
CS662-2013S-08 Local Search / Genetic Algorithms 1

08-0: Overview

• Local Search

• Hill-Climbing Search

• Simulated Annealing

• Genetic Algorithms

08-1: Local Search

• So far, stored the entire path from initial to goal state

• Path is essential – the path is the solution

• Route finding

• 8-puzzle

• (to a lesser extent) adversarial search

• We know what the goal state is, but not how to reach it

08-2: Local Search

• For some problems, we don’t care what the sequence of actions are – the final state is what we need

• Constraint Satisfaction Problems & Optimization Problems

• Finding the optimial (or satisfactory) solution is what is important

• 8-Queens, Map Coloring, Scheduling, VLSI layout, Cryptography

• The solution is an assignment of values to variables that maximizes some objective function

• We don’t care how we get to the solution, we just need the values of the variables

08-3: Local Search

• Search algorithm that only uses the current state (no path information) is a local search algorithm

• Advantages

• Constant memory requirements

• Can search huge problem spaces

• Disadvantages

• Hard to guarantee optimality, might find only a local optimum

• May revisit states or oscillate (no memory)

08-4: Search Landscape

• Local search can be useful for optimization algoritms

• “Find parameters such that o(x) is maximized/minimized”

• Search problem: state space is the combination of value assignments to parameters

CS662-2013S-08 Local Search / Genetic Algorithms 2

• If there are n parameters, we can imagine an n + 1 dimensional space, where the first n dimensions are the

parameters of the function, and the n + 1th dimension is the objective function

• Search Landscape

• Optima are hills

• Valleys are poor solutions

• (reverse to minimize o(x))

08-5: Search Landscape

x

f(x)

• Maximize function f (x)

08-6: Search Landscape

08-7: Search Landscape

• Lanscapes are a useful metaphor for local search algorithms

• Visualize climbing a hill, or descending a valley

• Gives us a way of differentiating easy problems from hard problems

CS662-2013S-08 Local Search / Genetic Algorithms 3

• Easy: Few peaks, smooth surfaces, no ridges/plateaus

• Hard: Many peaks, jagged or discontinuous surfaces. plateaus

08-8: Hill Climbing Search

• Simpliest local search: Hill Climbing

• At any point, look at all your successors (neighbors), move in the direction of greatest positive change

• Similar to Greedy Search

• Requires very little memory

• Stuck in local optimal

• Plateaus can cause aimless wandering

08-9: Hill Climbing Search

• Example: n-Queens

• Each position in the search space is defined by a n-unit vector

• V[i] = column of row in position i

• (examples on board)

• Function is the number of conflicts

• Trying to minimize function

08-10: Hill Climbing Search

• Find roots of an equation: f (x) = 0,

f differentiable

• Guess and x1, find f (x1), f ′(x1)

• Use tangent line to f (x1) (slope = f ′(x1)) to pick x2

• Repeat: xn+1 = xn −
f (xn)

f ′(xn)

• Hill climbing search

• Works great on smooth functions

08-11: Hill Climbing Search

• Advantages to Hill Climbing

• Simple to code

• Requires little memory

• May not need to do anything more complicated

• Making Hill Climbing better:

• Stochastic hill-climbing – pick randomly from uphill moves

• Weight probability by degree of slope

CS662-2013S-08 Local Search / Genetic Algorithms 4

08-12: Improving Hill Climbing

• Random-Restart Hill-Climbing

• Run Hill Climbing until an optimum is reached

• Randomly choose a new initial state

• Run again

• After n iterations, keep best solution

• If we have a guess as to the number of optima in the seach space, we can choose n

08-13: Simulated Annealing

• Hill Climbing’s weakness: Never moves downhill

• Can get stuck in local optimum

• Simulated annealing tries to fix this

• “Bad” (downhill) actions are occasionally chosen to move out of a local optimum

08-14: Simulated Annealing

Pick a random
starting point

08-15: Simulated Annealing

Find a local
maximum

CS662-2013S-08 Local Search / Genetic Algorithms 5

08-16: Simulated Annealing

Take some
backwards steps

08-17: Simulated Annealing

Eventually find
global maximum

08-18: Simulated Annealing

• Based on analogies to crystal formation

• When a metal cools, lattices form as molecules fit into place

• By reheating and recooling, a harder metal is formed

• Small undoing leads to a better solution

• Minimize the “energy” in the system

• Similarly, small steps away from the solution can help hill-climbing escape local optima

08-19: Simulated Annealing

T = initial

s = initial-state

while (s != goal)

ch = successor-fn(s)

c = select-random-child(ch)

CS662-2013S-08 Local Search / Genetic Algorithms 6

if c is better than s

s = c

else

s = c with probability p(T,c,s)

update T

• What is T? P?

08-20: Simulated Annealing

• Make “mistakes” (downhill steps) more frequently early in the search, and more rarely later in the search

• T is the “Temperature”

• High temperature: Make lots of “mistakes”

• Low temperature: Make fewer mistakes

• P is the probability function, when to make a mistake

• How should T change over time, what should P be?

08-21: Cooling Schedule

• Function for changing T is called a cooling schedule

• Most commonly used schedules:

• Linear: Tnew = Told − dt

• Proportional: Tnew = c ∗ Told, c < 1

08-22: Boltzmann Distribution

• Probability of accepting a mistake P is governed by a Boltzmann distribution

• s is the current state, c is the child being considered, and o is the function to optimize

• P(c) = exp(
−|o(c)−o(s)|

T
)

• Boundary conditions:

• |o(c) − o(s)| = 0, then P(c) = 1

• T very high, all fractions near 0, P(c) near 1

• T low, P(c) depends on |o(c) − o(s)|

• Gives us a way of weighing the probability of accepting a “mistake” by its quality

08-23: Boltzmann Distribution

• Simulated Annealing is (theoretically) complete and optimal as long as T is lowered “slowly enough”

• “Slowly enough” might take more time than exhaustive search

• Still can be useful for finding a “pretty good” solution

• Can be very effective in domains with many optima

• Simple addition to a hill-climbing algorithm

CS662-2013S-08 Local Search / Genetic Algorithms 7

• Weakness: selecting a good cooling schedule – very hard!

• No problem knowledge used in search (outside of picking cooling schedule)

08-24: Genetic Algorithms

• Genetic Algorithms: “Parallel hill-climbing search”

• Basic Idea:

• Select some solutions at random

• Combine the best parts of the solutions to make new solutions

• Repeat

• Successors are functions of two states, rather than one

08-25: GA Terminology

• Chromosome: A solution or state

• Trait / gene: A parameter or state variable

• Fitness: The “goodness” of a solution

• Population: A set of chromosomes or solutions

08-26: Basic GA

pop = makeRandomPopulation

while (not done)

foreach p in pop

p.fitness = evaluate(p)

for i to size(pop) by 2:

parent1, parent2 = select random solutions from pop

(using fitness)

child1, child2 = crossover(parent1, parent2)

mutate child1, child2

replace old population with new population

08-27: Analogies to Biology

• This is not how biological evolution works

• Biological evolution is much more complex

• Biology is a nice metaphor

• ... but Genetic Algorithms must stand or fail on their own merits

08-28: Encoding a Problem

• Choosing an encoding can be tricky

• Traditionally, GA problems are encoded as bitstrings

• Example: 8 queens. For each column, we use 3 bits to encode the row of the queen = 24 bits

• 100 101 110 000 101 001 010 110 = 4 5 6 0 5 1 2 6

CS662-2013S-08 Local Search / Genetic Algorithms 8

• We begin by generating random bitstrings, then evaluating them according to a fitness function (the function to

optimize)

• 8 Queens: number of nonattacking pairs of queens (max = 28)

08-29: Generating New Solutions

• Successor function: Work on two solutions

• Called Crossover

• Pick two solutions p1 and p2 to be parents

• Go into how to pick parent solutions in a bit

• Pick a random location on the bitstring (locus)

• Merge the first part of p1 with the second part of p2 (and vice versa) to produce two new bitstrings

08-30: Crossover Example

• s1: 100 101 110 000 101 001 010 110 = 4560512

• s2: 011 000 101 110 111 010 110 111 = 1056726

• Pick locus = 9

• s1: (100 101 110) (000 101 001 010 110)

• s2: (011 000 101) (110 111 010 110 111)

• Crossover:

• s3: (100 101 110) (110 111 010 110 111) = 4566726

• s4: (011 000 101) (000 101 001 010 110) = 1050512

08-31: Mutation

• Next, apply mutation

• With probability m (where m is small), randomly flip one bit in the solution

• After generating a new population of the same size as the old poplation, throw out the old population and start

again

08-32: What is going on?

• Why does this work?

• Crossover: recombine pieces of partially successful solutions

• Genes closer to each other are more likely to stay together in successive generations

• Encoding is important!

• Mutation: Inject new solutions into the population

• If a trait was missing from initial population, crossover cannot generate it without mutation

08-33: Selection

CS662-2013S-08 Local Search / Genetic Algorithms 9

• How do we select parents for reproduction?

08-34: Selection

• How do we select parents for reproduction?

• Use the best n percent?

• Want to avoid premature convergence

• No genetic variation

• Poor solutions can have promising subparts

• Random?

• No selection pressure

08-35: Roulette Selection

• Roulette Selection weights the probability of a chromosome being selected by its relative fitness

• P(c) =
f itness(c)

∑
crh∈pop f itness(chr)

• Normalizes fitness; total relative fitness will sum to 1

• Can use these as probabilities

08-36: Example

• Maximize f (x) = x2 over range [0, 31]

• Assume integer values of x

• Five bits to encode solution

• Generate random initial population

String Fitness Relative Fitness

01101 169 0.144

11000 576 0.492

01000 64 0.055

10011 361 0.309

Total 1170 1.0

08-37: Example

• Select parents with roulette selection

• Choose a locus, and crossover the strings

String Fitness Relative Fitness

0110 | 1 169 0.144

1100 | 0 576 0.492

01000 64 0.055

10011 361 0.309

Total 1170 1.0

Children: 01100, 1101 08-38: Example

CS662-2013S-08 Local Search / Genetic Algorithms 10

• Select parents with roulette selection

• Choose a locus, and crossover the strings

String Fitness Relative Fitness

01101 169 0.144

11 | 000 576 0.492

01000 64 0.055

10 | 011 361 0.309

Total 1170 1.0

Children: 01100, 11011 Children: 01011, 10000 08-39: Example

• Replace old population with new population

• Apply mutation to new population

• With a small population and low mutation rate, mutations are unlikely

• New Generation:

• 01100, 11001, 11011, 10000

• Average fitness has increased (293 to 439)

• Maximum fitness has increased (576 to 729)

08-40: What’s really going on?

• Subsolutions 11*** anbd ****1 are recombined to produce a beter solution

• Correlation between strings and fitness

• Having a 1 in the first position is correlated with fitness

• Unsurprising, considering encoding

• Call a 1 in the first position a building block

• GA’s work by recombining smaller building blocks into larger building blocks

08-41: Schemas (Schemata)

• Way to talk about strings that are similar to each other

• Add ’*’ (don’t care) symbol to {0, 1}

• A schema is a template that describes a set of strings using {0, 1, *}

• 111** matches 11100, 11101, 11110, 11111

• 0*11* matches 00110, 00111, 01110, 01111

• 0***1 matches 00001, 00011, 00101, 00111, 01001, 01011, 01101, 01111

• Premise: Schemas are correlated with fitness

• In many encodings, only some bits matter for a solution. Schemas give us a way of describing all important

information in a string

08-42: Schemas (Schemata)

CS662-2013S-08 Local Search / Genetic Algorithms 11

• GAs process schemas, rather than strings

• Crossover may or may not damage a schema

• **11* vs 0***1

• Short, highly fit low-order schema are more likely to survive

• Order: the number of fixed bits in a schema

• 1**** - order 1

• 0*1*1* - order 3

• Building Block Hypothesis: GAs work by combining low-order schemas into higher-order schemas to produce

progressively more fit solutions

08-43: Schema Theorem

‘Short, low-order, above-average fitness schemata receive exponentially increasing trials in subsequent genera-

tions.” 08-44: Theory vs. Implementation

• Schema Theorem shows us why GAs work

• In practice, implementation details can make a big difference in the effectiveness of a GA

• Encoding Choices

• Algorithmic improvements

08-45: Tournament Selection

• Roulette selection is nice, but computationally expensive

• Every individual must be evaluated

• Two iterations through the entire population

• Tournament selection is a much less expensive selection mechanism

• For each parent, choose two individuals at random

• Higher fitness gets to reproduce

08-46: Elitism

• Discarding all solutions from a previous generation can slow down a GA

• Bad draw can destroy progress

• May want monotonic improvement

• Elitism is the practice of keeping a fraction of the population to carry over without crossover

• Varying the fraction lets you tradde current performance for learning rate

08-47: When to Stop

• Stop whenever the GA finds a “Good Enough” solution

• What if we don’t know what “Good Enough” is?

• When have we found the best solution to TSP?

CS662-2013S-08 Local Search / Genetic Algorithms 12

• Stop when the population has converged

• Without mutation, eventually one solution will dominate the population

• After “enough” iterations without improvement

08-48: Encoding

• Hardes part of GAs is determining how to encode problem instances

• Schema threorem tells us short = good

• Parameters that are interrelated should be located near each other

• n Queens: Assume that each queen will go in one column

• Problem: Find the right row for each queen

• n rows requires log2 n bits

• Length of string n log2 n

08-49: Encoding Continuous Values

• How could we optimize a real-valued function?

• f (x) = x2
, x ∈ Reals[0, 31]

• Break input space into m chunks

• Each chunk is coded with a binary number

• Called discretization

08-50: Permutation Operators

• Some problems can’t be represented easily as a bitstring

• Traveling Salesman

• Encoding as a bitstring will cause problems

• Crossover will produce invalid solutions

• Encode this as a list of cities: [3, 1, 2, 4, 5]

• Fitness: MAXTOUR - tour length (so we can have a maximization problem, rather than a minimization problem

08-51: Partially Matched Crossover

• How to do crossover?

• Exchange positions rather than substrings

• Example:

• t1: 3 5 4 6 1 2 8 7

• t2: 1 3 6 5 8 7 2 4

• First, pick two loci at rancom

CS662-2013S-08 Local Search / Genetic Algorithms 13

08-52: Partially Matched Crossover

• t1: 3 5 | 4 6 1 2 | 8 7

• t2: 1 3 | 6 5 8 7 | 2 4

• Use pairwise matching to exchenge corresponding cities on each tour

• In each string, 4 and 6 trade places, as do 6 and 5, 1 and 8, and 2 and 7

• New children

• c1: 3 6 5 4 8 7 1 2

• c2: 8 3 4 6 1 2 7 5

• Intuition: Building blocks that are sections of a tour should tend to remain together

08-53: Partially Matched Crossover

• Partially Matched Crossover is one of many approaches to using GAs to solve permutation problems

• Could also encode the position of each city

• Can replace subtours

08-54: Summary

• Local search

• Looking for a state, not a path

• Just store the current state

• Easy to code, low memory – problems?

• Simulated Annealing

• Finding appropriate cooling schedule difficult

• Theoretically complete, in practice useful when lots of acceptable solutions

08-55: Summary

• Genetic Algorithms

• Use bitstrings to perform local searches through a space of possible schemas

• Lots of parameters to play with in practice

• Representation is hardest part of problem

• Effective at searching vast spaces

• Sensitive to parameters

• Mutation Rate

• Elitism Rate

• Initial Population

