01-0: Syllabus

- Office Hours
- Course Text
- Prerequisites
- Test Dates & Testing Policies
 - Try to combine tests
- Grading Policies

01-1: How to Succeed

- Come to class. Pay attention. Ask questions.
 - A question as vague as “I don’t get it” is perfectly acceptable.
 - If you’re confused, at least 4 other people are, too.
- Come by my office
 - I am very available to students.
- Start the homework assignments early
- Read the textbook. It’s one of the best textbooks around.
 - Ask questions if you don’t understand the textbook!

01-2: How to Succeed

- Start Early (clarification)
 Some of the homework assignments for this class will be very difficult. I will not expect you to be able to just sit down and complete them.
 - Start working on a problem right when it is given. Work on it until you get stuck.
 - Come by my office, and talk about the problem with me. I will not give you the solution, but I will give you a little push in the right direction
 - Work on the problem some more, get stuck again.
 - Come by my office again, get another push.
 - Repeat, as necessary

01-3: What is an Algorithm?

- Each step must be well defined.
- Algorithm ≠ Computer Program.
- A program is an implementation of an algorithm.
- Can have different implementations of the same algorithm
 - Different Languages
Different Coding Styles

01-4: **Comparing Algorithms**

- What makes one algorithm better than another?

01-5: **Comparing Algorithms**

- What makes one algorithm better than another?
 - Space
 - How much memory is used
 - Time
 - How long the algorithm takes to run

- Often see a time/space tradeoff – we can make an algorithm run faster by giving it more space, and vice versa

01-6: **Example: Insertion Sort**

<table>
<thead>
<tr>
<th>Time / # of times executed</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>1</td>
</tr>
<tr>
<td>(C_2)</td>
<td>(N)</td>
</tr>
<tr>
<td>(C_3)</td>
<td>((N-1))</td>
</tr>
<tr>
<td>(C_4)</td>
<td>((N-1))</td>
</tr>
<tr>
<td>(C_5)</td>
<td>(\sum_{j=1}^{N-1} \text{itr}_j + 1)</td>
</tr>
<tr>
<td>(C_6)</td>
<td>(\sum_{j=1}^{N-1} \text{itr}_j)</td>
</tr>
<tr>
<td>(C_7)</td>
<td>(\sum_{j=1}^{N-1} \text{itr}_j)</td>
</tr>
<tr>
<td>(C_8)</td>
<td>((N-1))</td>
</tr>
<tr>
<td>(C_9)</td>
<td>((N-1))</td>
</tr>
</tbody>
</table>

Adding everything up:

\[
C_1 + C_2 N + (C_3 + C_4 + C_8 + C_9)(N - 1) + C_5 \sum_{j=1}^{N-1} (\text{itr}_j + 1) + (C_7 + C_8) \sum_{j=1}^{N-1} \text{itr}_j
\]

\[
\sum_{j=1}^{N-1} \text{itr}_j \cdot C_{10} + N \cdot C_{11} + C_{12}
\]

01-7: **Example: Insertion Sort**

\[
\sum_{j=1}^{N-1} \text{itr}_j \cdot C_{10} + N \cdot C_{11} + C_{12}
\]

- Don’t know \(\text{itr}_1, \text{itr}_2, \ldots\)
- What can we do?

01-8: **Example: Insertion Sort**

\[
\sum_{j=1}^{N-1} \text{itr}_j \cdot C_{10} + N \cdot C_{11} + C_{12}
\]

- Don’t know \(\text{itr}_1, \text{itr}_2, \ldots\)
- What can we do?

01-9: **Example: Insertion Sort**

\[
\sum_{j=1}^{N-1} \text{itr}_j \cdot C_{10} + N \cdot C_{11} + C_{12}
\]

- Don’t know \(\text{itr}_1, \text{itr}_2, \ldots\)
- What can we do?

- Worst case
• Best Case
• Average Case

01-10: **Example: Insertion Sort**

\[\sum_{j=1}^{N-1} Itr_j \cdot C_{10} + N \cdot C_{11} + C_{12} \]

• Best case

\[N \cdot C_{11} + C_{12} \]

01-11: **Example: Insertion Sort**

\[\sum_{j=1}^{N-1} Itr_j \cdot C_{10} + N \cdot C_{11} + C_{12} \]

• Worst Case

\[\sum_{j=1}^{N-1} j \cdot C_{10} + N \cdot C_{11} + C_{12} = \frac{(N)(N-1)}{2} \cdot C_{10} + N \cdot C_{11} + C_{12} \]

01-12: **Example: Insertion Sort**

\[\sum_{j=1}^{N-1} Itr_j \cdot C_{10} + N \cdot C_{11} + C_{12} \]

• Average Case

...\[\sum_{\text{All Possible Occurrences } i} \text{Time}(i) \cdot P(i) \]

• Calculating \(P(i) \) can be difficult
• Often assume that all instances are equally likely
 • Is that always a good assumption?

01-13: **Constants**

• Constants & lower order terms can be ugly:

\[\sum_{j=1}^{N-1} j \cdot C_{10} + N \cdot C_{11} + C_{12} = \frac{(N-1)(N-2)}{2} \cdot C_{10} + N \cdot C_{11} + C_{12} \]

• Fortunately, these constant & lower order terms don’t matter!
<table>
<thead>
<tr>
<th>(n)</th>
<th>(8n^2 - 2n - 3)</th>
<th>Time</th>
<th>(n^2)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>777</td>
<td>0.0007 sec</td>
<td>100</td>
<td>0.0001 sec</td>
</tr>
<tr>
<td>100</td>
<td>79797</td>
<td>0.0062 sec</td>
<td>100000</td>
<td>0.01 sec</td>
</tr>
</tbody>
</table>

01-14: **Constants**

\[
0.0007 \text{ sec} \quad 7.998 \times 10^6 \quad 10^6 \quad 0.0001 \text{ sec} \\
0.0062 \text{ sec} \quad 7.9998 \times 10^8 \quad 10^8 \quad 1 \text{ sec} \\
0.006 \text{ sec} \quad 7.99998 \times 10^{10} \quad 10^{10} \quad 2 \text{ hours} \\
91 \text{ days} \quad 8 \times 10^{12} \quad 10^{12} \quad 11 \text{ days} \\
\]

01-15: **Constants**

<table>
<thead>
<tr>
<th>(n)</th>
<th>(6n + 3)</th>
<th>Time</th>
<th>(99n)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>63</td>
<td>0.00006 sec</td>
<td>990</td>
<td>0.00099 sec</td>
</tr>
<tr>
<td>100</td>
<td>603</td>
<td>0.0006 sec</td>
<td>9900</td>
<td>0.0099 sec</td>
</tr>
<tr>
<td>1000</td>
<td>6003</td>
<td>0.006 sec</td>
<td>99000</td>
<td>0.099 sec</td>
</tr>
<tr>
<td>10000</td>
<td>60003</td>
<td>0.06 sec</td>
<td>990000</td>
<td>0.99 sec</td>
</tr>
<tr>
<td>100000</td>
<td>600003</td>
<td>0.6 sec</td>
<td>9900000</td>
<td>9.9 sec</td>
</tr>
<tr>
<td>1000000</td>
<td>6 \times 10^6</td>
<td>6 sec</td>
<td>9.9 \times 10^7</td>
<td>99 sec</td>
</tr>
</tbody>
</table>

01-16: **Do Constants Matter?**

Comparing a recursive version of Binary Search with iterative version of Linear Search

- Linear Search requires time \(c_1 \times n \), for some \(c_1 \)
- Binary Search requires time \(c_2 \times \log(n) \), for some \(c_2 \)

What if there is a very high overhead cost for function calls?

What if \(c_2 \) is 1000 times larger than \(c_1 \)?

01-17: **Constants Do Not Matter!**

<table>
<thead>
<tr>
<th>Length of list</th>
<th>Time Required for Linear Search</th>
<th>Time Required for Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.001 seconds</td>
<td>0.3 seconds</td>
</tr>
<tr>
<td>100</td>
<td>0.01 seconds</td>
<td>0.66 seconds</td>
</tr>
<tr>
<td>1000</td>
<td>0.1 seconds</td>
<td>1.0 seconds</td>
</tr>
<tr>
<td>10000</td>
<td>1 second</td>
<td>1.3 seconds</td>
</tr>
<tr>
<td>100000</td>
<td>10 seconds</td>
<td>1.7 seconds</td>
</tr>
<tr>
<td>1000000</td>
<td>2 minutes</td>
<td>2.0 seconds</td>
</tr>
<tr>
<td>10000000</td>
<td>17 minutes</td>
<td>2.3 seconds</td>
</tr>
<tr>
<td>(10^{10})</td>
<td>11 days</td>
<td>3.3 seconds</td>
</tr>
<tr>
<td>(10^{15})</td>
<td>30 centuries</td>
<td>5.0 seconds</td>
</tr>
<tr>
<td>(10^{20})</td>
<td>300 million years</td>
<td>6.6 seconds</td>
</tr>
</tbody>
</table>

01-18: **Big-O Notation**

\[
O(g(n)) = \{ f(n) \mid \exists c, n_0, \text{s.t.} \quad f(n) \leq cg(n) \text{ whenever } n > n_0 \} \\
\]

\(f(n) \in O(g(n)) \) means:

- \(f \) is bound from above by \(g \)
- \(f \) grows no faster than \(g \)
- \(g \) is an upper bound on \(f \)
01-19: **Big-Ω Notation**

$$\Omega(g(n)) = \{ f(n) \mid \exists c, n_0, \text{s.t.} \quad cf(n) \geq g(n) \text{ whenever } n > n_0 \}$$

\(f(n) \in \Omega(g(n))\) means:

- \(f\) is bound from below by \(g\)
- \(g\) grows no faster than \(f\)
- \(g\) is a lower bound on \(f\)

01-20: **Big-Θ Notation**

$$\Theta(g(n)) = \{ f(n) \mid \exists c_1, c_2, n_0, \text{s.t.} \quad c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ whenever } n > n_0 \}$$

Alternately,

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

01-21: **Big-Θ Notation**

Show:

$$3n^2 + 4n \in \Theta(n^2)$$

01-22: **Big-Θ Notation**

Show:

$$3n^2 + 4n \in \Theta(n^2)$$

\(c_1 \cdot n^2 \leq 3n^2 + 4n \leq c_2 \cdot n^2\)

True, as long as \(c_1 \leq 3 + 4/n, c_2 \geq 3 + 4/n\)

(since \(n > n_0\), we can assume \(4/n \leq 1\))

01-23: **Big-Θ Notation**

Verify:

$$4n^3 \notin \Theta(n^2)$$

01-24: **Big-Θ Notation**

Verify:

$$4n^3 \notin \Theta(n^2)$$
\[
4n^3 \leq c_1 n^2 \\
4n \leq c_1
\]

which is not true for any constant \(c_1\).

01-25: **Big-\(\Theta\) Notation**

- We can drop all constants and lower order terms when finding the \(\Theta\) running time of a quadratic

\[
\sum_{i=0}^{k} a_i n^i \in \Theta(n^k)
\]

01-26: **Big-\(\Theta\) in Equations**

- \(f(n) = \Theta(g(n))\) is shorthand for \(f(n) \in \Theta(g(n))\)
- \(n^2 + 3n + 2 = n^2 + \Theta(n)\) Means \(\exists f(n) \in \Theta(n)\) such that \(n^2 + 3n + 2 = n^2 + f(n)\)

This can lead to some weirdness:
- \(n^2 + 2n + 3 = 5n + \Theta(n^2)\)
- \(n^2 + 2n + 3 = 6n + O(n^4)\)

01-27: **Loose & Tight Bounds**

- \(O()\) may or may not be tight:
 - \(n^2 + 2n + 3 \in O(n^2)\)
 - \(n^2 + 2n + 3 \in O(n^4)\)

- We have a notation for tight bound (\(\Theta\)), and we also have a notation for a bound that is not tight:

\[
o(g(n)) = \{ f(n) | \forall c > 0, \exists n_0 > 0 \text{ s.t. } 0 \leq f(n) < cg(n) \text{ whenever } n \geq n_0 \}
\]

01-28: **Loose & Tight Bounds**

\[
o(g(n)) = \{ f(n) | \forall c > 0, \exists n_0 > 0 \text{ s.t. } 0 \leq f(n) < cg(n) \text{ whenever } n \geq n_0 \}
\]

- \(4n \in o(n^2)\)
- \(3n^2 \not\in o(n^2)\)
- \(n^2 \not\in o(n^2)\)
01-29: little-o

\[o(g(n)) = \{ f(n) \mid \forall c > 0, \exists n_0 > 0 \text{ s.t.} \]
\[0 \leq f(n) < cg(n) \text{ whenever } n \geq n_0 \} \]

\[f(n) \in o(g(n)) \Rightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \]

01-30: little-\omega

\[\omega(g(n)) = \{ f(n) \mid \forall c > 0, \exists n_0 > 0 \text{ s.t.} \]
\[0 \leq cg(n) < f(n) \text{ whenever } n \geq n_0 \} \]

\[f(n) \in \omega(g(n)) \Rightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \]

01-31: \(O, o, \Omega, \omega, \Theta\)

True or false:

- \(f(n) \in \Theta(g(n)) \rightarrow f(n) \in O(g(n)) \)
- \(f(n) \in O(g(n)) \rightarrow g(n) \in \Omega(f(n)) \)
- \(f(n) \in O(g(n)) \rightarrow f(n) \in o(g(n)) \)
- \(f(n) \in o(g(n)) \rightarrow f(n) \in O(g(n)) \)
- \(f(n) \in o(g(n)) \rightarrow f(n) \in \Theta(g(n)) \)
- For any two functions \(f(n), g(n) \), either \(f(n) \in O(g(n)) \) or \(f(n) \in \Omega(g(n)) \)

01-32: \(O, o, \Omega, \omega, \Theta\)

True or false:

- \(f(n) \in \Theta(g(n)) \rightarrow f(n) \in O(g(n)) \) True
- \(f(n) \in O(g(n)) \rightarrow g(n) \in \Omega(f(n)) \) True
- \(f(n) \in O(g(n)) \rightarrow f(n) \in o(g(n)) \) False, \(n \in O(n), n \not\in o(n) \)
- \(f(n) \in o(g(n)) \rightarrow f(n) \in O(g(n)) \) True.
- \(f(n) \in o(g(n)) \rightarrow f(n) \in \Theta(g(n)) \) False. In fact, \(f(n) \in o(g(n)) \rightarrow f(n) \not\in \Theta(g(n)) \)
- For any two functions \(f(n), g(n) \), either \(f(n) \in O(g(n)) \) or \(f(n) \in \Omega(g(n)) \). False. Consider \(f(n) = n, g(n) = n^{1+\sin n} \)

01-33: Summations

- We will assume you’ve seen inductive proof that \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) (check Appendix A in the text otherwise!)
• Can use induction to prove bounds as well. Show:

\[
\sum_{i=1}^{n} 3^i = O(3^n)
\]

01-34: Summations
\[
\sum_{i=1}^{n} 3^i = O(3^n)
\]

• Base Case:

\[
\sum_{i=1}^{1} 3^i = 3 \leq c \cdot 3^1 \quad \text{as long as } c \geq 1
\]

01-35: Summations \[\sum_{i=1}^{n} 3^i = O(3^n) \]

• Recursive Case:

\[
\sum_{i=1}^{n+1} 3^i = \sum_{i=1}^{n} 3^i + 3^{n+1} \\
\leq c3^n + 3^{n+1} \\
= (1/3 + 1/c)c3^{n+1} \\
\leq c3^{n+1}
\]

As long as \((1/3 + 1/c) \leq 1\), or \(c \geq 3/2\)

01-36: Summations
Beware! What’s wrong with this proof?
\[
\sum_{i=1}^{n} i \in O(n)
\]

• Base case: \(\sum_{i=1}^{1} i = O(1)\)

• Inductive case:

\[
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (i + 1) \\
= O(n) + (n + 1) \\
= O(n)
\]

01-37: Bounding Summations

\[
\sum_{i=1}^{n} a_i \leq n \cdot a_{max}
\]

for instance: \(\sum_{i=1}^{n} i \leq n^2 \in O(n^2)\)

and
\[\sum_{i=1}^{n} a_i \geq n \cdot a_{\text{min}} \]

for instance: \[\sum_{i=1}^{n} i \geq 1 \cdot n \in \Omega(n) \]

(note that the bounds are not always tight!)

01-38: **Splitting Summations**

We can sometimes get tighter bounds by splitting the summation:

\[
\sum_{i=1}^{n} i = \sum_{i=1}^{\lfloor n/2 \rfloor} i + \sum_{i=\lfloor n/2 \rfloor + 1}^{n} i \\
\geq n/2 \cdot 1 + n/2 \cdot n/2 \\
\geq (n/2)^2 \\
\in \Omega(n^2)
\]

01-39: **Splitting Summations**

We can split summations in more tricky ways, as well. Consider the harmonic series:

\[H_n = \sum_{i=1}^{n} \frac{1}{i} \]

How could we split this to get a good upper bound?

01-40: **Splitting Summations**

We can split summations in more tricky ways, as well. Consider the harmonic series:

\[H_n = \sum_{i=1}^{n} \frac{1}{i} \]

How could we split this to get a good upper bound?

\textit{HINT:} The solution we are looking for is \(H_n \in \lg(n) \)

01-41: **Splitting Summations**

\[
H_n = \sum_{i=1}^{n} \frac{1}{i} \\
\leq \sum_{i=0}^{\lfloor \lg n \rfloor} \sum_{j=0}^{2^i-1} \frac{1}{2^i + j} \\
\leq \sum_{i=0}^{\lfloor \lg n \rfloor} \sum_{j=0}^{2^i-1} \frac{1}{2^i} \\
\leq \sum_{i=0}^{\lfloor \lg n \rfloor} 1 \\
\leq \lg n + 1
\]

01-42: **Summations & Code**
for (i = 1; i <= n; i++)
 for (j = 1; j <= i; j++)
 sum++;

01-43: Summations & Code

for (i = 1; i <= n; i++)
 for (j = 1; j <= i; j++)
 sum++;

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \in \Theta(n^2) \]

01-44: Summations & Code

for (i = 1; i < n; i = i * 2)
 for (j = 1; j < i; j++)
 sum++;

vs

for (i = 1; i < n; i = i + 1)
 for (j = 1; j < i; j = j * 2)
 sum++;

01-45: Summations & Code

for (i = 1; i < n; i = i * 2)
 for (j = 1; j < i; j++)
 sum++;

\[\sum_{i=1}^{\lg n} 2^i \in \Theta(n) \]

for (i = 1; i < n; i = i + 1)
 for (j = 1; j < i; j = j * 2)
 sum++;

\[\sum_{i=1}^{n} \lg n \in \Theta(n \lg n) \]

01-46: More Summations

- More information on manipulation of summations is in Appendix A
 - (pages 1147 – 1157 in the text)
- Read over Appendix A for review
• (Should also read Chapter 2 – I’m assuming that is all review for all of you. Let me know if it is not)

01-47: **Recursive Algorithms**

• Summations are used to calculate running times for iterative programs

• Recursive Algorithms use Recurrence Relations

 • \(T(n)\) is a function that returns the time it takes to solve a problem of size \(n\), for a particular recursive algorithm

 • Definition of \(T(n)\) is similar to (but not the same as!) the recursive function itself

 • Usually have a base case and a recursive case

01-48: **Recurrence Relations**

`MergeSort(A,low,high) {`
 `if (low < high) {`
 `mid = floor ((low + high / 2))`
 `MergeSort(A,low,mid)`
 `MergeSort(A,mid+1,high)`
 `Merge(A,low,mid,high)`
 `
}
```

\[
T(0) = \Theta(1) \\
T(1) = \Theta(1) \\
T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + T\left(\left\lceil \frac{n}{2} \right\rceil \right) + \Theta(n)
\]

01-49: **Recurrence Relations**

`MergeSort(A,low,high) {`
  `if (low < high) {`
    `mid = floor ( (low + high / 2) )`
    `MergeSort(A,low,mid)`
    `MergeSort(A,mid+1,high)`
    `Merge(A,low,mid,high)`
  `
}
```

01-50: **Recurrence Relations**

• How do we solve recurrence relations?

 • Substitution Method

 • Guess a solution
 • Prove the guess is correct, using induction
\[T(1) = 1 \]
\[T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + n \]

01-51: **Substitution Method**

- **Inductive Case**

\[T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + n \leq 2 \left(cn \frac{\lg n}{2} \right) + n \]
\[= cn \lg n - cn \lg 2 + n \]
\[= cn \lg n - cn + n \leq cn \lg n \]

01-52: **Substitution Method**

- **Base Case**

\[T(1) = 1 \]
\[T(n) \leq cn \lg n \]
\[T(1) \leq c \times 1 \times \lg 1 \]
\[T(1) \leq c \times 1 \times 0 = 0 \]

Whoops! If the base case doesn’t work the inductive proof is broken! What can we do?

01-53: **Substitution Method**

- **Fixing the base case**

Note that we only care about \(n > n_0 \), and for \(n > 3 \), recurrence does not depend upon \(T(1) \) except through \(T(2) \) and \(T(3) \)

\[T(2) = 4 \leq 2 \times c \times \lg 2 \]
\[T(3) = 5 \leq 3 \times c \times \lg 3 \]

(for \(c > 2 \)) 01-54: **Substitution Method**

- Sometimes, the math doesn’t work out in the substitution method:
\[T(1) = 1 \]
\[T(n) = T\left(\floor{n/2}\right) + T\left(\ceil{n/2}\right) + 1 \]

(Work on board)

01-55: **Substitution Method** Try \(T(n) \leq cn \):

\[
T(n) = T\left(\floor{n/2}\right) + T\left(\ceil{n/2}\right) + 1 \\
\leq c\floor{n/2} + c\ceil{n/2} + 1 \\
\leq cn + 1
\]

We did not get back \(T(n) \leq cn \) – that extra +1 term means the proof is not valid. We need to get back exactly what we started with (see invalid proof of \(\sum_{i=1}^{n} i \in O(n) \) for why this is true)

01-56: **Substitution Method** Try \(T(n) \leq cn - b \):

\[
T(n) = T\left(\floor{n/2}\right) + T\left(\ceil{n/2}\right) + 1 \\
\leq c\floor{n/2} - b + c\ceil{n/2} - b + 1 \\
\leq cn - 2b + 1 \\
\leq cn - b
\]

As long as \(b \geq 1 \)

01-57: **Substitution Method**

- Substitution method can verify the solution to a recurrence relation, but how can we get our original guess?
 - Compare to similar problems
 - \(T(n) = 2T(\floor{n/2} - 1) + 3n + 2 \) similar to \(T(n) = 2T\left(\floor{n/2}\right) + n \)
 - Start with loose bounds, tighten them to get a tight bound
 - Recursion Trees

01-58: **Recursion Trees**

\[T(n) = 2T(n/2) + cn \]

01-59: **Recursion Trees**

\[T(n) = T(n - 1) + cn \]

01-60: **Recursion Trees**

\[T(n) = T(n/2) + c \]

01-61: **Recursion Trees**
\[T(n) = 3T(n/4) + cn^2 \]

\[T(n) = \quad cn^2 + \]

\[T(n/4) + T(n/4) + T(n/4) \]

\[T(n/4) = 3T(n/16) + c(n/4)^2 \]

\[T(n/16) + T(n/16) + T(n/16) \]

\[T(n/16) = T(n/32) + c(n/16)^2 \]

\[T(n/16) + T(n/16) + T(n/16) + T(n/16) \]

\[T(n/16) + T(n/16) + T(n/16) + T(n/16) \]

...
01-66: **Recursion Trees**

![Recursion Tree Diagram]

01-67: **Recursion Trees**

\[
T(n) = \sum_{i=0}^{\log_4 n} \left(\frac{3^i}{4^i} \right) cn^2 + \sum_{i=0}^{1} 1
\]
\[
< \sum_{i=0}^{\log_4 n} \left(\frac{3}{4} \right)^i cn^2 + n^{\log_4 3}
\]
\[
< \sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^i cn^2 + n^{\log_4 3}
\]
\[
= \frac{1}{1 - 3/4} cn^2 + n^{\log_4 3}
\]
\[
= 4cn^2 + n^{\log_4 3}
\]
\[
\in O(n^2)
\]

(now prove bound using substitution method)

01-68: **Recursion Trees**

\[T(n) = T(n/3) + T(2n/3) + cn\]

01-69: **Recursion Trees**

![Recursion Tree Diagram]

01-70: **Recursion Trees**

- There is a small problem – this tree is actually irregular in shape!
01-71: **Recursion Trees**

\[T(n) = T(n/3) + T(2n/3) + cn \]

If we are only using recursion trees to create a guess (that we will later verify using substitution method), then we can be a little sloppy.

- Show \(T(n) = T(n/3) + T(2n/3) + cn \in O(n \lg n) \)

01-73: **Recursion Trees**

\[2^{\log_{3/2} n} = n^{\log_{3/2} 2} = \omega(n \lg n) \]

01-74: **Renaming Variables**

- Consider:

\[
\begin{align*}
T(1) &= 1 \\
T(n) &= 2T(\sqrt{n}) + \lg n
\end{align*}
\]
• The $\sqrt{ \cdot }$ is pretty ugly – how can we make it go away?
• Rename variables!

01-75: **Renaming Variables**

\[
\begin{align*}
T(1) &= 1 \\
T(n) &= 2T\left(\sqrt{n}\right) + \lg n
\end{align*}
\]

Let \(m = \lg n \), (and so \(n = 2^m \))

\[
T(2^m) = 2T\left(\sqrt{2^m}\right) + \lg 2^m
\]
\[
= 2T\left(2^{m/2}\right) + m
\]

01-76: **Renaming Variables**

\[
T(2^m) = 2T\left(2^{m/2}\right) + m
\]

Now let \(S(m) = T(2^m) \)

\[
S(m) = T(2^m)
\]
\[
= 2T\left(2^{m/2}\right) + m
\]
\[
= 2S\left(\frac{m}{2}\right) + m
\]

01-77: **Renaming Variables**

\[
S(m) = 2S\left(\frac{m}{2}\right) + m
\]
\[
\leq cm \lg m
\]

So:

\[
T(n) = T(2^m)
\]
\[
= S(m)
\]
\[
\leq cm \lg m
\]
\[
= c \lg n \lg \lg n
\]

01-78: **Master Method**

\[
T(n) = aT\left(n/b\right) + f(n)
\]
1. if $f(n) \in O(n^{\log_b a - \epsilon})$ for some $\epsilon > 0$, then $T(n) \in \Theta(n^{\log_b a})$

2. if $f(n) \in \Theta(n^{\log_b a})$ then $T(n) \in \Theta(n^{\log_b a \ast \lg n})$

3. if $f(n) \in \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$, and if $af(n/b) \leq cf(n)$ for some $c < 1$ and large n, then $T(n) \in \Theta(f(n))$

01-79: Master Method

$$T(n) = 9T(n/3) + n$$

01-80: Master Method

- $a = 9$, $b = 3$, $f(n) = n$
- $n^{\log_b a} = n^{\log_3 9} = n^2$
- $n \in O(n^{2-\epsilon})$

$$T(n) = \Theta(n^2)$$

01-81: Master Method

$$T(n) = T(2n/3) + 1$$

01-82: Master Method

- $a = 1$, $b = 3/2$, $f(n) = 1$
- $n^{\log_b a} = n^{\log_3 1} = n^0 = 1$
- $1 \in O(1)$

$$T(n) = \Theta(1 \ast \lg n) = \Theta(\lg n)$$

01-83: Master Method

$$T(n) = 3T(n/4) + n \lg n$$

01-84: Master Method

- $a = 3$, $b = 4$, $f(n) = n \lg n$
- $n^{\log_b a} = n^{\log_4 3} = n^{0.792}$
- $n \lg n \in \Omega(n^{0.792 + \epsilon})$
- $3(n/4) \lg(n/4) \leq c \ast n \lg n$
\[T(n) \in \Theta(n \lg n) \]

01-85: **Master Method**

\[T(n) = 2T(n/2) + n \lg n \]

01-86: **Master Method**

\[T(n) = 2T(n/2) + n \lg n \]

- \(a = 2, b = 2, f(n) = n \lg n \)
- \(n^{\log_b a} = n^{\log_2 2} = n^1 \)

Master method does not apply!

\(n^{1+\epsilon} \) grows faster than \(n \lg n \) for any \(\epsilon > 0 \)

Logs grow incredibly slowly! \(\lg n \in o(n^\epsilon) \) for any \(\epsilon > 0 \)

01-87: **Master Method**

- Proof Sketch (not all formal, see textbook for details)
- We will consider the recursion tree for \(T(n) = aT(n/b) + f(n) \)
 (We’ll assume that \(n \) is an exact power of \(b \), to simplify the math. See the textbook for a complete proof)

01-88: **Master Method**

\[
\begin{align*}
T(n) &= \log_b n - 1 - \sum_{i=0}^{\log_b n - 1} a^i f \left(\frac{n}{b^i} \right) + cn^{\log_b a} \\
\end{align*}
\]

- Case 1: Leaves of recursion tree dominate cost
- Case 2: Cost is evenly divided among all levels in the tree
- Case 3: Root dominates the cost

(see the textbook for the algebra)