Al Programming
CS662-2013S-09

Knowledge Representation

Davi |

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

09-0: Overview

® So far, we've talked about search, which is a
means of considering alternative possibilities.

 The way in which problem states were
represented was typically pretty straightforward.

® The other aspect of many Al problems involves
representing possible states.
® Qur choice of representation influences:
* The problems our agent is able to solve.

* The sorts of environments an agent can deal
with.

 The complexity of search
* The sopnhistication of our agent.

09-1: Knowledge Representation

® Choices we’ll look at include:

* Logic-based approaches
» Propositional logic
- First-order logic
- Ontologies
* Logic is a flexible, well-understood, powerful,
versatile way to represent knowledge.

e Often fits with the way human experts describe
their world

e Facts are either true or false
 Has a hard time dealing with uncertainty.

00-2: Declarative vs. Procedural

® Agents maintain a knowledge base that allows
them to reason about a problem.

® Knowledge is represented as facts and relations
® |nference is typically performed automatically.

® This is sometimes called programming at the
knowledge level.

® Specify facts known by an agent, along with goals.
® Programming focus is on encoding knowledge

09-3: Wumpus World

® R & N use the Wumpus World as an example
domain.
® Environment: 4x4 grid of rooms.
e Gold in one room, wumpus in another
* Pits in some rooms

® Actions: Move forward, turn left, turn right, shoot
arrow,grab gold.

® Sensors: Perceive stench, perceive breeze,
perceive gold, sense wall, hear wumpus death.

® (Goal: maximize performance, which means finding
gold quickly without encountering the wumpus or
falling into a pit.

09-2: Wumpus World

/ Gold ¥/ §

»/
Y

»/
~ Bleeze - Pl
PI Z Bresze -
Y
‘-_»I
0
Pl .
M

09-5: Knowledge base

® A knowledge base is composed of sentences that
assert facts about the world.

* What's the difference between a knowledge
base and a database?

* In principle, expressiveness and usage.
* |n practice, a knowledge base might be
implemented using a database.
® Sentences describe:

e Obijects of interest in the world (wumpueses,
gold, pits, rooms, agent)

e Relationships between objects (agent is
holding arrow)

09-6: Syntax and Semantics

® Syntax: Defines whether a sentence is properly
constructed.

* |n arithmetic, x + 2 = 5 is syntactically correct,
whereas x+ = 3 is not.

* |In a Python program, timeElapsed = 3 IS
syntactically correct, while 3 = timeElapsed 1S
not.

® Semantics: Defines when a sentence is true or
false.

e The semantics of x + 2 = 5 are that this
sentence is true in worlds where x = 3 and false
otherwise.

* Logical sentences must be true or false; no
“deqgree of truth”.

00-7: Models

® Model: A model is an assignment of values to a subset of
the variables of interest in our problem.

* A model for the Vacuum cleaner world might indicate
where the vacuum is, and which rooms are clean.

* |n the Wumpus World, a model would indicate the
location of the pits, gold, agent, arrow, and wumpus.

® A model provides an agent with a possible world; one
guess at how things might be.

® We’'ll often be interested in finding models that make a
sentence true or false, or all the models that could be
true for a given set of sentences.

® Models are very much like states.

09-8: LOgicC

® Entailment: Entailment is the idea that one
sentence follows logically from another.

e Written as: a E b

e Technically, this says: for all models where a is
true, b is also true.

e (think if-then)
* (a+2=>5F@=23)

® Note that entailment is a property of a set of
sentences, and not an instruction to an agent.

09-9: Inference

® A knowledge base plus a model allows us to
perform inference.

* For a given set of sentences, plus some
assignment of values to variables, what can we
conclude?

® Entailment tells us that it is possible to derive a
sentence.

® |nference tells us how it is derived.

® An algorithm that only derives entailed sentences
IS said to be sound.

e Doesn’t make mistakes or conclude incorrect
sentences.

0o-10: Inference

® An inference algorithm that can derive all entailed
sentences Is complete.

e |f a sentence is entailed, a complete algorithm
will eventually infer it.

* |f entailed sentences are goals, this is the same
definition of complete we used for search.

e That means we can think of inference as
search, and use the algorithms we’ve already
learned about.

00-11: Propositional Logic

® Propositional logic is a very simple logic.
* Nice for examples
 Computationally feasible.
e Limited in representational power.
® Terms (R & N call these atomic sentences) consist
of a single symbol that has a truth value.
* Rooml,0Clean, VacuumliInQO, 0

00-12: Propositional Logic

® a complex sentence is a set of terms conjoined
with v, =, A, =, ©.

* Rooml,0Clean A (RoomQ,0Clean ¥V RoomQ, ODirty)
. Breezel,l = (Pl'l‘l,z \% Pil‘z,l)

00-13: Propositional Logic

® Notice that propositional logic does not have any
way to deal with classes of objects.

 We can’t concisely say “For any room, if there
IS a breeze, then there is a pit in the next room.”

e To say “At least one room is dirty” requires us
to list all possibilities.
- We don’t have functions or predicates.

* There’s a computational tradeoff involved; if
we’re careful about how we use propositions,
we can do fast (polynomial-time) inference.

e But, we're limited in what our agent can reason
about.

* Propositional logic is the logic underlying
hardware design (Boolean logic)

0o-12: More on predicates

® Often, people will replace atomic terms with simple
predicates.

* Replace Room0, 1Clean with Clean(Room0, 1).

e Asitis, this is fine.

* What we're missing is a way to talk about all the
rooms that are clean without explicitly

enumerating them.
- We don’t have variables or quantifiers

* To do that, we need first-order logic (next week)

09-15: Notation

® A A B-AND. sentence is true if both A and B are
true.

® AV B OR. Sentence is true if either A or B (or both)
are true.

® —A NOT. Sentence is true if A is false.

® A = BlImplies. Sentence is true if A is false or B is
true.

® A & B Equivalence. Sentence is true if A and B
have the same truth value.

00-16: Prop. Logic - implication

® |mplication is a particularly useful logical construct.

® The sentence A = B Is true If:
e Ais true and B is true.
e A s false.

® Example: If it is raining right now, then it is cloudy
right now.

® A = Bis equivalentto -A Vv B.
® |mplication will allow us to perform inference.

09-17: Still more definitions

® | ogical equivalence: Two sentences are logically
equivalent if they are true for the same set of
models.

* P AQislogically equivalent to =(=P VvV =Q)
® Validity (tautology): A sentence is valid if it is true
for all models.
e AV —-A
® Contradiction: A sentence that is false in all
models.
e AN-A

0o-18: Still more definitions

® Satisfiability: A sentence is satisfiable if it is true for
some model.

e Room(,0Clean V Room0, 1Clean IS true in some
worlds.

e Often our problem will be to find a model that
makes a sentence true (or false).

e A model that satisfies all the sentences we'’re

interested in will be the goal or solution to our
search.

09-19: Logical reasoning

® | ogical reasoning proceeds by using existing
sentences in an agent’s KB to deduce new

sentences.

® Deduction is guarateed to produce true sentences,
assuming a sound mechanism is used.
® Rules of inference.

e Modus Ponens

- A,A = B, conclude B
e And-Elimination

- A A B, conclude A.

e QOr-introduction
- A, conclude AV B

09-20: Logical Reasoning

® Rules of inference.

e Contraposition: A = B can be rewritten as
-B = -A
* Double negative: —(-A) = A
e Distribution
« AV(BAC)=(AVB)AAVC)
« AAN(BVC)=(AAB)V(AAC)
 DeMorgan’s theorem
- AV B, rewrite as —(—A A =B)
c OrAANB & —(—-AV —B)

09-21: Inference as Search

® We can then use good old breadth-first search (or
any other search) to perform inference and
determine whether a sentence is entailed by a
knowledge base.

® Basic idea: Begin with statements in our KB.

® Actions are applications of implication.

* For example, say we know 1) A = B, 2) B = C,
and 3) A.

* One possible action is to apply Modus Ponens
to 1 and 3 to conclude B.

 We can then apply Modus Ponens again to
conclude C.

09-22: Inference as Search

® Qur search can proceed in a breadth-first manner
(what are all the possible conclusions from the
original KB), depth-first (take one inference, then
use it to make further inferences, and so on) or
somewhere in-between.

® Successor function defines all applicable rules for
a given knowledge base.

® The result of this search is called a proof.

09-23: ExXample

® Begin with:
* Thereisnopitin(1,1): Ry : =Py
* A square has a breeze iff there is a pit in the
neighboring square
* Ry: By o (P12 V Pyy)
* Ry : By © (P11 V P,V P3y) (and so on for all
other squares)
® Assume the agent visits 1,1 and senses no breeze,
but does sense a breeze in 2,1. Add:
* Ry : =By
* Rs: By

09-24: ExXample

® \We can use biconditional elimination to rewrite R,
as:

* Re: (B11 = P12V Py1)A((P12V Pyy) = By)

® And-elimination on R¢ produces
Ry : (P12 V Py1) = Bi1)

® Contraposition on R; gives us:
Rg : =B11 = —(P12V P2)

® Modus Ponens with Rg and R4 produces
Ry : =(P1pV Py)

® DeMorgan’s then gives us Ry : =Pio A P54

® Qur agent can conclude that there is no pit in 0,0,
1,2, or 2,1. It is not sure about 2,2

09-25: Resolution

® The preceding rules are sound, but not necessarily
complete.

® Also, search can be inefficient: there might be
many operators that can be applied in a particular
state.

® | uckily, there is a complete rule for inference
(when coupled with a complete search algorithm)
that uses a single operator.
® This is called resolution.
e AV Band —A Vv C allows us to conclude BV C.

e A |s either true or not true. If A is true, then C
must be true.

e If Ais false, then B must be true.

09-26: Conjunctive Normal Form

® Resolution works with disjunctions.

® This means that our knowledge base needs to be
in this form.

® Conjunctive Normal Form is a conjunction of
clauses that are disjunctions.

® AVBVOADVEVF)ANGVHVIA..

® Every propositional logic sentence can be
converted to CNF.

09-27:. CNF Recipe

1. Eliminate equivalence
® A BbecomesA=BAB=A

2. Eliminate implication
® A => Bbecomes -AV B
3. Move - inwards using double negation and
DeMorgan’s
® -(-A) becomes A
® —(A A B) becomes (—A V =B)

4. Distribute nested clauses
® (AV(BAC)) becomes(AVB)AAVCO)

09-28: Example

® B o P12V Pyy)
® Eliminating equivalence produces:

* (Bi1= P12V Py1) AN((P12V P21) = Br)
® Removing implication gives us:

* (=B11 VP12V Py) A(=(P12V Pa1)V Byy)

09-29: ExXample

® We then use DeMorgan’s rule to move negation
iInwards:

® (=B11 VP2V Pry) AN((mP12AN=P21)V Bry)
® Finally, we distribute OR over AND:
® (=B11VPia2VPy)AN(=P12V By 1) AN(=P21)V By)

® Now we have clauses that can be plugged into a
resolution theorem prover. (can break ANDs into
separate sentences)

® They're less readable by a human, but more
computationally useful.

09-30: Proof By Refutation

® Once your KB is in CNF, you can do resolution by
refutation.

* |In math, this is called proof by contradiction

® Basic idea: we want to show that sentence A is
true.

® |nsert —A into the KB and try to derive a
contradiction.

09-31: EXample

® Prove that there is notapitin (1,2). =P,

® Relevant Facts:
® Roy : (=B11 VPioV Pyy)
® Ry : (=P12V By)
® Roe : (=P21V Byj1)
e R4 : _'Bl,l

® |nsert R, : P, into the KB

09-32: EXample

® Resolve R, with R;;, 10 get: Rg : By
® \We already have a contradiction, since R, : =B ;

® Therefore, the sentence we inserted into the KB
must be false.

® Most proofs take more than one step to get to a
contradiction ...

09-33: Examples ...

1. Ifit rains, Joe brings his umbrella (r = u)

2. If Joe has an umbrella, he doesn’t get wet
(U = —-w)

3. If it doesn’t rain, Joe doesn’t get wet (—r = —w)

09-3a: More Examples ...

® Fither Heather attended the meeting or Heather
was not invited.

® |f the boss wanted Heather at the meeting, then
she was invited.

® Heather did not attend the meeting.

® |f the boss did not want Heather there, and the
boss did not invite her there, then she is going to
be fired.

Prove Heather is going to be fired.

09-35: HOrn clauses

Standard resolution theorem proving (and propositional inference in general) is
exponentially hard.

However, if we're willing to restrict ourselves a bit, the problem becomes
(computationally) easy.
A Horn clause is a disjunction with at most one positive literal.
® _AVv-BVv-CVD
® _Av-B
These can be rewritten as implications with one consequent.

® AABAC=D
® AAB= False

Horn clauses are the basis of logic programming (sometimes called rule-based
programming)

09-36: KB: Forward Chaining

Forward chaining involves starting with a KB and
continually applying Modus Ponens to derive all
possible facts.

This is sometimes called data-driven reasoning

Start with domain knowledge and see what that
knowledge tells you.

This is very useful for discovering new facts or
rules

Less helpful for proving a specific sentence true or
false

e Search is not directed towards a goal

00-37: KB: Backward Chaining

® Backward chaining starts with the goal and “works
backward” to the start.

® Example: If we want to show that A is entailed, find
a sentence whose consequent is A.

® Then try to prove that sentence’s antecendents.
® This is sometimes called query-driven reasoning.

® More effective at proving a particular query, since
search is focused on a goal.

® | ess likely to discover new and unknown
information.

® Means-ends analysis is a similar sort of reasoning.
® Prolog uses backward chaining.

09-38: Strengths of Prop. Logic

® Declarative - knowledge can be separated from
inference.

® Can handle partial information

® Can compose more complex sentences out of
simpler ones.

® Sound and complete inference mechanisms
(efficient for Horn clauses)

09-30: Weaknesses of Prop. logic

® Exponential increase in number of literals
® No way to describe relations between objects
® No way to quantify over objects.

® First-order logic is a mechanism for dealing with
these problems.

® As always, there will be tradeoftfs.
* There’s no free lunch!

00-40: Applications

® Propositional logic can work nicely in bounded
domains

* All objects of interest can be enumerated.

® Fast algorithms exist for solving SAT problems via
model checking.

e Search all models to find one that satisfies a
sentence.

® (Can be used for some scheduling and planning
problems

e Often, we’ll use a predicate-ish notation as
syntactic sugar.

	{small lecturenumber -	heblocknumber :} Overviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Knowledge Representationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Declarative vs. Proceduraladdtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Wumpus Worldaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Wumpus Worldaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Knowledge baseaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Syntax and Semanticsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Modelsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Logicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inferenceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inferenceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Propositional Logicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Propositional Logicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Propositional Logicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More on predicatesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Notationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prop. Logic - implication addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Still more definitionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Still more definitionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Logical reasoningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Logical Reasoningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inference as Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inference as Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Resolutionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Conjunctive Normal Formaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} CNF Recipeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Proof By Refutationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Examples ...addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More Examples ...addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Horn clausesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} KB: Forward Chainingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} KB: Backward Chainingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Strengths of Prop. Logicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Weaknesses of Prop. logicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Applicationsaddtocounter {blocknumber}{1}

