agent must act within time pressure
Driving a car, most interactions in the physical
world



04-19: Static / Dynamic

Semidynamic
Environment doesn’t change, but time pressure
Chess with a clock
Timed test
Classification, when we need the answer right
now



04-20: Discrete / Continuous

Consider the state of the world, the percepts and
actions of the agents, and how time is handled

If the possible values are a discrete set, enviroment
is descrete with repect to that characteristic

If the values are continuously changing,
environment is continuous



04-21: Discrete / Continuous

Discrete
Chess, poker, backgammon

Continuous
Image analysis (continuous sensor), car
navigation, assembly robot (most all
interactions with the physical world)



04-22: Single Agent / Multi-Agent

Single agent: acting on our own

Mult-Agent: actions / goals strategies of other
agents must be taken into account

Competitive vs. Cooperative
Can have overlap!

Sometimes easier to view a world with multiple
agents as a single-agent, stochastic environment

Traffic signals



04-23: Enviornment Examples

Chess playing, poker playing, slot-machine playing

Mars orbiter

Web-crawling agent

Interactive English tutor

Medical diagnosis agent

Airport face regocnition system

Observable, Deterministic/Stochastic, Episodic / Se-

quential, Static / Dynamic, Discrete / Continuous, Single

/ Multi



04-24: Types of Agents

Table-driven agent

Reflex agent

Model-based reflex agent

Goal-based agent

Utility-based agent

Learning agent



04-25: Table-Driven Agent

Keeps a dictionary that maps percept sequences
to actions

Only works for very small domains

class TableDrivenAgent(Agent):

def __init__(self, table):
self.table = table
self.percepts = []

def doAction(percept):
percepts.append(percept)
return table[tuple(percepts)]



04-26: Table-Driven Agent

Exception Handlers

Square root / log tables

Doesn’t scape at all
Chess is a “simple” environment
1050 percept sequences



04-27: Reflex Agent

Select the action based on the curent percept

Ignore history

Agent is only rational of best action can be chosen
based on current percepts

Classification agents
Theormostat agent
Wall following robot



04-28: Reflex Agent

class ReflexVacuumAgent(Agent):
def DoAction(location, status):

if status == ’dirty’:
return ’suck’

elif location == loc_A:
return ’right’

else:
retrn ’left’



04-29: Model-Based Reflex Agent

Maintains an internal representation of the world
Keep state information about the world

Actions are selected based on the model and
current percepts



04-30: Model-Based Reflex Agent

class ModelBasedVacuumAgent(Agent):

def __init__(self):

self.model = {"Loc_a" : None, "Loc_b" : None}

def DoAction(location, status):

self.model[location] = status

if self.model["Loc_a"] == self.model["Loc_b"] == "clean":

return ’NoOp’

elif status == ’dirty’:

return ’suck’

elif location == loc_A:

return ’right’

else:

retrn ’left’



04-31: Model-Based Reflex Agent

Examples
Vacuum-cleaner agent (with map)
Factory Robots
Mail delivery robot



04-32: Model-Based Reflex Agent

Types of models
Attributes & values (variabes)
Probability distribution over variables
Data Structures

Maps / Graphs / Finite State Machines
Facts (propositional logic)



04-33: Goal-Based Agent

Correct action depends upon what the agent is
trying to accomplish

Agents knowledge (model)
Current state (percepts)
What it is trying to achieve (goals)

Select actions that will accomplish goals

Often need to do search and planning to determine
which action to take in a given situation



04-34: Goal-Based Agent

Example Goal-based agents:
Chess playing robot
Taxi-driving robot

Can blur the lines a little
Simple mail delivery robot that follows a set
route
More robust mail delivery robot that can replan
route to handle obstacles



04-35: Utility-Based Agent

May be many action sequences that achieve a goal

Utility is used to compare the relative desirability of
action sequences

Cost of actions, time reuqired, relative value of
different outcomes

Useful for partially observable or stochhastic
environments



04-36: Utility-Based Agent

Utility function
Maps a state of the world onto a real number

“Goodness”, or utility of the state
Agent tries to maximize utility
Useful when there is an easy mapping to utiliy –
like money

Online trading, gambling, probability &
uncertain environments



04-37: Learning Agent

An agent may need to update its agent program

Programmer may not completely understand the
environment, or coding by hand may be tedious
(learn from the enviornment, instead of the
programmer)

Environment may change

A Learnin Agent is one that improves its
performance with respect to a set of tasks over
time

Essential in complex environments



04-38: Learning Agent

Learning agents need a perfomance element and
a learning element

Performance element: Select current action
Learning element: evaluate the correctness of
the performance element



04-39: Learning Agent

Learning can happen offline or online

Learning can be passive or active

Learning can be supervised or unsupervised

Credit assignment is a big problem when learning
in sequential environments

How do we know which action was correct, and
which was bad?



04-40: Summary

Agent is an autonomous program situated in an
environment

Agent behaves rationally if it acts to optimize its
expected performance measure

Characterizing the enviornment can help is decide
how to build an agent

More complex environments (usually!) require
more sophisiticated agent programs


	{small lecturenumber -	heblocknumber :} Agents & Environmentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Agentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Qualities of an Agentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Autonomous Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Agent Oriented Programmingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Agents as Functional Programmingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Agent Example: Vacuum-cleaner worldaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Agent Example: Vacuum-cleaner worldaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Agent Example: Vacuum-cleaner worldaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rationalityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rationalityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rationalityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Environmentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Environmentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Observabilityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deterministic / Stochasticaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deterministic / Stochasticaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Episodic / Seqentialaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Static / Dynamicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Static / Dynamicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Discrete / Continuousaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Discrete / Continuousaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Agent / Multi-Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Enviornment Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Types of Agentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Table-Driven Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Table-Driven Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reflex Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reflex Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Model-Based Reflex Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Model-Based Reflex Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Model-Based Reflex Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Model-Based Reflex Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Goal-Based Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Goal-Based Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Utility-Based Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Utility-Based Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Learning Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Learning Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Learning Agentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Summaryaddtocounter {blocknumber}{1}

