
AI Programming
CS662-2013S-06

Heuristic Search

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

06-0: Overview

Heuristic Search - exploiting knowledge about the
problem

Heuristic Search Algorithms

“Best-first” search

Greedy Search

A* Search

Extensions to A*

Constructing Heuristics

06-1: Informing Search

Uninformed search was able to find solutions, but
were very inefficient.

Exponential number of nodes expanded.

By taking advantage of knowledge about the
problem structure, we can improve performance.

Two caveats:

We have to get knowledge about the problem
from somewhere.

This knowledge has to be correct.

06-2: Best-first Search

Uniform-cost search

Nodes were expanded based on their total path
cost

Implemented using a priority queue

Path cost is an example of an evaluation function.

We’ll use the notation f (n) to refer to an
evaluation function.

An evaluation function tells us how promising a
node is.

Indicates the quality of the solution that node leads
to.

06-3: Best-first Search

Best-first Pseudocode

enqueue(initialState)

do

node = prioroty-dequeue()

if goalTest(node)

return node

else

children = successors(node)

for child in children

prioroty-enqueue(child, f(child))

where insert-with orders our priority queue
accordingly.

06-4: Best-first Search

(Almost) all searches are instances of best-first,
with different evaluation functions f

What functions f would yield the following
searches:

Depth-First Search

Breadth-First Search

Uniform Cost Search

06-5: Best-first Search

(Almost) all searches are instances of best-first,
with different evaluation functions f

What functions f would yield the following
searches:

Breadth-First Search f (n) = depth(n)

Depth-First Search f (n) = -depth(n)

Uniform Cost Search f (n) = g(n) (actual cost to
get to n

06-6: Heuristic Function

A Heuristic Function h(n) is an estimate of how
much it would cost to get to the solution from node
n

h(n) is not perfect

What could we do if h was perfect

Example heuristic: Route planning: straight-line
distance to the goal

How could we use a heuristic function as part of
best-first search to find a goal quickly?

06-7: Greedy Search

Best-First search with f (n) = h(n)

Route-planning example: Always travel to the city
that looks like it is closest to out destination

06-8: Greedy Search Example

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Dobreta
Craiova

Fagaras

Iasi

 0

160

242

161

77

151

366

244

226

176

241

253

329

80

199

380

234

374

100

193

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

06-9: Greedy Search Example

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Dobreta
Craiova

Fagaras

Iasi

 0

160

242

161

77

151

366

244

226

176

241

253

329

80

199

380

234

374

100

193

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

(A, 336)

(S,253), (T,329), (Z,374)

(F,176), (RV,193), (T,329), (A,336), (Z,374), (O,380)

(B,0), (RV,193), (S,253), (T,329), (A,336), (Z,374), (O,380)

Solution: A→ S→ F→ B

Optimal: A→ S→ RV→ P→ B

06-10: Greedy Search Problems

Optimal solution can involve moving ’away’ from
goal

Sliding tile puzzle: “undo” a partial solution

Rubic’s cube: “Mess up” part of cube to solve

Not really moving away from goal – as a measure
of the number of moves to a solution, you are
actually getting closer to the goal. Only relative to
your heuristic function are you going backwards

Perfect h == no need to search

06-11: Greedy Search Problems

Greedy search has similar strengths / weaknesses
to DFS

Expands a linear number of nodes

Not optimal

Not even necessarily complete (depending
upon the heuristic function)

What are the flaws of greedy search?

How could we fix them?

06-12: A* search

A* search is a combination of uniform cost search
and greedy search.

f (n) = g(n) + h(n)

g(n) = current path cost

h(n) = heuristic estimate of distance to goal.

Favors nodes with best estimated total cost to goal

If h(n) satisfies certain conditions, A* is both
complete (always finds a solution) and optimal
(always finds the best solution).

06-13: A* Search Example

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Dobreta
Craiova

Fagaras

Iasi

 0

160

242

161

77

151

366

244

226

176

241

253

329

80

199

380

234

374

100

193

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

06-14: A* Search Example

Arad = 0 + 366 = 366

(dequeue A: g = 0) S = 140 + 253 = 393, T = 118 + 329 = 447, Z = 75 + 374 = 449

(dequeue S: g = 140) RV = 220 + 193 = 413, F = 239 + 176 = 415, T = 118 + 329 =

447, Z = 374 + 75 = 449, A = 280 + 336 = 616, O = 291 + 380 = 671,

(dequeue RV: g = 220) F = 239 + 176 = 415, P = 317 + 100 = 417, T = 118 + 329 =

447, Z = 374 + 75 = 449, C = 366 + 160 = 526, S = 300 + 253 = 553, A = 280 + 336 =

616, O = 291 + 380 = 671

(dequeue F: g = 239) P = 317 + 100 = 417, T = 118 + 329 = 447, Z = 374 + 75 = 449,

C = 366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, S = 338 + 253 = 591,A

= 280 + 336 = 616, O = 291 + 380 = 671

06-15: A* Search Example

(dequeue P: g = 317) T = 118 + 329 = 447, Z = 374 + 75 = 449, B = 518 + 0 = 518, C

= 366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, S = 338 + 253 = 591, RV

= 414 + 193 = 607, C = 455 + 160 = 615, A = 280 + 336 = 616, O = 291 + 380 = 671

(dequeue T: g = 118) Z = 374 + 75 = 449, L = 229 + 244 = 473, B = 518 + 0 = 518, C =

366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, A = 236 + 336 = 572, S =

338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A = 280 + 336 = 616, O

= 291 + 380 = 671

(dequeue Z: g = 75) L = 229 + 244 = 473, A = 150 + 336 = 486, B = 518 + 0 = 518, O

= 146 + 380 = 526, C = 366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, A =

236 + 336 = 572, S = 338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A

= 280 + 336 = 616, O = 291 + 380 = 671

06-16: A* Search Example

(dequeue L: g = 229) A = 150 + 336 = 486, B = 518 + 0 = 518, O = 146 + 380 = 526, C

= 366 + 160 = 526, M = 299 + 241 = 540, B = 550 + 0 = 550, S = 300 + 253 = 553, A =

236 + 336 = 572, S = 338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A

= 280 + 336 = 616, T = 340 + 329 = 669, O = 291 + 380 = 671

(dequeue A: g = 150) B = 518 + 0 = 518, O = 146 + 380 = 526, C = 366 + 160 = 526,

M = 299 + 241 = 540, S = 290 + 253 = 543, B = 550 + 0 = 550, S = 300 + 253 = 553, A

= 236 + 336 = 572, S = 338 + 253 = 591, T = 268 + 329 = 597, Z = 225 + 374 = 599,

RV = 414 + 193 = 607, C = 455 + 160 = 615, A = 280 + 336 = 616, T = 340 + 329 =

669, O = 291 + 380 = 671

(dequeue B: g = 518) solution. A -> S -> RV -> P -> B

06-17: Optimality of A*

A* is optimal (finds the shortest solution) as long
as our h function is admissible.

Admissible: always underestimates the cost to
the goal.

Proof: When we dequeue a goal state, we see
g(n), the actual cost to reach the goal. If h

underestimates, then a more optimal solution
would have had a smaller g + h than the current
goal, and thus have already been dequeued.

Or: If h overestimates the cost to the goal, it’s
possible for a good solution to “look bad” and get
buried further back in the queue.

06-18: Optimality of A*

Notice that we can’t discard repeated states.

We could always keep the version of the state
with the lowest g

More simply, we can also ensure that we always
traverse the best path to a node first.

a monotonic heuristic guarantees this.

A heuristic is monotonic if, for every node n and
each of its successors (n′), h(n) is less than or
equal to stepCost(n, n′) + h(n′).

In geometry, this is called the triangle inequality.

06-19: Optimality of A*

SLD is monotonic. (In general, it’s hard to find
realistic heuristics that are admissible but not
monotonic).

Corollary: If h is monotonic, then f is
nondecreasing as we expand the search tree.

Alternative proof of optimality.

Notice also that UCS is A* with h(n) = 0

A* is also optimally efficient

No other complete and optimal algorithm is
guaranteed to expand fewer nodes.

06-20: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Is h() admissible?

Is h() monotonic?

06-21: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

-- [(A f = 17, g = 0, h = 17)]

06-22: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

A [(C f = 22, g = 7, h = 15), (B f = 28, g = 8, h = 20)]

06-23: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

C [(D f = 23, g = 15, h = 8), (B f = 28, g = 8, h = 20)]

06-24: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

D [(I f = 26, g = 20, h = 6), (F f = 27, g = 21, h = 6),

(B f = 28, g = 8, h = 20), (E f = 28, g = 20, h = 8)]

06-25: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

I [(F f = 27, g = 21, h = 6), (B f = 28, g = 8, h = 20),

(E f = 28, g = 20, h = 8), (G f = 30 g = 26, h = 4)]

06-26: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

F [(B f = 28, g = 8, h = 20), (E f = 28, g = 20, h = 8),

(G f = 30 g = 26, h = 4),(G f = 30 g = 26 h = 4)]

06-27: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

B [(E f = 28, g = 20, h = 8), (E f = 29, g = 21, h = 8),

(G f = 30, g = 26, h = 4),(G f = 30, g = 26, h = 4)]

06-28: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

E [(E f = 29, g = 21, h = 8), (G f = 30 g = 26, h = 4),

(G f = 30 g = 26 h = 4), (H f = 31, g = 31, h = 0)]

(next E can be discarded)

06-29: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

G [(G f = 30 g = 26 h = 4), (H f = 30, g = 30, h = 0),

(H f = 31, g = 31, h = 0)]

(next G can be discarded)

06-30: A* Example II

A

B

C

E

D

H

I

F

G

8

13

7

8

11

4

5

6

6

5

(17)

(20)

(15)

(8)

(8)

(6)

(6)
(4)

(0)

Goal

Start

5

(x) h value
 y edge cost

Node: Queue :

H. Goal. [(H f = 31, g = 31, h = 0)]

Solution: A,C,D,I,G,H (or A,C,D,F,G,H)

06-31: Pruning and Contours

O

Z

A

T

L

M

D

C

R

F

P

G

B

U

H

E

V

I

N

380

400

420

S

Topologically, we can imagine A* creating a set of

contours corresponding to f values over the search

space.

A* will search all nodes within a contour before

expanding.

This allows us to prune the search space.

We can chop off the portion of the search tree

corresponding to Zerind without searching it.

06-32: IDA*

A* has one big weakness - Like BFS, it potentially
keeps an exponential number of nodes in memory
at once.

Iterative deepening A* is a workaround

IDS was depth-limited search – IDA* is f-limited
search

Each iteration, increase bound to smallest
value that allows search to continue

06-33: Iterative Deepening A* (IDA*)

f-limited-DFS(node, limit)

if g(n) + h(n) > limit

return fail, g(node) + h(node)

if goalTest(node)

return node, g(node)

children = successor(node)

smallestFail = MAX_VALUE

for child in children

sol, cost = depth-limited-DFS(child, limit)

if sol != fail

return sol, cost

smallestFail = min(cost, smallestFail)

return smalestFail, fail

06-34: Iterative Deepening A* (IDA*)

ida-star(node)

limit = h(node)

while true

sol, limit = f-limited-DFS(node, limit)

if (sol != fail)

return sol

06-35: IDA* Example

A

B

C

E

D

H

I

F

G

1

1

1

1

5

1

1

1

1

1

(3)

(5)

(2)

(8)

(2)

(1)

(1)
(1)

(0)

Goal

Start

1

(x) h value
 y edge cost

06-36: IDA*

Works well in works with discrete-valued step costs

Prefereably with steps having the same cost

Each iteration brings in a large section of nodes

What is the worst case performance for IDA*?

When does the worst case occur?

06-37: SMA*

Run regular A*, with a fixed memory limit

When limit is reached, discard node with highest f

Value of discarded node is assigned to the parent

Use the discarded node to get a better f value
for parent

’remember’ the value of that branch

If all other branches get higher f value,
regenerate

SMA* is complete and optimal

Very hard problems can case SMA* to thrash,
repeatedly regenerating branches

06-38: DFB&B

Depth-First Branch and Bound

Run f-limited DFS, with limit set to infinity

When a goal is found, don’t stop – record it,
and set limit to the goal depth

Keep going until all branches are searched or
pruned.

We will use something similar in 2-player games

(DFB&B not in the text)

06-39: DFB&B

3 4 1 5

910

13 14 10 14 16 17 17 18

4 5 4 5

1312

1 2 5 6

87

8 9 13 14 13 15 14 15

2 4 2 3

1211

2 1

8
5 6

7
2 3

5
4 5

7

5 4
3

3 5
2

3 20

(3) (1)

(4)

(2) (3) (1) (5) (2) (1)

(8) (3) (5)

(8) (6)

(7)

06-40: DFB&B

3 4 1 5

910

13 14 10 14 16 17 17 18

4 5 4 5

1312

1 2 5 6

87

8 9 13 14 13 15 14 15

2 4 2 3

1211

2 1

8
5 6

7
2 3

5
4 5

7

5 4
3

3 5
2

3 20

(3) (1)

(4)

(2) (3) (1) (5) (2) (1)

(8) (3) (5)

(8) (6)

(7)

06-41: DFB&B

What kinds of problems might Depth-First Branch
and Bound work well for?

Is DFB&B Complete? Optimal?

How could we improve performance?

06-42: DFB&B

What kinds of problems might Depth-First Branch
and Bound work well for?

Optimization: Finding a solution is easy, finding
the best is hard (TSP)

Is DFB&B Complete? Optimal?

If we can find a solution easily, it is complete
and optimal

How could we improve performance?

Examine children in increasing g() value

06-43: DFB&B

Some nice features:

Quickly find a solution

Best solution so far gradually gets better

Run DFB&B until it finishes (we have an
optimal solution), or we run out of time (use the
best so far)

06-44: Building Effective Heuristics

While A* is optimally efficient, actual performance
depends on developing accurate heuristics.

Ideally, h is as close to the actual cost to the goal
(h∗) as possible while remaining admissible.

Developing an effective heuristic requires some
understanding of the problem domain.

06-45: Effective Heuristics - 8-puzzle

h1 - number of misplaced tiles.

This is clearly admissible, since each tile will
have to be moved at least once.

h2 - Manhattan distance between each tile’s
current position and goal position.

Also admissible - best case, we’ll move each
tile directly to where it should go.

Which heuristic is better?

06-46: Effective Heuristics - 8-puzzle

h2 is better.

We want h to be as close to h∗ as possible.

If h2(n) > h1(n) for all n, we say that h2 dominates h1.

We would prefer a heuristic that dominates other
known heuristics.

06-47: Finding a heuristic

So how do we find a good heuristic?

Solve a relaxed version of the problem.

8-puzzle:
Tile can be moved from A to B if:
• A is adjacent to B
• B is blank
Remove restriction that A is adjacent to B
• Misplaced tiles
Remove restriction that B is blank
• Manhattan distance

06-48: Finding a heuristic

So how do we find a good heuristic?

Solve a relaxed version of the problem.

Romania path-finding
Add an extra road from each city directly to
goal
(Decreases restrictions on where you can
move)

Straight-line distance heuristic

06-49: Finding a heuristic

So how do we find a good heuristic?

Solve a relaxed version of the problem.

Traveling Salesman
Connected graph
Each node has 2 neighbors

Minimum Cost Spanning Tree Heuristic

06-50: Finding a heuristic

Solve subproblems

Cost of getting a subset of the tiles in place
(ignoring the cost of moving other tiles)

Save these subproblems in a database (could get
large, depending upon the problem)

06-51: Finding a heuristic

Using subproblems

Start State Goal State

1

2

3

4

6

8

5

21

3 6

7 8

54

06-52: Finding a heuristic

Number of heurisitcs h1, h2, . . . hk

No one heuristic dominates any other

Different heuristics have different performances
with different states

What can you do?

06-53: Finding a heuristic

Number of heurisitcs h1, h2, . . . hk

No one heuristic dominates any other

Different heuristics have different performances
with different states

What can you do?

h(n) = max(h1(n), h2(n), . . . hk(n))

06-54: Summary

Problem-specific heuristics can improve search.

Greedy search

A*

Memory limited search (IDA*, SMA*)

Developing heuristics

Admissibility, monotonicity, dominance

	{small lecturenumber -	heblocknumber :} Overviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Informing Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Best-first Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Best-first Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Best-first Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Best-first Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heuristic Functionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Greedy Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Greedy Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Greedy Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Greedy Search Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Greedy Search Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Search Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Optimality of A*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Optimality of A*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Optimality of A*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} A* Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Pruning and Contoursaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} IDA*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Iterative Deepening A* (IDA*)addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Iterative Deepening A* (IDA*)addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} IDA* Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} IDA*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} SMA*addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} DFB&Baddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building Effective Heuristicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Effective Heuristics - 8-puzzleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Effective Heuristics - 8-puzzleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding a heuristicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Summaryaddtocounter {blocknumber}{1}

