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06-0: Overview

® Heuristic Search - exploiting knowledge about the
problem
® Heuristic Search Algorithms
* “Best-first” search
* Greedy Search
e A* Search
e Extensions to A*

® Constructing Heuristics




06-1: Informing Search

® Uninformed search was able to find solutions, but
were very inefficient.

e Exponential number of nodes expanded.
® By taking advantage of knowledge about the
problem structure, we can improve performance.

® [wo caveats:

 We have to get knowledge about the problem
from somewhere.

* This knowledge has to be correct.




06-2: Best-first Search

® Uniform-cost search
* Nodes were expanded based on their total path
cost
* Implemented using a priority queue

® Path cost is an example of an evaluation function.

 We'll use the notation f(n) to refer to an
evaluation function.

® An evaluation function tells us how promising a
node is.

® |ndicates the quality of the solution that node leads
to.




06-3: Best-first Search

® Best-first Pseudocode

enqueue(initialState)
do
node = prioroty-dequeue()
1f goalTest (node)
return node
else
children = successors(node)
for child in children
prioroty-enqueue(child, f(child))

® where insert-with orders our priority queue
accordingly.




06-4: Best-first Search

® (Almost) all searches are instances of best-first,
with different evaluation functions f

® What functions f would yield the following
searches:
e Depth-First Search
e Breadth-First Search
e Uniform Cost Search




06-5: Best-first Search

® (Almost) all searches are instances of best-first,
with different evaluation functions f

® What functions f would yield the following
searches:
* Breadth-First Search f(n) = depth(n)
e Depth-First Search f(n) = -depth(n)
e Uniform Cost Search f(n) = g(n) (actual cost to
getton




06-6: Heuristic Function

® A Heuristic Function A(n) is an estimate of how

much it would cost to get to the solution from node
n

® /i(n) IS not perfect
 What could we do if & was perfect

® Example heuristic: Route planning: straight-line
distance to the goal

® How could we use a heuristic function as part of
best-first search to find a goal quickly?




06-7: Greedy Search

® Best-First search with f(n) = h(n)

® Route-planning example: Always travel to the city
that looks like it Is closest to out destination




o6-8: Greedy Search Example




06-0: Greedy Search Example

(A, 336)

(S,253), (T,329), (2,374)

(F,176), (RV,193), (T,329), (A,336), (Z,374), (0,380)

(B,0), (RV,193), (S,253), (T,329), (A,336), (Z,374), (0,380)

Solution:A—->S —->F—>B

Optimal: A->S ->RV—->P—>B




o6-10: Greedy Search Problems

® Optimal solution can involve moving ‘away’ from
goal

e Sliding tile puzzle: “undo” a partial solution

e Rubic’s cube: “Mess up” part of cube to solve

® Not really moving away from goal — as a measure
of the number of moves to a solution, you are

actually getting closer to the goal. Only relative to
your heuristic function are you going backwards

e Perfect 4 == no need to search




o6-11: Greedy Search Problems

® (Greedy search has similar strengths / weaknesses
to DFS

e Expands a linear number of nodes
* Not optimal

* Not even necessarily complete (depending
upon the heuristic function)

® What are the flaws of greedy search?
® How could we fix them?




06-12: A* search

® A* search is a combination of uniform cost search
and greedy search.

® f(n) =gn) + hn)
* o(n) = current path cost
* h(n) = heuristic estimate of distance to goal.
® Favors nodes with best estimated total cost to goal

® |f h(n) satisfies certain conditions, A* is both
complete (always finds a solution) and optimal
(always finds the best solution).




06-13: A* Search Example




06-14: A* Search Example

®

® (dequeue A: g =0) ; ;

® (dequeue S: g = 140) : ,T=118+329 =
447,27 = 374 + 75 = 449, : :

® (dequeue RV: g = 220) F = 239 + 176 = 415, ,T=118 + 329 =
447,27 = 374 + 75 = 449, : LA =280+ 336 =

616, O =291 + 380 = 671

® (dequeue F:g=239)P =317 +100=417, T = 118 + 329 = 447, Z = 374 + 75 = 449,
C = 366 + 160 = 526, .S =300 + 253 = 553, A
- 280 + 336 = 616, O = 291 + 380 = 671




06-15: A* Search Example

¢ (dequeue P: g =317) T=118 + 329 =447, 7Z = 374 + 75 = 449, , C
= 366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, S = 338 + 253 = 591,
; ,A=280 + 336 =616, 0 =291 + 380 = 671

® (dequeue T:g=118) Z = 374 + 75 = 449, ' B=518+0=518,C =
366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, ,S=
338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A = 280 + 336 = 616, O
— 291 + 380 = 671

® (dequeue Z: g = 75) L = 229 + 244 = 473, ,B=518+0 =518,
,C =366+ 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, A =
236 + 336 = 572, S = 338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A
= 280 + 336 = 616, O = 291 + 380 = 671




o6-16: A* Search Example

¢ (dequeue L: g=229) A =150 + 336 =486,B =518 + 0=518, O = 146 + 380 = 526, C

= 366 + 160 = 526, , B=550 + 0 =550, S =300 + 253 =553, A =
236 + 336 =572, S = 338 + 253 =591, RV =414 + 193 =607, C =455 + 160 =615, A
=280 + 336 = 616, , O =291 + 380 = 671

® (dequeue A:g=150) B=518 + 0 =518, O = 146 + 380 = 526, C = 366 + 160 = 526,
M =299 + 241 = 540, , B=550 + 0 =550, S =300 + 253 = 553, A

=236 + 336 =572, S = 338 + 253 = 591,
RV =414 + 193 =607, C =455 + 160 =615, A = 280 + 336 = 616T 340 + 329 =
669, O =291 + 380 = 671

® (dequeue B: g = 518) solution. A->S ->RV -> P -> B




06-17: Optimality of A*

® A*is optimal (finds the shortest solution) as long
as our h function is admissible.

 Admissible: always underestimates the cost to
the goal.

® Proof: When we dequeue a goal state, we see
g(n), the actual cost to reach the goal. If &
underestimates, then a more optimal solution
would have had a smaller g + 4 than the current
goal, and thus have already been dequeued.

® Or: If h overestimates the cost to the goal, it's
possible for a good solution to “look bad” and get
buried further back in the queue.




os-18: Optimality of A*

® Notice that we can't discard repeated states.
 We could always keep the version of the state
with the lowest g

® More simply, we can also ensure that we always
traverse the best path to a node first.

® a monotonic heuristic guarantees this.

® A heuristic is monotonic if, for every node n and
each of its successors (n"), h(n) Is less than or
equal to stepCost(n,n’) + h(n’).
* In geometry, this is called the triangle inequality.




os-19: Optimality of A*

SLD is monotonic. (In general, it's hard to find
realistic heuristics that are admissible but not
monotonic).

Corollary: If 4 is monotonic, then f is
nondecreasing as we expand the search tree.

Alternative proof of optimality.
Notice also that UCS is A* with h(n) = 0

A* is also optimally efficient

* No other complete and optimal algorithm is
guaranteed to expand fewer nodes.




06-20: A* Example i

(20) (8) (0)

8
(17)

St art I

(15)

(x) h value
y edge cost (4)

® |s h() admissible?
® |s h() monotonic?




06-21: A* Example i

(20) (8) (0)
Goal
8
(17)
St art U
(15)

(x) h value
y edge cost (4)

Node: Queue :
-- [(Af=17, g=0, h=17)]




06-22: A* Example i

(20) (8) (0)
Goal
8
(17)
St art U
(15)

(x) h value
y edge cost (4)

Node: Queue :
A [(Cf =22, g=7, h=15), (B f =28, g=28, h=20)]




06-23: A* Example i

(20) (8) (0)
Goal
8
(17)
St art U
(15)

(x) h value
y edge cost (4)

Node: Queue :
C [(D £ =23, g=15, h=8), (B £ =28, g=28, h=20)]




06-24: A* Example i

(20) (8) (0)

(17)

St art I

(15)

(x) h value
y edge cost (4)

Node: Queue :
D [(I £ =26, ¢
(B f=28,¢g

20, h=6), (Ff=27, g=21, h=06),
8 h=20), (Ef =28, g=20, h=28)]




06-25: A* Example i

(20) (8) (0)

(17)

St art I

(15)

(x) h value
y edge cost (4)

Node: Queue :
T [(F £ =27, g =21, h
(E £f =28, g=20, h

8, h = 20),
26, h = 4)]

6), (B £ =28, g
8), (G f=230 g




06-26: A* Example i

(20) (8) (0)

(17)

St art I

(15)

(x) h value
y edge cost (4)

Node: Queue :
F [(B £ =28, ¢ 8, h=20), (E f=28, g=20, h=28),
(Gf=30 g=26, h=4),(G£f=130 g-=26 h = 4)]




06-27: A* Example i

(20) (8) (0)

(17)

St art I

(15)

(x) h value
y edge cost (4)

Node: Queue :
B [(E £ =28, g=20, h
(Gf:3®,g:26,h

8), (E f=29, g=21, h=8),
4),(G £ =30, g =26, h=4)]




o6-28: A* Example i

(20) (8) (0)

(17)

St art I

(15)

(x) h value
y edge cost

Node: Queue :

E [(E £ =29, g=21, h=28), (Gf=30 g=26, h=24),
(Gf=30 g=26 h=4), (Hf=231, g=31, h =0)]

(next E can be discarded)




06-29: A* Example i

(20) (8) (0)

(17)

St art I

(15)

(x) h value
y edge cost (4)

Node: Queue :

G [(G£f=30 g=26 h=4), (Hf=30, g=30, h=20),
(Hf=31, g=31, h=0)]

(next G can be discarded)




06-30: A* Example i

(20) (8) (0)
Goal
8
(17)
St art U
(15)

(x) h value
y edge cost (4)

Node: Queue :
H. Goal. [(Hf =31, g=31, h =0)]

Solution: A,C,D,I,G,H (or A,C,D,F,G,H)




06-31: Pruning and Contours

® Topologically, we can imagine A* creating a set of
contours corresponding to f values over the search
space.

® A” will search all nodes within a contour before
expanding.
® This allows us to prune the search space.

* We can chop off the portion of the search tree
corresponding to Zerind without searching it.




06-32: IDA*

® A* has one big weakness - Like BFS, it potentially

keeps an exponential number of nodes in memory
at once.

® |terative deepening A* is a workaround

e |DS was depth-limited search — IDA* is f-limited
search

e Each iteration, increase bound to smallest
value that allows search to continue




06-33: Iterative Deepening A* (IDA*)

f-limited-DFS(node, limit)
if g(n) + h(n) > limit
return fail, g(node) + h(node)
if goalTest(node)
return node, g(node)
children = successor(node)
smallestFail = MAX_VALUE
for child in children
sol, cost = depth-limited-DFS(child, limit)
if sol != fail
return sol, cost
smallestFail = min(cost, smallestFail)
return smalestFail, fail




06-34: Iterative Deepening A* (IDA*)

1da-star (node)
limit = h(node)
while true
sol, limit = f-limited-DFS(node, limit)
1f (sol != fail)
return sol




06-35: IDA* Example

(5) (8) (0)

B CGoal
1 \_/
(3)
L 1
St art 1

e
<2>@ D

(2)

(x) h value
y edge cost (1)




06-36: IDA*

® Works well in works with discrete-valued step costs
* Prefereably with steps having the same cost

® Each iteration brings in a large section of nodes
® What is the worst case performance for IDA*?
® \WWhen does the worst case occur?




06-37: SMA*

® Run regular A*, with a fixed memory limit
® When limit is reached, discard node with highest f

® Value of discarded node is assigned to the parent

e Use the discarded node to get a better f value
for parent

e remember’ the value of that branch
* |f all other branches get higher f value,
regenerate
® SMA* is complete and optimal

® Very hard problems can case SMA* to thrash,
repeatedly regenerating branches




06-38: DFB&B

® Depth-First Branch and Bound
* Run f-limited DFS, with limit set to infinity

* When a goal is found, don’t stop — record it,
and set limit to the goal depth

e Keep going until all branches are searched or
pruned.

® We will use something similar in 2-player games
® (DFB&B not in the text)




06-39: DFB&B

(4) (3)

€ (5)
@ 6 6 0

(2) 7 (1N

@ @ @ @ e@ @ D]

5 \6 2

3 @@@@@@@@@@@@@@@




06-40: DFB&B

1
) 7 (18 (2)
0 9

(8)

(3)

(3)

5

2 3
(1) £ (5)

1/ \2

(5)

(2) (1)




06-41: DFB&B

® What kinds of problems might Depth-First Branch
and Bound work well for?

¢ |s DFB&B Complete? Optimal?
® How could we improve performance?




06-42: DFB&B

® What kinds of problems might Depth-First Branch
and Bound work well for?

e Optimization: Finding a solution is easy, finding
the best is hard (TSP)
¢ |s DFB&B Complete? Optimal?
* |f we can find a solution easily, it is complete
and optimal
® How could we improve performance?
 Examine children in increasing g() value




06-43: DFB&B

® Some nice features:
e Quickly find a solution
e Best solution so far gradually gets better

e Run DFB&B until it finishes (we have an
optimal solution), or we run out of time (use the
best so far)




06-44: Bullding Effective Heuristics

® While A* is optimally efficient, actual performance
depends on developing accurate heuristics.

® |deally, & is as close to the actual cost to the goal
(h*) as possible while remaining admissible.

® Developing an effective heuristic requires some
understanding of the problem domain.




06-45: Effective Heuristics - 8-puzzie

® /s, - number of misplaced tiles.
* This is clearly admissible, since each tile will
have to be moved at least once.
® /i, - Manhattan distance between each tile’s
current position and goal position.
* Also admissible - best case, we'll move each
tile directly to where it should go.

® \Which heuristic is better?




o6-26: Effective Heuristics - 8-puzzie

® /i, IS better.
* We want / to be as close to 4* as possible.

® |f i,(n) > hy(n) for all n, we say that h, dominates h; .

® We would prefer a heuristic that dominates other
Known heuristics.




06-47: Finding a heuristic

® So how do we find a good heuristic?

® Solve a relaxed version of the problem.
* 8-puzzle:

- Tile can be moved from A to B if:
e Alis adjacentto B
e B is blank

- Remove restriction that A is adjacent to B
e Misplaced tiles

- Remove restriction that B is blank
e Manhattan distance




06-48: Finding a heuristic

® So how do we find a good heuristic?

® Solve a relaxed version of the problem.
 Romania path-finding
- Add an extra road from each city directly to
goal
+ (Decreases restrictions on where you can
move)

e Straight-line distance heuristic




06-49: Finding a heuristic

® So how do we find a good heuristic?

® Solve a relaxed version of the problem.

e Traveling Salesman
 Connected graph
- Each node has 2 neighbors

* Minimum Cost Spanning Tree Heuristic




06-50: Finding a heuristic

® Solve subproblems
* Cost of getting a subset of the tiles in place
(ignoring the cost of moving other tiles)

® Save these subproblems in a database (could get
large, depending upon the problem)




06-51: FiInding a heuristic

® UUsing subproblems

OaE NOE
OED ooD




06-52: Finding a heuristic

® Number of heurisitcs hy, hs, ... hy

® No one heuristic dominates any other

* Different heuristics have different performances
with different states

® What can you do?




06-53: Finding a heuristic

® Number of heurisitcs hy, hs, ... hy

® No one heuristic dominates any other
* Different heuristics have different performances
with different states
® What can you do?
* h(n) = max(hi(n), hr(n),...h((n))




06-54: SUMMary

® Problem-specific heuristics can improve search.
® Greedy search

o A*

® Memory limited search (IDA*, SMA*)

® Developing heuristics
e Admissibility, monotonicity, dominance
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