Al Programming CS662-2013S-09

Knowledge Representation

David Galles

Department of Computer Science
University of San Francisco

09.0: Overview

- So far, we've talked about search, which is a means of considering alternative possibilities.
- The way in which problem states were represented was typically pretty straightforward.
- The other aspect of many AI problems involves representing possible states.
- Our choice of representation influences:
- The problems our agent is able to solve.
- The sorts of environments an agent can deal with.
- The complexity of search
- The sophistication of our agent.

09-1: Knowledge Representation

- Choices we'll look at include:
- Logic-based approaches
- Propositional logic
- First-order logic
- Ontologies
- Logic is a flexible, well-understood, powerful, versatile way to represent knowledge.
- Often fits with the way human experts describe their world
- Facts are either true or false
- Has a hard time dealing with uncertainty.

09-2: Declarative vs. Procedural

- Agents maintain a knowledge base that allows them to reason about a problem.
- Knowledge is represented as facts and relations
- Inference is typically performed automatically.
- This is sometimes called programming at the knowledge level.
- Specify facts known by an agent, along with goals.
- Programming focus is on encoding knowledge

09-3: Wumpus World

- R \& N use the Wumpus World as an example domain.
- Environment: 4×4 grid of rooms.
- Gold in one room, wumpus in another
- Pits in some rooms
- Actions: Move forward, turn left, turn right, shoot arrow,grab gold.
- Sensors: Perceive stench, perceive breeze, perceive gold, sense wall, hear wumpus death.
- Goal: maximize performance, which means finding gold quickly without encountering the wumpus or falling into a pit.

09-4: Wumpus World

09-5: Knowledge base

- A knowledge base is composed of sentences that assert facts about the world.
- What's the difference between a knowledge base and a database?
- In principle, expressiveness and usage.
- In practice, a knowledge base might be implemented using a database.
- Sentences describe:
- Objects of interest in the world (wumpueses, gold, pits, rooms, agent)
- Relationships between objects (agent is holding arrow)

09-6: Syntax and Semantics

- Syntax: Defines whether a sentence is properly constructed.
- In arithmetic, $x+2=5$ is syntactically correct, whereas $x+=3$ is not.
- In a Python program, timeElapsed $=3$ is syntactically correct, while $3=$ timeElapsed is not.
- Semantics: Defines when a sentence is true or false.
- The semantics of $x+2=5$ are that this sentence is true in worlds where $x=3$ and false otherwise.
- Logical sentences must be true or false; no "degree of truth".

09-7: Models

- Model: A model is an assignment of values to a subset of the variables of interest in our problem.
- A model for the Vacuum cleaner world might indicate where the vacuum is, and which rooms are clean.
- In the Wumpus World, a model would indicate the location of the pits, gold, agent, arrow, and wumpus.
- A model provides an agent with a possible world; one guess at how things might be.
- We'll often be interested in finding models that make a sentence true or false, or all the models that could be true for a given set of sentences.
- Models are very much like states.

09-8: Logic

- Entailment: Entailment is the idea that one sentence follows logically from another.
- Written as: $a \vDash b$
- Technically, this says: for all models where a is true, b is also true.
- (think if-then)
- $(a+2=5) \vDash(a=3)$
- Note that entailment is a property of a set of sentences, and not an instruction to an agent.

09-9: Inference

- A knowledge base plus a model allows us to perform inference.
- For a given set of sentences, plus some assignment of values to variables, what can we conclude?
- Entailment tells us that it is possible to derive a sentence.
- Inference tells us how it is derived.
- An algorithm that only derives entailed sentences is said to be sound.
- Doesn't make mistakes or conclude incorrect sentences.

09-10: Inference

- An inference algorithm that can derive all entailed sentences is complete.
- If a sentence is entailed, a complete algorithm will eventually infer it.
- If entailed sentences are goals, this is the same definition of complete we used for search.
- That means we can think of inference as search, and use the algorithms we've already learned about.

09-11: Propositional Logic

- Propositional logic is a very simple logic.
- Nice for examples
- Computationally feasible.
- Limited in representational power.
- Terms (R \& N call these atomic sentences) consist of a single symbol that has a truth value.
- Room1,0Clean, VacuumIn0,0

09-12: Propositional Logic

- a complex sentence is a set of terms conjoined with $\vee, \neg, \wedge, \Rightarrow, \Leftrightarrow$.
- Room1,0Clean $\wedge($ Room 0,0 Clean \vee Room 0,0 Dirty $)$
- Breeze.e ${ }_{1,1} \Rightarrow\left(\right.$ Pit $_{1,2} \vee$ Pit $\left._{2,1}\right)$

09-13: Propositional Logic

- Notice that propositional logic does not have any way to deal with classes of objects.
- We can't concisely say "For any room, if there is a breeze, then there is a pit in the next room."
- To say "At least one room is dirty" requires us to list all possibilities.
- We don't have functions or predicates.
- There's a computational tradeoff involved; if we're careful about how we use propositions, we can do fast (polynomial-time) inference.
- But, we're limited in what our agent can reason about.
- Propositional logic is the logic underlying hardware design (Boolean logic)

09-14: More on predicates

- Often, people will replace atomic terms with simple predicates.
- Replace Room0, 1Clean with Clean(Room0, 1).
- As it is, this is fine.
- What we're missing is a way to talk about all the rooms that are clean without explicitly enumerating them.
- We don't have variables or quantifiers
- To do that, we need first-order logic (next week)

09-15: Notation

- $A \wedge B$ - AND. sentence is true if both A and B are true.
- $A \vee B$ OR. Sentence is true if either A or B (or both) are true.
- $\neg A$ NOT. Sentence is true if A is false.
- $A \Rightarrow B$ Implies. Sentence is true if A is false or B is true.
- $A \Leftrightarrow B$ Equivalence. Sentence is true if A and B have the same truth value.

09-16: Prop. Logic - implication

- Implication is a particularly useful logical construct.
- The sentence $A \Rightarrow B$ is true if:
- A is true and B is true.
- A is false.
- Example: If it is raining right now, then it is cloudy right now.
- $A \Rightarrow B$ is equivalent to $\neg A \vee B$.
- Implication will allow us to perform inference.

09-17: Still more definitions

- Logical equivalence: Two sentences are logically equivalent if they are true for the same set of models.
- $P \wedge Q$ is logically equivalent to $\neg(\neg P \vee \neg Q)$
- Validity (tautology): A sentence is valid if it is true for all models.
- $A \vee \neg A$
- Contradiction: A sentence that is false in all models.
- $A \wedge \neg A$

09-18: Still more definitions

- Satisfiability: A sentence is satisfiable if it is true for some model.
- Room0, 0Clean \vee Room 0,1 Clean is true in some worlds.
- Often our problem will be to find a model that makes a sentence true (or false).
- A model that satisfies all the sentences we're interested in will be the goal or solution to our search.

09-19: Logical reasoning

- Logical reasoning proceeds by using existing sentences in an agent's KB to deduce new sentences.
- Deduction is guarateed to produce true sentences, assuming a sound mechanism is used.
- Rules of inference.
- Modus Ponens
- $A, A \Rightarrow B$, conclude B
- And-Elimination
- $A \wedge B$, conclude A.
- Or-introduction
- A, conclude $A \vee B$

09-20: Logical Reasoning

- Rules of inference.
- Contraposition: $A \Rightarrow B$ can be rewritten as $\neg B \Rightarrow \neg A$
- Double negative: $\neg(\neg A)=A$
- Distribution
- $A \vee(B \wedge C)=(A \vee B) \wedge(A \vee C)$
- $A \wedge(B \vee C)=(A \wedge B) \vee(A \wedge C)$
- DeMorgan's theorem
- $A \vee B$, rewrite as $\neg(\neg A \wedge \neg B)$
- or $A \wedge B \Leftrightarrow \neg(\neg A \vee \neg B)$

09-21: Inference as Search

- We can then use good old breadth-first search (or any other search) to perform inference and determine whether a sentence is entailed by a knowledge base.
- Basic idea: Begin with statements in our KB.
- Actions are applications of implication.
- For example, say we know 1) $A \Rightarrow B$, 2) $B \Rightarrow C$, and 3) A.
- One possible action is to apply Modus Ponens to 1 and 3 to conclude B.
- We can then apply Modus Ponens again to conclude C.

09-22: Inference as Search

- Our search can proceed in a breadth-first manner (what are all the possible conclusions from the original KB), depth-first (take one inference, then use it to make further inferences, and so on) or somewhere in-between.
- Successor function defines all applicable rules for a given knowledge base.
- The result of this search is called a proof.

09-23: Example

- Begin with:
- There is no pit in $(1,1): R_{1}: \neg P_{1,1}$
- A square has a breeze iff there is a pit in the neighboring square
- $R_{2}: B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)$
- $R_{3}: B_{2,1} \Leftrightarrow\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)$ (and so on for all other squares)
- Assume the agent visits 1,1 and senses no breeze, but does sense a breeze in 2,1 . Add:
- $R_{4}: \neg B_{1,1}$
- $R_{5}: B_{2,1}$

09-24: Example

- We can use biconditional elimination to rewrite R_{2} as:
- $R_{6}:\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)$
- And-elimination on R_{6} produces

$$
R_{7}:\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

- Contraposition on R_{7} gives us: $R_{8}: \neg B_{1,1} \Rightarrow \neg\left(P_{1,2} \vee P_{2,1}\right)$
- Modus Ponens with R_{8} and R_{4} produces $R_{9}: \neg\left(P_{1,2} \vee P_{2,1}\right)$
- DeMorgan's then gives us $R_{10}: \neg P_{1,2} \wedge \neg P_{2,1}$
- Our agent can conclude that there is no pit in 0,0 , 1,2 , or 2,1 . It is not sure about 2,2

09-25: Resolution

- The preceding rules are sound, but not necessarily complete.
- Also, search can be inefficient: there might be many operators that can be applied in a particular state.
- Luckily, there is a complete rule for inference (when coupled with a complete search algorithm) that uses a single operator.
- This is called resolution.
- $A \vee B$ and $\neg A \vee C$ allows us to conclude $B \vee C$.
- A is either true or not true. If A is true, then C must be true.
- if A is false, then B must be true.

09-26: Conjunctive Normal Form

- Resolution works with disjunctions.
- This means that our knowledge base needs to be in this form.
- Conjunctive Normal Form is a conjunction of clauses that are disjunctions.
- $(A \vee B \vee C) \wedge(D \vee E \vee F) \wedge(G \vee H \vee I) \wedge \ldots$
- Every propositional logic sentence can be converted to CNF.

09-27: CNF Recipe

1. Eliminate equivalence

- $A \Leftrightarrow B$ becomes $A \Rightarrow B \wedge B \Rightarrow A$

2. Eliminate implication

- $A \Rightarrow B$ becomes $\neg A \vee B$

3. Move \neg inwards using double negation and DeMorgan's

- $\neg(\neg A)$ becomes A
- $\neg(A \wedge B)$ becomes $(\neg A \vee \neg B)$

4. Distribute nested clauses

- $(A \vee(B \wedge C))$ becomes $(A \vee B) \wedge(A \vee C)$

09-28: Example

- $B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)$
- Eliminating equivalence produces:
- $\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)$
- Removing implication gives us:
- $\left(\neg B_{1,1} \vee\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)$

09-29: Example

- We then use DeMorgan's rule to move negation inwards:
- $\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)$
- Finally, we distribute OR over AND:
- $\left.\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1}\right) \vee B_{1,1}\right)$
- Now we have clauses that can be plugged into a resolution theorem prover. (can break ANDs into separate sentences)
- They're less readable by a human, but more computationally useful.

09-30: Proof By Refutation

- Once your KB is in CNF, you can do resolution by refutation.
- In math, this is called proof by contradiction
- Basic idea: we want to show that sentence A is true.
- Insert $\neg A$ into the KB and try to derive a contradiction.

09-31: Example

- Prove that there is not a pit in $(1,2) . \neg P_{1,2}$
- Relevant Facts:
- $R_{2 a}:\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right)$
- $R_{2 b}:\left(\neg P_{1,2} \vee B_{1,1}\right)$
- $R_{2 c}:\left(\neg P_{2,1} \vee B_{1,1}\right)$
- $R_{4}: \neg B_{1,1}$
- Insert $R_{n}: P_{1,2}$ into the KB

09-32: Example

- Resolve R_{n} with $R_{2 b}$ to get: $R_{6}: B_{1,1}$
- We already have a contradiction, since $R_{4}: \neg B_{1,1}$
- Therefore, the sentence we inserted into the KB must be false.
- Most proofs take more than one step to get to a contradiction ...

09.-3: Examples

1. If it rains, Joe brings his umbrella ($r \Rightarrow u$)
2. If Joe has an umbrella, he doesn't get wet

$$
(u \Rightarrow \neg w)
$$

3. If it doesn't rain, Joe doesn't get wet ($\neg r \Rightarrow \neg w)$

09-34: More Examples

- Either Heather attended the meeting or Heather was not invited.
- If the boss wanted Heather at the meeting, then she was invited.
- Heather did not attend the meeting.
- If the boss did not want Heather there, and the boss did not invite her there, then she is going to be fired.

Prove Heather is going to be fired.

09-35: Horn clauses

- Standard resolution theorem proving (and propositional inference in general) is exponentially hard.
- However, if we're willing to restrict ourselves a bit, the problem becomes (computationally) easy.
- A Horn clause is a disjunction with at most one positive literal.
- $\neg A \vee \neg B \vee \neg C \vee D$
- $\neg A \vee \neg B$
- These can be rewritten as implications with one consequent.
- $A \wedge B \wedge C \Rightarrow D$
- $A \wedge B \Rightarrow$ False
- Horn clauses are the basis of logic programming (sometimes called rule-based programming)

09.36: KB: Forward Chaining

- Forward chaining involves starting with a KB and continually applying Modus Ponens to derive all possible facts.
- This is sometimes called data-driven reasoning
- Start with domain knowledge and see what that knowledge tells you.
- This is very useful for discovering new facts or rules
- Less helpful for proving a specific sentence true or false
- Search is not directed towards a goal

09-37: KB: Backward Chaining

- Backward chaining starts with the goal and "works backward" to the start.
- Example: If we want to show that A is entailed, find a sentence whose consequent is A.
- Then try to prove that sentence's antecendents.
- This is sometimes called query-driven reasoning.
- More effective at proving a particular query, since search is focused on a goal.
- Less likely to discover new and unknown information.
- Means-ends analysis is a similar sort of reasoning.
- Prolog uses backward chaining.

09-38: Strengths of Prop. Logic

- Declarative - knowledge can be separated from inference.
- Can handle partial information
- Can compose more complex sentences out of simpler ones.
- Sound and complete inference mechanisms (efficient for Horn clauses)

09-39: Weaknesses of Prop. logic

- Exponential increase in number of literals
- No way to describe relations between objects
- No way to quantify over objects.
- First-order logic is a mechanism for dealing with these problems.
- As always, there will be tradeoffs.
- There's no free lunch!

09-40: Applications

- Propositional logic can work nicely in bounded domains
- All objects of interest can be enumerated.
- Fast algorithms exist for solving SAT problems via model checking.
- Search all models to find one that satisfies a sentence.
- Can be used for some scheduling and planning problems
- Often, we'll use a predicate-ish notation as syntactic sugar.

