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05-0: Problem Solving

Problem sovling agent: Select a sequence of
actions to acheive a goal

Moves to solve a Rubik’s cube
Find a route from USF to SFO
Arrange components on a chip



05-1: Problem Solving
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05-2: Search

The process of sequentially considering actions in
order to find a sequence of actions that lead from
start to goal is called search.

A search algorithm returns an action sequence
that is then executed by the agent.

Search typically happens “offline.”

Note: this assumes the environment is static.

Also, environment is assumed to be discrete.

Environment is (usually) considered to be
deterministic.



05-3: Some classic search problems

Toy problems: useful to study as examples or to
compare algorithms

8-puzzle
Vacuum world
Rubik’s cube
N-queens

Real-world problems: typically more messy, but the
answer is actually interesting

Route finding
Traveling salesman
VLSI layout
Searching the Internet



05-4: State

We’ll often talk about the state an agent is in.

This refers to the values of relevant variables
describing the environment and agent.

Vacuum World: (A, ’clean’, ’dirty’)
Romania: t = 0, in(Bucharest)
Rubik’s cube: current arrangement of the cube.

This is an abstraction of our problem.

Focus only on the details relevant to the problem.



05-5: Formulating a Search Problem

Initial State

Goal Test

Actions

Successor Function

Path cost

Goal / Goal Test



05-6: Initial State

Initial State: The state that the agent starts in.
Vacuum cleaner world: (A, ’dirty, ’dirty’)
Romania: In(Arad)



05-7: Actions

Actions: What actions is the agent able to take?
Vacuum: Left, Right, Suck, Noop
Romania: Go(adj. city)



05-8: Successor Function

Successor function: for a given state, returns a set
of action/new-state pairs.

This tells us, for a given state, what actions
we’re allowed to take and where they’ll lead.

In a deterministic world, each action will be paired
with a single state.

Vacuum-cleaner world: (A, dirty, clean) →
(’Left’, (A, dirty, clean)),(’Right’, (B, dirty,
clean)), (’Suck’, (A, clean, dirty)), (’NoOp, (A,
dirty, clean))
Romania: In(Arad) → ((Go(Timisoara),
In(Timisoara), (Go(Sibiu), In(Sibiu)),
(Go(Zerind), In(Zerind))



05-9: Successor Function

Successor function: for a given state, returns a set
of action/new-state pairs.

This tells us, for a given state, what actions
we’re allowed to take and where they’ll lead.

In a deterministic world, each action will be paired
with a single state.

In stochastic worlds an action may be paired with
many states (potentialy with probabilities)



05-10: Goal Test

Goal test: This determines if a gives state is a goal
state.

There may be a unique goal state, or many.
Vacuum World: every room clean.
Chess - checkmate
Romania: in(Bucharest)



05-11: State space

The combination of problem states (arrangements
of variables of interest) and and successor
functions (ways to reach states) leads to the notion
of a state space.

This is a graph representing all the possible world
states, and the transitions between them.

Finding a solution to a search problem is reduced
to finding a path from the start state to the goal
state.



05-12: State space

State space for simple vacuum cleaner world
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05-13: Types of Solutions

Depending on the problem, we might want different
sorts of solutions

Any path to solutioin
Optimal path to solution
Goal state itself (n-queens)

We’ll often talk about the size of these spaces as a
measure of problem difficulty.

8-puzzle: 9!

2
= 181, 000 states (easy)

15-puzzle: ∼ 1.3 trillion states (pretty easy)
24-puzzle: ∼ 1025 states (hard)
TSP, 20 cities: 20! = 2.43 × 1018 states (hard)



05-14: Path cost

The path cost is the cost an agent must incur to go
from the initial state to the currently-examined
state.

Often, this is the sum of the cost for each action
This is called the step cost

We’ll assume that step costs are nonnegative.
What if they could be negative?



05-15: Examples

What are the states/operators/path cost for the
following:

Sliding tile puzzle
Rubic’s cube
8-Queens puzzle



05-16: Examples

8-Queens puzzle
Incremental: Place queens one by one

States: Arrangement of 0-8 Queens
Operators: Add a queens to the board
somewhere
States: Arrangement of 0-8 Queens, no
attacks
Operators: Place a queen in leftmost empty
column, no attacks

What if you get stuck?



05-17: Examples

8-Queens puzzle
Complete: Place all queens, move

States: Arrangement of 8 Queens on board
Operators: Move any attacked queen to
another square
States: Arrangement of 8 Queens on board,
one in each column
Operators: Move any queen to another
square in the same column

Can’t get stuck



05-18: Shortest-path graph problems

You’ve probably seen other algorithms for solving
path-finding problems on a graph

Djikstra’s algorithm, Prim’s algorithm, Max-flow,
All-pairs shortest-path

These algorithms are quadratic or cubic in the
number of vertices.

We’ll talk about search being exponential in the
number of state variables.

Is this a contradiction?



05-19: Searching the state space

Most search problems are too large to hold in
memory

We need to dynamically instantiate portions of
the search space

We construct a search tree by starting at the initial
state and repeatedly applying the successor
function.

Basic idea: from a state, consider what can be
done. Then consider what can be done from each
of those states.



05-20: Searching the state space

Some questions we’ll be interested in:
Are we guaranteed to find a solution?
Are we guaranteed to find the optimal solution?
How long will the search take?
How much space will it require?



05-21: Example Search Tree

The beginnings of a Romania search tree:
(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu
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05-22: Search algorithms

The basic search algorithm is surprisingly simple:

fringe <- initialState
do

select node from fringe
if node is not goal

generated successors of node
add successors to fringe

We call this list of nodes generated but not yet
expanded the fringe.

Question: How do we select a node from the
fringe?

Differentiates search algorithms



05-23: Uninformed Search

The simplest sort of search algorithms are those
that use no additional information beyond what is
in the problem description.

We call this uninformed search.
Sometimes these are called weak methods.

If we have additional information about how
promising a nongoal state is, we can perform
heuristic search.



05-24: Breadth-first search

Breadth-first search works by expanding a node,
then expanding each of its children, then each of
their children, etc.

All nodes at depth n are visited before a node at
depth n + 1 is visited.

We can implement BFS using a queue.



05-25: Breadth-first search

BFS Python-ish code

queue.enqueue(initialState)
while not done :

node = queue.dequeue()
if goalTest(node) :

return node
else :

children = successor-fn(node)
for child in children

queue.enqueue(child)



05-26: BFS example: Arad to
Bucharest

dequeue Arad

enqueue Sibiu, Timisoara, Zerind

dequeue and test Sibiu

enqueue Oradea, Fagaras, Rimnciu Viclea

dequeue and test Timisoara

enqueue Lugoj

...



05-27: Some subtle points

How do we avoid revisiting Arad?
Closed-list: keep a list of expanded states.

How do we avoid inserting Oradea twice?
Open-list (our queue, actually): a list of
generated but unexpanded states.

Why don’t we apply the goal test when we
generate children?

Not really any different. Nodes are visited and
tested in the same order either way. Same
number of goal tests are performed.



05-28: Analyzing BFS

Completeness: Is BFS guaranteed to find a
solution?

Optimality: If there are multiple solutions, will BFS
find the best one?

Time complexity: How long does BFS take to run,
as a function of solution length?

Space Complexity: Hom much memory does BFS
require, as a function of solution length?



05-29: Analyzing BFS

Completeness: Is BFS guaranteed to find a
solution?

Yes. Assume the solution is at depth n. Since
all nodes at or above n are visited before
anything at n + 1, a solution will be found.

Optimality: If there are multiple solutions, will BFS
find the best one?

BFS will find the shallowest solution in the
search tree. If step costs are uniform, this will
be optimal. Otherwise, not necessarily.
Arad -> Sibiu -> Fagaras -> Bucharest will be
found first. (dist = 450)
Arad -> Sibiu -> Rimnicu Vilcea -> Pitesti ->
Bucharest is shorter. (dist = 418)



05-30: Analyzing BFS

Time complexity: BFS will require O(bd+1) running
time.

b is the branching factor: average number of
children
d is the depth of the solution.
BFS will visit
b + b2 + b3 + ... + bd + bd+1

− (b − 1) = O(bd+1)
nodes

Space complexity: BFS must keep the whole
search tree in memory (since we want to know the
sequence of actions to get to the goal).

This is also O(bd+1).



05-31: Analyzing BFS

Assume b = 10, 1kb/node, 10000 nodes/sec

depth 2: 1100 nodes, 0.11 seconds, 1 megabyte

depth 4: 111,000 nodes, 11 seconds, 106
megabytes

depth 6: 107 nodes, 19 minutes, 10 gigabytes

depth 8: 109 nodes, 31 hours, 1 terabyte

depth 10: 1011 nodes, 129 days, 101 terabytes

depth 12: 1013 nodes, 35 years, 10 petabytes

depth 14: 1015 nodes, 3523 years, 1 exabyte

In general, the space requirements of BFS are a
bigger problem than the time requirements.



05-32: Uniform cost search

Recall that BFS is nonoptimal when step costs are
nonuniform.

We can correct this by expanding the shortest
paths first.

Add a path cost to expanded nodes.

Use a priority queue to order them in order of
increasing path cost.

Guaranteed to find the shortest path.

If step costs are uniform, this is identical to BFS.
This is how Djikstra’s algorithm works



05-33: Depth-first Search

Depth-first search takes the opposite approach to
search from BFS.

Always expand the deepest node.

Expand a child, then expand its left-most child, and
so on.

We can implement DFS using a stack.



05-34: Depth-first Search

DFS python-ish code:

stack.push(initialState)
while not done :

node = pop()
if goalTest(node) :

return node
else :

children = successor-fn(node)
for child in children :

stack.push(child)



05-35: DFS example: Arad to
Bucharest

pop Arad

push Sibiu, Timisoara, Zerind

pop and test Sibiu

push Oradea, Fagaras, Rimnciu Viclea

pop and test Oradea

pop and test Fagaras

push Bucharest

...



05-36: Analyzing DFS

Completeness

Optimality

Time requirement

Space requirement



05-37: Analyzing DFS

Completeness: no. We can potentially wander
down an infinitely long path that does not lead to a
solution.

Optimality: no. We might find a solution at depth n
under one child without ever seeing a shorter
solution under another child. (what if we popped
Rimnciu Viclea first?)

Time requirements: O(bm), where m is the
maximum depth of the tree.

m may be much larger than d (the solution
depth)
In some cases, m may be infinite.



05-38: Analyzing DFS

Space requirements: O(bm)

We only need to store the currently-searched
branch.
This is DFS’ strong point.
In our previous figure, searching to depth 12
would require 118 KB, rather than 10 petabytes
for BFS.



05-39: Reviewing

A Search problem consists of:
A description of the states
An initial state
A goal test
Actions to be taken
A successor function
A path cost



05-40: First, a question

Why are we looking at algorithms that perform an
exhaustive search? Isn’t there something faster?

Many of the problems we’re interested in are
NP-complete.

No known polynomial-time algorithm
Worse, many are also inapproximable.

In the worst case, the best one can hope for is to
enumerate all solutions.



05-41: Avoiding Infinite Search

There are several approaches to avoiding DFS’
infinite search.

Closed-list
May not always help.
Now we have to keep exponentially many
nodes in memory.

Depth-limited search

Iterative deepening DFS



05-42: Depth-limited Search

Depth-limited search works by giving DFS an
upper limit l.

Search stops at this depth.

Solves the problem of infinite search down one
branch.

Adds another potential problem
What if the solution is deeper than l?
How do we pick a reasonable l?

In the Romania problem, we know there are 20
cities, so l = 19 is a reasonable choice.

What about 8-puzzle?



05-43: Depth-limited Search

DLS pseudocode

stack.push(initialState)
while not done :

node = pop()
if goalTest(node) :

return node
else :

if depth(node) < limit :
children = successor-fn(node)
for child in children

push(child)
else :

return None



05-44: Iterative Deepening DFS (IDS)

Expand on the idea of depth-limited search.

Do DLS with l = 1, then l = 2, then l = 3, etc.

Eventually, l = d, the depth of the goal.
This means that IDS is complete.

Drawback: Some nodes are generated and
expanded multiple times.



05-45: Iterative Deepening DFS (IDS)

Due to the exponential growth of the tree, this is
not as much of a problem as we might think.

Level 1: b nodes generated d times
Level 2: b2 nodes generated d − 1 times
...
Level d: bd nodes generated once.

Total running time: O(bd). Slightly more nodes
generated than BFS.
Still has linear memory requirements.



05-46: Iterative Deepening DFS (IDS)

IDS pseudocode:

d = 0
while True :

result = depth-limited-search(d)
if result == goal

return result
else

d = d + 1



05-47: Iterative Deepening DFS (IDS)

IDS is actually similar to BFS in that all nodes at
depth n are examined before any node at depth
n + 1 is examined.

As with BFS, we can get optimality in non-uniform
step cost worlds by expanding according to path
cost, rather than depth.

This is called iterative lengthening search

Search all paths with cost less than p. Increase p
by δ

In continuous worlds, what should δ be?



05-48: Constraint Satisfaction

Set of variables & constraints
8-Queens
Map Coloring
Crossword Puzzles

Assign values to variables to satisfy all constraints

How can we define this as a search problem?



05-49: Constraint Satisfaction

Pick an ordering of the variables

While not all values have been chosen
Assign a value to the next variable, consistent
with all previous values

If no value is consistent, back up

Variant of DFS, backtracking



05-50: Backtracking

What happens when DFS and its cousins reach a
failure state?

They go up to the parent and try the next sibling.

Assumption: The most recently-chosen action is
the one that caused the failure.

This is called chronological backtracking - undo
the most recent thing you did.

This can be a problem - failure may be a result of a
previous decision.

Example: 4-queens, map coloring



05-51: Backtracking

Constraints can help you limit the size of the
search space.

Intelligent backtracking tries to analyze the reason
for the failure and unwind the search to that point.

Can unwind to the most recent conflicting
variable (backjumping)
Can also do forward checking - is there a
possible assignment of values to variables at
this point?



05-52: Backtracking

Backtracking is not just in CSPs

Bridge problem
5 people to cross a bridge
Takes time 1,2,5,10 minutes
Time bound: 17 minutes



05-53: Bidirectional Search

Seach forward from initial state, and backwards
from goal

Find solution when fringes meet
Advantages?
Disadvantages?



05-54: Summary

Formalizing a search problem
Initial State
Goal Test
Actions to be taken
Successor function
Path cost

Leads to search through a state space using a
search tree.



05-55: Summary

Algorithms
Breadth First Search
Depth First Search
Uniform Cost Search
Depth-limited Search
Iterative Deepening Search
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