
AI Programming
CS662-2013S-09

Knowledge Representation

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles


09-0: Overview

So far, we’ve talked about search, which is a
means of considering alternative possibilities.

The way in which problem states were
represented was typically pretty straightforward.

The other aspect of many AI problems involves
representing possible states.

Our choice of representation influences:

The problems our agent is able to solve.

The sorts of environments an agent can deal
with.

The complexity of search

The sophistication of our agent.



09-1: Knowledge Representation

Choices we’ll look at include:

Logic-based approaches
Propositional logic
First-order logic
Ontologies

Logic is a flexible, well-understood, powerful,
versatile way to represent knowledge.

Often fits with the way human experts describe
their world

Facts are either true or false

Has a hard time dealing with uncertainty.



09-2: Declarative vs. Procedural

Agents maintain a knowledge base that allows
them to reason about a problem.

Knowledge is represented as facts and relations

Inference is typically performed automatically.

This is sometimes called programming at the
knowledge level.

Specify facts known by an agent, along with goals.

Programming focus is on encoding knowledge



09-3: Wumpus World

R & N use the Wumpus World as an example
domain.

Environment: 4x4 grid of rooms.

Gold in one room, wumpus in another

Pits in some rooms

Actions: Move forward, turn left, turn right, shoot
arrow,grab gold.

Sensors: Perceive stench, perceive breeze,
perceive gold, sense wall, hear wumpus death.

Goal: maximize performance, which means finding
gold quickly without encountering the wumpus or
falling into a pit.



09-4: Wumpus World

PIT

1 2 3 4

1

2

3

4

START

Stench

Stench

Breez e

Gold

PIT

PIT

Breez e

Breez e

Breez e

Breez e

Breez e

Stench



09-5: Knowledge base

A knowledge base is composed of sentences that
assert facts about the world.

What’s the difference between a knowledge
base and a database?

In principle, expressiveness and usage.

In practice, a knowledge base might be
implemented using a database.

Sentences describe:

Objects of interest in the world (wumpueses,
gold, pits, rooms, agent)

Relationships between objects (agent is
holding arrow)



09-6: Syntax and Semantics

Syntax: Defines whether a sentence is properly
constructed.

In arithmetic, x + 2 = 5 is syntactically correct,
whereas x+ = 3 is not.

In a Python program, timeElapsed = 3 is
syntactically correct, while 3 = timeElapsed is
not.

Semantics: Defines when a sentence is true or
false.

The semantics of x + 2 = 5 are that this
sentence is true in worlds where x = 3 and false
otherwise.

Logical sentences must be true or false; no
“degree of truth”.



09-7: Models

Model: A model is an assignment of values to a subset of

the variables of interest in our problem.

A model for the Vacuum cleaner world might indicate

where the vacuum is, and which rooms are clean.

In the Wumpus World, a model would indicate the

location of the pits, gold, agent, arrow, and wumpus.

A model provides an agent with a possible world ; one

guess at how things might be.

We’ll often be interested in finding models that make a

sentence true or false, or all the models that could be

true for a given set of sentences.

Models are very much like states.



09-8: Logic

Entailment: Entailment is the idea that one
sentence follows logically from another.

Written as: a |= b

Technically, this says: for all models where a is
true, b is also true.

(think if-then)

(a + 2 = 5) |= (a = 3)

Note that entailment is a property of a set of
sentences, and not an instruction to an agent.



09-9: Inference

A knowledge base plus a model allows us to
perform inference.

For a given set of sentences, plus some
assignment of values to variables, what can we
conclude?

Entailment tells us that it is possible to derive a
sentence.

Inference tells us how it is derived.

An algorithm that only derives entailed sentences
is said to be sound.

Doesn’t make mistakes or conclude incorrect
sentences.



09-10: Inference

An inference algorithm that can derive all entailed
sentences is complete.

If a sentence is entailed, a complete algorithm
will eventually infer it.

If entailed sentences are goals, this is the same
definition of complete we used for search.

That means we can think of inference as
search, and use the algorithms we’ve already
learned about.



09-11: Propositional Logic

Propositional logic is a very simple logic.

Nice for examples

Computationally feasible.

Limited in representational power.

Terms (R & N call these atomic sentences) consist
of a single symbol that has a truth value.

Room1, 0Clean, VacuumIn0, 0



09-12: Propositional Logic

a complex sentence is a set of terms conjoined
with ∨, ¬, ∧,⇒,⇔.

Room1, 0Clean ∧ (Room0, 0Clean ∨ Room0, 0Dirty)

Breeze1,1 ⇒ (Pit1,2 ∨ Pit2,1)



09-13: Propositional Logic

Notice that propositional logic does not have any
way to deal with classes of objects.

We can’t concisely say “For any room, if there
is a breeze, then there is a pit in the next room.”

To say “At least one room is dirty” requires us
to list all possibilities.

We don’t have functions or predicates.

There’s a computational tradeoff involved; if
we’re careful about how we use propositions,
we can do fast (polynomial-time) inference.

But, we’re limited in what our agent can reason
about.

Propositional logic is the logic underlying
hardware design (Boolean logic)



09-14: More on predicates

Often, people will replace atomic terms with simple
predicates.

Replace Room0, 1Clean with Clean(Room0, 1).

As it is, this is fine.

What we’re missing is a way to talk about all the
rooms that are clean without explicitly
enumerating them.

We don’t have variables or quantifiers

To do that, we need first-order logic (next week)



09-15: Notation

A ∧ B - AND. sentence is true if both A and B are
true.

A ∨ B OR. Sentence is true if either A or B (or both)
are true.

¬A NOT. Sentence is true if A is false.

A⇒ B Implies. Sentence is true if A is false or B is
true.

A⇔ B Equivalence. Sentence is true if A and B
have the same truth value.



09-16: Prop. Logic - implication

Implication is a particularly useful logical construct.

The sentence A⇒ B is true if:

A is true and B is true.

A is false.

Example: If it is raining right now, then it is cloudy
right now.

A⇒ B is equivalent to ¬A ∨ B.

Implication will allow us to perform inference.



09-17: Still more definitions

Logical equivalence: Two sentences are logically
equivalent if they are true for the same set of
models.

P ∧ Q is logically equivalent to ¬(¬P ∨ ¬Q)

Validity (tautology): A sentence is valid if it is true
for all models.

A ∨ ¬A

Contradiction: A sentence that is false in all
models.

A ∧ ¬A



09-18: Still more definitions

Satisfiability: A sentence is satisfiable if it is true for
some model.

Room0, 0Clean ∨ Room0, 1Clean is true in some
worlds.

Often our problem will be to find a model that
makes a sentence true (or false).

A model that satisfies all the sentences we’re
interested in will be the goal or solution to our
search.



09-19: Logical reasoning

Logical reasoning proceeds by using existing
sentences in an agent’s KB to deduce new
sentences.

Deduction is guarateed to produce true sentences,
assuming a sound mechanism is used.

Rules of inference.

Modus Ponens
A, A⇒ B, conclude B

And-Elimination
A ∧ B, conclude A.

Or-introduction
A, conclude A ∨ B



09-20: Logical Reasoning

Rules of inference.

Contraposition: A⇒ B can be rewritten as
¬B⇒ ¬A

Double negative: ¬(¬A) = A

Distribution
A ∨ (B ∧C) = (A ∨ B) ∧ (A ∨C)

A ∧ (B ∨C) = (A ∧ B) ∨ (A ∧C)

DeMorgan’s theorem
A ∨ B, rewrite as ¬(¬A ∧ ¬B)

or A ∧ B⇔ ¬(¬A ∨ ¬B)



09-21: Inference as Search

We can then use good old breadth-first search (or
any other search) to perform inference and
determine whether a sentence is entailed by a
knowledge base.

Basic idea: Begin with statements in our KB.

Actions are applications of implication.

For example, say we know 1) A⇒ B, 2) B⇒ C,
and 3) A.

One possible action is to apply Modus Ponens
to 1 and 3 to conclude B.

We can then apply Modus Ponens again to
conclude C.



09-22: Inference as Search

Our search can proceed in a breadth-first manner
(what are all the possible conclusions from the
original KB), depth-first (take one inference, then
use it to make further inferences, and so on) or
somewhere in-between.

Successor function defines all applicable rules for
a given knowledge base.

The result of this search is called a proof.



09-23: Example

Begin with:

There is no pit in (1,1): R1 : ¬P1,1

A square has a breeze iff there is a pit in the
neighboring square

R2 : B1,1 ⇔ (P1,2 ∨ P2,1)

R3 : B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1) (and so on for all
other squares)

Assume the agent visits 1,1 and senses no breeze,
but does sense a breeze in 2,1. Add:

R4 : ¬B1,1

R5 : B2,1



09-24: Example

We can use biconditional elimination to rewrite R2

as:

R6 : (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1)⇒ B1,1)

And-elimination on R6 produces
R7 : ((P1,2 ∨ P2,1)⇒ B1,1)

Contraposition on R7 gives us:
R8 : ¬B1,1 ⇒ ¬(P1,2 ∨ P2,1)

Modus Ponens with R8 and R4 produces
R9 : ¬(P1,2 ∨ P2,1)

DeMorgan’s then gives us R10 : ¬P1,2 ∧ ¬P2,1

Our agent can conclude that there is no pit in 0,0,
1,2, or 2,1. It is not sure about 2,2



09-25: Resolution

The preceding rules are sound, but not necessarily
complete.

Also, search can be inefficient: there might be
many operators that can be applied in a particular
state.

Luckily, there is a complete rule for inference
(when coupled with a complete search algorithm)
that uses a single operator.

This is called resolution.

A ∨ B and ¬A ∨C allows us to conclude B ∨C.

A is either true or not true. If A is true, then C

must be true.

if A is false, then B must be true.

This can be generalized to clauses of any



09-26: Conjunctive Normal Form

Resolution works with disjunctions.

This means that our knowledge base needs to be
in this form.

Conjunctive Normal Form is a conjunction of
clauses that are disjunctions.

(A ∨ B ∨C) ∧ (D ∨ E ∨ F) ∧ (G ∨ H ∨ I) ∧ ...

Every propositional logic sentence can be
converted to CNF.



09-27: CNF Recipe

1. Eliminate equivalence

A⇔ B becomes A⇒ B ∧ B⇒ A

2. Eliminate implication

A⇒ B becomes ¬A ∨ B

3. Move ¬ inwards using double negation and
DeMorgan’s

¬(¬A) becomes A

¬(A ∧ B) becomes (¬A ∨ ¬B)

4. Distribute nested clauses

(A ∨ (B ∧C)) becomes (A ∨ B) ∧ (A ∨C)



09-28: Example

B1,1 ⇔ (P1,2 ∨ P2,1)

Eliminating equivalence produces:

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1)⇒ B1,1)

Removing implication gives us:

(¬B1,1 ∨ (P1,2 ∨ P2,1)) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)



09-29: Example

We then use DeMorgan’s rule to move negation
inwards:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

Finally, we distribute OR over AND:

(¬B1,1 ∨ P1,2 ∨ P2,1)∧ (¬P1,2 ∨ B1,1)∧ (¬P2,1)∨ B1,1)

Now we have clauses that can be plugged into a
resolution theorem prover. (can break ANDs into
separate sentences)

They’re less readable by a human, but more
computationally useful.



09-30: Proof By Refutation

Once your KB is in CNF, you can do resolution by
refutation.

In math, this is called proof by contradiction

Basic idea: we want to show that sentence A is
true.

Insert ¬A into the KB and try to derive a
contradiction.



09-31: Example

Prove that there is not a pit in (1,2). ¬P1,2

Relevant Facts:

R2a : (¬B1,1 ∨ P1,2 ∨ P2,1)

R2b : (¬P1,2 ∨ B1,1)

R2c : (¬P2,1 ∨ B1,1)

R4 : ¬B1,1

Insert Rn : P1,2 into the KB



09-32: Example

Resolve Rn with R2b to get: R6 : B1,1

We already have a contradiction, since R4 : ¬B1,1

Therefore, the sentence we inserted into the KB
must be false.

Most proofs take more than one step to get to a
contradiction ...



09-33: Examples ...

1. If it rains, Joe brings his umbrella (r ⇒ u)

2. If Joe has an umbrella, he doesn’t get wet
(u⇒ ¬w)

3. If it doesn’t rain, Joe doesn’t get wet (¬r ⇒ ¬w)



09-34: More Examples ...

Either Heather attended the meeting or Heather
was not invited.

If the boss wanted Heather at the meeting, then
she was invited.

Heather did not attend the meeting.

If the boss did not want Heather there, and the
boss did not invite her there, then she is going to
be fired.

Prove Heather is going to be fired.



09-35: Horn clauses

Standard resolution theorem proving (and propositional inference in general) is

exponentially hard.

However, if we’re willing to restrict ourselves a bit, the problem becomes

(computationally) easy.

A Horn clause is a disjunction with at most one positive literal.

¬A ∨ ¬B ∨ ¬C ∨ D

¬A ∨ ¬B

These can be rewritten as implications with one consequent.

A ∧ B ∧ C ⇒ D

A ∧ B⇒ False

Horn clauses are the basis of logic programming (sometimes called rule-based

programming)



09-36: KB: Forward Chaining

Forward chaining involves starting with a KB and
continually applying Modus Ponens to derive all
possible facts.

This is sometimes called data-driven reasoning

Start with domain knowledge and see what that
knowledge tells you.

This is very useful for discovering new facts or
rules

Less helpful for proving a specific sentence true or
false

Search is not directed towards a goal



09-37: KB: Backward Chaining

Backward chaining starts with the goal and “works
backward” to the start.

Example: If we want to show that A is entailed, find
a sentence whose consequent is A.

Then try to prove that sentence’s antecendents.

This is sometimes called query-driven reasoning.

More effective at proving a particular query, since
search is focused on a goal.

Less likely to discover new and unknown
information.

Means-ends analysis is a similar sort of reasoning.

Prolog uses backward chaining.



09-38: Strengths of Prop. Logic

Declarative - knowledge can be separated from
inference.

Can handle partial information

Can compose more complex sentences out of
simpler ones.

Sound and complete inference mechanisms
(efficient for Horn clauses)



09-39: Weaknesses of Prop. logic

Exponential increase in number of literals

No way to describe relations between objects

No way to quantify over objects.

First-order logic is a mechanism for dealing with
these problems.

As always, there will be tradeoffs.

There’s no free lunch!



09-40: Applications

Propositional logic can work nicely in bounded
domains

All objects of interest can be enumerated.

Fast algorithms exist for solving SAT problems via
model checking.

Search all models to find one that satisfies a
sentence.

Can be used for some scheduling and planning
problems

Often, we’ll use a predicate-ish notation as
syntactic sugar.


	{small lecturenumber -	heblocknumber :} Overviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Knowledge Representationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Declarative vs. Proceduraladdtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Wumpus Worldaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Wumpus Worldaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Knowledge baseaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Syntax and Semanticsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Modelsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Logicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inferenceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inferenceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Propositional Logicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Propositional Logicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Propositional Logicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More on predicatesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Notationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prop. Logic - implication addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Still more definitionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Still more definitionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Logical reasoningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Logical Reasoningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inference as Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inference as Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Resolutionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Conjunctive Normal Formaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} CNF Recipeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Proof By Refutationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Examples ...addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More Examples ...addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Horn clausesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} KB: Forward Chainingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} KB: Backward Chainingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Strengths of Prop. Logicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Weaknesses of Prop. logicaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Applicationsaddtocounter {blocknumber}{1}

