Al Programming CS662-2013S-06

 Heuristic Search

 Heuristic Search}

David Galles

Department of Computer Science
University of San Francisco

06-0: Overview

- Heuristic Search - exploiting knowledge about the problem
- Heuristic Search Algorithms
- "Best-first" search
- Greedy Search
- A* Search
- Extensions to A^{*}
- Constructing Heuristics

06-1: Informing Search

- Uninformed search was able to find solutions, but were very inefficient.
- Exponential number of nodes expanded.
- By taking advantage of knowledge about the problem structure, we can improve performance.
- Two caveats:
- We have to get knowledge about the problem from somewhere.
- This knowledge has to be correct.

06-2: Best-first Search

- Uniform-cost search
- Nodes were expanded based on their total path cost
- Implemented using a priority queue
- Path cost is an example of an evaluation function.
- We'll use the notation $f(n)$ to refer to an evaluation function.
- An evaluation function tells us how promising a node is.
- Indicates the quality of the solution that node leads to.

06-3: Best-first Search

- Best-first Pseudocode
enqueue(initialState) do

```
node = prioroty-dequeue()
if goalTest(node)
return node
else
children = successors(node)
for child in children
prioroty-enqueue(child, f(child))
```

- where insert-with orders our priority queue accordingly.

06-4: Best-first Search

- (Almost) all searches are instances of best-first, with different evaluation functions f
- What functions f would yield the following searches:
- Depth-First Search
- Breadth-First Search
- Uniform Cost Search

06-5: Best-first Search

- (Almost) all searches are instances of best-first, with different evaluation functions f
- What functions f would yield the following searches:
- Breadth-First Search $f(n)=\operatorname{depth}(\mathrm{n})$
- Depth-First Search $f(n)=-\operatorname{depth}(\mathrm{n})$
- Uniform Cost Search $f(n)=g(n)$ (actual cost to get to n

06-6: Heuristic Function

- A Heuristic Function $h(n)$ is an estimate of how much it would cost to get to the solution from node n
- $h(n)$ is not perfect
- What could we do if h was perfect
- Example heuristic: Route planning: straight-line distance to the goal
- How could we use a heuristic function as part of best-first search to find a goal quickly?

06-7: Greedy Search

- Best-First search with $f(n)=h(n)$
- Route-planning example: Always travel to the city that looks like it is closest to out destination

06-8: Greedy Search Example

06-9: Greedy Search Example

Arad	
Bucharest	0
Craiova	10
Dobreta	22
Eforie	11
Fagaras	1
Giurgiu	
Hirsova	11
Iasi	22
Lugoj	2

Mehadia Neamt Oradea Pitesti Rimnicu Vilcea Sibiu Timisoara Urziceni Vaslui Zerind

(A, 336)
(S,253), (T,329), (Z,374)
(F,176), (RV, 193), (T,329), (A,336), (Z,374), (O,380)
(B,0), (RV,193), (S,253), (T,329), (A,336), (Z,374), (O,380)

Solution: $A \rightarrow S \rightarrow F \rightarrow B$

Optimal: $\mathrm{A} \rightarrow \mathrm{S} \rightarrow \mathrm{RV} \rightarrow \mathrm{P} \rightarrow \mathrm{B}$

06-10: Greedy Search Problems

- Optimal solution can involve moving 'away' from goal
- Sliding tile puzzle: "undo" a partial solution
- Rubic's cube: "Mess up" part of cube to solve
- Not really moving away from goal - as a measure of the number of moves to a solution, you are actually getting closer to the goal. Only relative to your heuristic function are you going backwards
- Perfect $h==$ no need to search

06-11: Greedy Search Problems

- Greedy search has similar strengths / weaknesses to DFS
- Expands a linear number of nodes
- Not optimal
- Not even necessarily complete (depending upon the heuristic function)
- What are the flaws of greedy search?
- How could we fix them?

06-12: A* * search

- A* search is a combination of uniform cost search and greedy search.
- $f(n)=g(n)+h(n)$
- $g(n)=$ current path cost
- $h(n)=$ heuristic estimate of distance to goal.
- Favors nodes with best estimated total cost to goal
- If $h(n)$ satisfies certain conditions, A^{*} is both complete (always finds a solution) and optimal (always finds the best solution).

06-13: A* Search Example

06-14: A* Search Example

- (dequeue $\mathrm{A}: \mathrm{g}=0$)
- (dequeue S: $\mathrm{g}=140$) $447, Z=374+75=449$,

$$
\begin{aligned}
& \mathrm{T}=118+329= \\
& , \\
& \mathrm{T}=118+329= \\
& , \mathrm{A}=280+336=
\end{aligned}
$$

$$
616, O=291+380=671
$$

- (dequeue F: $\mathrm{g}=239$) $\mathrm{P}=317+100=417, \mathrm{~T}=118+329=447, \mathrm{Z}=374+75=449$,

$$
C=366+160=526, \quad, S=300+253=553,
$$

$$
=280+336=616, O=291+380=671
$$

06-15: A* Search Example

- (dequeue P: g=317) T = $118+329=447, \mathrm{Z}=374+75=449$, C $=366+160=526, B=550+0=550, S=300+253=553, S=338+253=591$,

$$
\text { , } A=280+336=616, O=291+380=671
$$

- (dequeue T: $\mathrm{g}=118$) $\mathrm{Z}=374+75=449$,

$$
B=518+0=518, C=
$$

$366+160=526, B=550+0=550, S=300+253=553$, , S =
$338+253=591, R V=414+193=607, C=455+160=615, A=280+336=616,0$ $=291+380=671$

- (dequeue $\mathrm{Z}: \mathrm{g}=75) \mathrm{L}=229+244=473, \quad, \mathrm{~B}=518+0=518$, , $C=366+160=526, B=550+0=550, S=300+253=553, A=$ $236+336=572, S=338+253=591, R V=414+193=607, C=455+160=615, A$ $=280+336=616, \mathrm{O}=291+380=671$

06-16: A* Search Example

- (dequeue L: g=229) $A=150+336=486, B=518+0=518, O=146+380=526, C$ $=366+160=526, M=299+241=540, B=550+0=550, S=300+253=553, A=$ $236+336=572, S=338+253=591, R V=414+193=607, C=455+160=615, A$ $=280+336=616, T=340+329=669, O=291+380=671$
- (dequeue $A: g=150) B=518+0=518, O=146+380=526, C=366+160=526$, $M=299+241=540, \quad, B=550+0=550, S=300+253=553, A$ $=236+336=572, \mathrm{~S}=338+253=591$, $R V=414+193=607, C=455+160=615, A=280+336=616, T=340+329=$ $669, \mathrm{O}=291+380=671$
- (dequeue $\mathrm{B}: \mathrm{g}=518$) solution. $\mathrm{A} \rightarrow \mathrm{S} \rightarrow \mathrm{RV} \rightarrow \mathrm{P} \rightarrow \mathrm{B}$

06-17: Optimality of A*

- A^{*} is optimal (finds the shortest solution) as long as our h function is admissible.
- Admissible: always underestimates the cost to the goal.
- Proof: When we dequeue a goal state, we see $g(n)$, the actual cost to reach the goal. If h underestimates, then a more optimal solution would have had a smaller $g+h$ than the current goal, and thus have already been dequeued.
- Or: If h overestimates the cost to the goal, it's possible for a good solution to "look bad" and get buried further back in the queue.

06-18: Optimality of A*

- Notice that we can't discard repeated states.
- We could always keep the version of the state with the lowest g
- More simply, we can also ensure that we always traverse the best path to a node first.
- a monotonic heuristic guarantees this.
- A heuristic is monotonic if, for every node n and each of its successors (n^{\prime}), $h(n)$ is less than or equal to stepCost $\left(n, n^{\prime}\right)+h\left(n^{\prime}\right)$.
- In geometry, this is called the triangle inequality.

06-19: Optimality of A*

- SLD is monotonic. (In general, it's hard to find realistic heuristics that are admissible but not monotonic).
- Corollary: If h is monotonic, then f is nondecreasing as we expand the search tree.
- Alternative proof of optimality.
- Notice also that UCS is A* with $h(n)=0$
- A^{*} is also optimally efficient
- No other complete and optimal algorithm is guaranteed to expand fewer nodes.

06-20: A* Example II

- Is h() admissible?
- Is h() monotonic?

06-21: A* Example II

Node: Queue :
-- $\quad[(A f=17, g=0, h=17)]$

06-22: \mathbf{A}^{*} Example II

Node: Queue :
A $\quad[(C f=22, g=7, h=15),(B f=28, g=8, h=20)]$

06-23: \mathbf{A}^{*} Example II

Node: Queue :
$C \quad[(D f=23, g=15, h=8),(B f=28, g=8, h=20)]$

06-24: A* Example II

Node: Queue :
D

$$
\begin{aligned}
{[(\mathrm{I} f=26, \mathrm{~g}=20, \mathrm{~h}=6),} & (\mathrm{F} f=27, \mathrm{~g}=21, \mathrm{~h}=6), \\
(\mathrm{B} f=28, \mathrm{~g}=8, \mathrm{~h}=20), & (\mathrm{E} f=28, \mathrm{~g}=20, \mathrm{~h}=8)]
\end{aligned}
$$

06-25: A* Example II

Node: Queue :
I

$$
\begin{aligned}
& {[(F f=27, g=21, h=6),(B f=28, g=8, h=20) \text {, }} \\
& \text { (E } f=28, \mathrm{~g}=20, \mathrm{~h}=8),(\mathrm{G} \mathrm{f}=30 \mathrm{~g}=26, \mathrm{~h}=4)]
\end{aligned}
$$

06-26: \mathbf{A}^{*} Example II

Node: Queue :
F

$$
\begin{aligned}
& {[(\mathrm{B} f}=28, \mathrm{~g}=8, \mathrm{~h}=20),(\mathrm{E} f=28, \mathrm{~g}=20, \mathrm{~h}=8) \\
&(\mathrm{G} \mathrm{f}=30 \mathrm{~g}=26, \mathrm{~h}=4),(\mathrm{G} \mathrm{f}=30 \mathrm{~g}=26 \\
&\mathrm{h}=4)
\end{aligned}
$$

06-27: A* Example II

Node: Queue :
B

$$
\begin{aligned}
{[(E f} & =28, g=20, h=8),(E f=29, g=21, h=8), \\
(G f & =30, g=26, h=4),(G f=30, g=26, h=4)]
\end{aligned}
$$

06-28: \mathbf{A}^{*} Example II

Node: Queue :
E $\quad[(E f=29, g=21, h=8),(G f=30 \mathrm{~g}=26, \mathrm{~h}=4)$,
($G f=30 \mathrm{~g}=26 \mathrm{~h}=4$), ($\mathrm{H} f=31, \mathrm{~g}=31, \mathrm{~h}=0$)]
(next E can be discarded)

06-29: \mathbf{A}^{*} Example II

Node: Queue :
G $\quad[(G f=30 \mathrm{~g}=26 \mathrm{~h}=4),(\mathrm{H} f=30, \mathrm{~g}=30, \mathrm{~h}=0)$,

$$
\text { (H } f=31, \mathrm{~g}=31, \mathrm{~h}=0)]
$$

(next G can be discarded)

06-30: A* Example II

Node: Queue :
H. Goal. $\quad[(H f=31, g=31, h=0)]$

Solution: A,C,D,I,G,H (or A, C, D, F, G, H)

06-31: Pruning and Contours

- Topologically, we can imagine A^{*} creating a set of contours corresponding to f values over the search space.
- A* will search all nodes within a contour before expanding.
- This allows us to prune the search space.
- We can chop off the portion of the search tree corresponding to Zerind without searching it.

06-32: |DA*

- A* has one big weakness - Like BFS, it potentially keeps an exponential number of nodes in memory at once.
- Iterative deepening A * is a workaround
- IDS was depth-limited search - IDA* is f-limited search
- Each iteration, increase bound to smallest value that allows search to continue

06-33: Iterative Deepening A* (IDA*)

```
f-limited-DFS(node, limit)
    if g(n) + h(n) > limit
        return fail, g(node) + h(node)
    if goalTest(node)
    return node, g(node)
    children = successor(node)
    smallestFail = MAX_VALUE
    for child in children
        sol, cost = depth-limited-DFS(child, limit)
        if sol != fail
        return sol, cost
        smallestFail = min(cost, smallestFail)
    return smalestFail, fail
```


06-34: Iterative Deepening A* (IDA*)

ida-star (node)
limit = h(node)
while true
sol, limit = f-limited-DFS(node, limit)
if (sol != fail)
return sol

06-35: IDA* Example

06-36: |DA*

- Works well in works with discrete-valued step costs
- Prefereably with steps having the same cost
- Each iteration brings in a large section of nodes
- What is the worst case performance for IDA*?
- When does the worst case occur?

06-37: SMA*

- Run regular A* *, with a fixed memory limit
- When limit is reached, discard node with highest f
- Value of discarded node is assigned to the parent
- Use the discarded node to get a better f value for parent
- 'remember' the value of that branch
- If all other branches get higher f value, regenerate
- SMA* is complete and optimal
- Very hard problems can case SMA* to thrash, repeatedly regenerating branches

06-38: DFB\&B

- Depth-First Branch and Bound
- Run f-limited DFS, with limit set to infinity
- When a goal is found, don't stop - record it, and set limit to the goal depth
- Keep going until all branches are searched or pruned.
- We will use something similar in 2-player games
- (DFB\&B not in the text)

06-39: DFB\&B

06-40: DFB\&B

06-41: DFB\&B

- What kinds of problems might Depth-First Branch and Bound work well for?
- Is DFB\&B Complete? Optimal?
- How could we improve performance?

06-42: DFB\&B

- What kinds of problems might Depth-First Branch and Bound work well for?
- Optimization: Finding a solution is easy, finding the best is hard (TSP)
- Is DFB\&B Complete? Optimal?
- If we can find a solution easily, it is complete and optimal
- How could we improve performance?
- Examine children in increasing g() value

06-43: DFB\&B

- Some nice features:
- Quickly find a solution
- Best solution so far gradually gets better
- Run DFB\&B until it finishes (we have an optimal solution), or we run out of time (use the best so far)

06-44: Building Effective Heuristics

- While A^{*} is optimally efficient, actual performance depends on developing accurate heuristics.
- Ideally, h is as close to the actual cost to the goal $\left(h^{*}\right)$ as possible while remaining admissible.
- Developing an effective heuristic requires some understanding of the problem domain.

06-45: Effective Heuristics - 8-puzzle

- h_{1} - number of misplaced tiles.
- This is clearly admissible, since each tile will have to be moved at least once.
- h_{2} - Manhattan distance between each tile's current position and goal position.
- Also admissible - best case, we'll move each tile directly to where it should go.
- Which heuristic is better?

06-46: Effective Heuristics - 8-puzzle

- h_{2} is better.
- We want h to be as close to h^{*} as possible.
- If $h_{2}(n)>h_{1}(n)$ for all n, we say that h_{2} dominates h_{1}.
- We would prefer a heuristic that dominates other known heuristics.

06-47: Finding a heuristic

- So how do we find a good heuristic?
- Solve a relaxed version of the problem.
- 8-puzzle:
- Tile can be moved from A to B if:
- A is adjacent to B
- B is blank
- Remove restriction that A is adjacent to B
- Misplaced tiles
- Remove restriction that B is blank
- Manhattan distance

06-48: Finding a heuristic

- So how do we find a good heuristic?
- Solve a relaxed version of the problem.
- Romania path-finding
- Add an extra road from each city directly to goal
- (Decreases restrictions on where you can move)
- Straight-line distance heuristic

06-49: Finding a heuristic

- So how do we find a good heuristic?
- Solve a relaxed version of the problem.
- Traveling Salesman
- Connected graph
- Each node has 2 neighbors
- Minimum Cost Spanning Tree Heuristic

06-50: Finding a heuristic

- Solve subproblems
- Cost of getting a subset of the tiles in place (ignoring the cost of moving other tiles)
- Save these subproblems in a database (could get large, depending upon the problem)

06-51: Finding a heuristic

- Using subproblems

06-52: Finding a heuristic

- Number of heurisitcs $h_{1}, h_{2}, \ldots h_{k}$
- No one heuristic dominates any other
- Different heuristics have different performances with different states
- What can you do?

06-53: Finding a heuristic

- Number of heurisitcs $h_{1}, h_{2}, \ldots h_{k}$
- No one heuristic dominates any other
- Different heuristics have different performances with different states
- What can you do?
- $h(n)=\max \left(h_{1}(n), h_{2}(n), \ldots h_{k}(n)\right)$

06-54: Summary

- Problem-specific heuristics can improve search.
- Greedy search
- A*
- Memory limited search (IDA*, SMA*)
- Developing heuristics
- Admissibility, monotonicity, dominance

