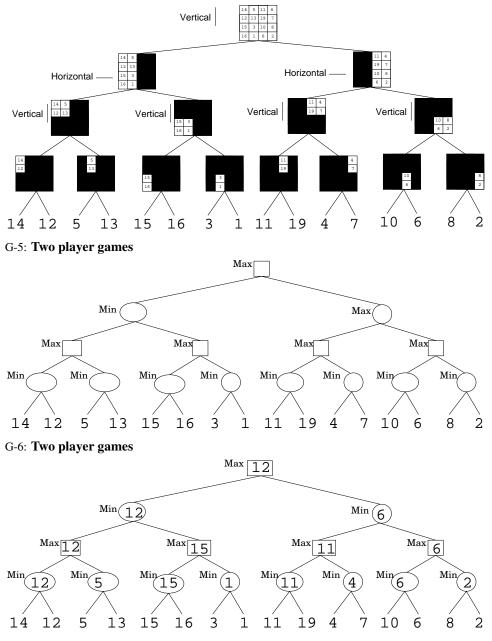
G-0: Overview

- Example games (board splitting, chess, Othello)
- Min/Max trees
- Alpha-Beta Pruning
- Evaluation Functions
- Stopping the Search
- Playing with chance

G-1: Two player games

- Board-Splitting Game
 - Two players, V & H
 - *V* splits the board vertically, selects one half
 - *H* splits the board horizontally, selects one half
 - V tries to maximize the final value, H tries to minimize the final value

14	5	11	4
12	13	9	7
15	13	10	8
16	1	6	2


G-2: Two player games

- Board-Splitting Game
 - We assume that both players are rational (make the best possible move)
 - How can we determine who will win the game?

G-3: Two player games

- Board-Splitting Game
 - We assume that both players are rational (make the best possible move)
 - How can we determine who will win the game?
 - Examine all possible games!

G-4: Two player games

- Game playing agent can do this to figure out which move to make
 - Examine all possible moves
 - Examine all possible responses to each move
 - ... all the way to the last move
 - Caclulate the value of each move (assuming opponent plays perfectly)
 - •

G-8: Two-Player Games

- Initial state
- Successor Function
 - · Just like other Searches
- Terminal Test
 - When is the game over?
- Utility Function
 - Only applies to terminal states
 - Chess: +1, 0, -1
 - Backgammon: 192 ... -192

G-9: Minimax Algorithm

```
Max(node)
    if terminal(node)
        return utility(node)
        maxVal = MIN_VALUE
    children = successors(node)
    for child in children
        maxVal = max(maxVal, Min(child))
    return maxVal
Min(node)
    if terminal(node)
    return utility(node)
    minVal = MAX_VALUE
    children = successors(node)
    for child in children
        minVal = min(minVal, Max(child))
    return minVal
```

G-10: Minimax Algorithm

• Branching factor of b, game length of d moves, what are the time and space requirements for Minimax?

G-11: Minimax Algorithm

- Branching factor of b, game length of d moves, what are the time and space requirements for Minimax?
 - Time: $O(b^d)$
 - Space: O(d)
- Not managable for any real games chess has an average b of 35, can't search the entire tree
- Need to make this more managable

G-12: > 2 Player Games

- What if there are > 2 players?
- We can use the same search tree:
 - Alternate between several players
 - Need a different evaluation function

G-13: > 2 Player Games

- Functions return a vector of utilities
 - One value for each player