10-0: **Dynamic Programming**

- Hallmarks of Dynamic Programming
 - Optimal Program Substructure
 - Overlapping Subproblems
- If a problem has optimal program structure, there *may* be a faster method than dynamic programming
Always takes the step that seems best in the short run
 - Locally Optimal Choice

With some problems, this can lead to an optimal solution
 - Globally Optimal Solution
Matrix Chain Multiplication

- What would the locally optimal choice be?
- Will that lead to a globally optimal solution?
10-3: Greedy Algorithms

- Matrix Chain Multiplication
 - What would the locally optimal choice be?
 - Choose k to minimize just $p_{i-1}p_k p_j$
 - (Don’t consider how long subproblems take)
 - Will that lead to a globally optimal solution?
 - No!
 - Left as “an exercise to the reader”
- Need to be sure that the greedy solution is correct before you use it!
10-4: Activity Scheduling

- \(n \) activities to schedule \(S = \{a_1, a_2, \ldots, a_n\} \)
- Each activity has a start time and an end time
- Two activities are compatible if their times do not overlap
- Problem: Find a maximal subset \(S' \) of \(S \) such that all activities in \(S' \) are compatible with each other
10-5: Activity Scheduling

- Solution
 - Sort the activities by increasing end time
 - Go through the list in order, selecting each activity that is compatible with all previously selected activities
- Why does this work?
To prove a greedy algorithm is correct:

- **Greedy Choice**
 - At least one optimal solution contains the greedy choice

- **Optimal Substructure**
 - An optimal solution can be made from the greedy choice plus an optimal solution to the remaining subproblem

Why is this enough?
Activity Selection problem:
- Prove Greedy Choice
- Prove Optimal Substructure
10-8: Proving Greedy Choice

- Let a_1 be the activity that ends first – greedy choice.
- Let S be an optimal solution to the problem.
- If S contains a_1, then we are done.
10-9: Proving Greedy Choice

- Let a_1 be the activity that ends first – greedy choice.
- Let S be an optimal solution to the problem.
- If S does not contain a_1:
 - Let a_k be the first activity in S. Remove a_k from S to get S'.
 - Since no activity in S' conflicts with a_k, all activities in S' must start after a_k finishes.
 - Since a_1 ends at or before when a_k ends, all activities in S' start after a_1 finishes – and a_1 is compatible with all activities in S'
 - Add a_1 to S' to get S''. $|S''| = |S|$, and hence S'' is optimal, and contains a_1.
10-10: Proving Optimal Substructure

- Proof by contradiction: Assume no optimal solution that contains the greedy choice has optimal substructure.
- Let S be an optimal solution to the problem, which contains the greedy choice.
- Consider $S' = S - \{a_1\}$. S' is not an optimal solution to the problem of selecting activities that do not conflict with a_1.
- Let S'' be an optimal solution to the subproblem of picking activities that do not conflict with a_1.
- Consider $S''' = S'' \cup \{a_1\}$. S''' is a valid solution to the problem, $|S'''| = |S''| + 1 > |S'| + 1 = |S'|$ (since S' is not optimal).
• Proof by contradiction: Assume no optimal solution that contains the greedy choice has optimal substructure

• Let S be an optimal solution to the problem, which contains the greedy choice

...

• S is thus not optimal, a contradiction
WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that all greedy solutions lead to an optimal solution.

- Picking the activity with the earliest start time can lead to a non-optimal solution.
10-13: Activity Scheduling

- WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that all greedy solutions lead to an optimal solution
 - Picking the activity with the earliest start time can lead to a non-optimal solution
WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that *all* greedy solutions lead to an optimal solution

- Picking the activity with the shortest duration can lead to a non-optimal solution
10-15: Activity Scheduling

• WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that *all* greedy solutions lead to an optimal solution
 • Picking the activity with the shortest duration can lead to a non-optimal solution
10-16: Activity Scheduling

- WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that all greedy solutions lead to an optimal solution
 - Picking the activity with the smallest # of conflicts can lead to a non-optimal solution
WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that all greedy solutions lead to an optimal solution.

- Picking the activity with the smallest # of conflicts can lead to a non-optimal solution.
10-18: Greedy Algorithms

- Dynamic vs. Greedy
 - It can sometimes be difficult to tell when a Greedy Algorithm can be used, and when Dynamic Programming must be used
 - Subtle changes in a problem can kill greedy choice
10-19: Knapsack Problem

- Thief has a knapsack (backpack) that can hold k pounds
- n elements, each of which has a value and a weight
- Add items to the backpack to maximize total value
 - What are some greedy solutions?
 - Do they produce optimal solutions?
10-20: **Knapsack Problem**

- Pick most densely valued items first: Knapsack holds 100 pounds

<table>
<thead>
<tr>
<th>Weight</th>
<th>Value</th>
<th>Value / Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>70</td>
<td>7/6</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>1</td>
</tr>
</tbody>
</table>

- No other greedy algorithm works, either
10-21: Fractional Knapsack

• Thief has a knapsack (backpack) that can hold k pounds

• n elements, each of which has a value and a weight

• Add items to the backpack to maximize total value
 • This time you can take a fraction of any item
 • Like gold dust

• Is there a greedy algorithm for this problem? Can you prove it?
0-1 Knapsack Problem

- Standard version of the knapsack problem
 - Can’t take fractional items
- Order of elements by increasing weight = order by decreasing value
- Is there a valid greedy algorithm for this problem?
Driving Problem

- Need to get across the country in a car
 - Gas tank holds enough gas for \(n \) miles
 - Have a chart with location of all gas stations on it
 - Want to make as few stops as possible
- How do we decide which stations to stop at?
10-24: Job Scheduling

- Series of jobs to execute on a uniprocessor machine
- Each job takes a different amount of time to complete
 - j_1, j_2, \ldots, j_n
- Want to minimize the average wait time
 - Same as minimizing the total wait time (why?)
- Algorithm?
- Correctness Proof?
Huffman Coding

- Standard encoding (ASCII)
 - Each letter uses the same number of bits
- We’d like to use fewer bits for more common letters, more bits for less common letters
 - Use less space overall for the file
• If different letters use a different # of bits, how do we determine which bits go with which letter?
• If different letters use a different # of bits, how do we determine which bits go with which letter?

• Prefix Codes
 • No code is a prefix of any other code
 • Decoding is unambiguous
Huffman Coding

<table>
<thead>
<tr>
<th>Frequency</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>43K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable-</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input

- Fixed-Length
 - abc: 000001010
 - fee: 101100100
 - aaba: 0000000001000
- Variable-Length
 - abc: 0101100
 - fee: 1100110111011
 - aaba: 001010
Huffman Coding

- abaac
- 11010010111000100
Huffman Coding

- abaac ⇒ 010100100
- 11010010111000100 ⇒ eaabfac
Huffman Coding

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>43K</td>
<td>12K</td>
<td>12k</td>
<td>16k</td>
<td>9k</td>
<td>5k</td>
</tr>
<tr>
<td>Fixed-Length</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>Variable-Length</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>

- Total size of file in fixed-length encoding: 300K bits
- Total size of file in variable-length encoding: 224k bits
10-32: Huffman Coding

- Are fixed-length codes prefix codes?
 - Can we form a binary tree for fixed-length codes?
- What is the cost of a tree T for a specific file (given the frequency $f[c]$ of each character c in the file)?
Are fixed-length codes prefix codes?

Can we form a binary tree for fixed-length codes?

What is the cost of a tree T for a specific file (given the frequency $f[c]$ of each character c in the file)?

$$B(T) = \sum_{c \in T} f[c] \times d_T(c)$$

($d_T(c)$ is the depth of the character c in the tree T)
Huffman Coding

- Build a tree to minimize $B(T) = \sum_{c \in T} f[c] \times d_T(c)$
- Create set of trees: one for each character in the input file
 - Each tree has a single node w/ character & frequency information
- While > 1 tree in the set:
 - Take the two trees with the smallest frequency, t_1, t_2
 - Create a new root, with t_1 and t_2 as subtrees
 - $f[root] = f[t_1] + f[t_2]$

<table>
<thead>
<tr>
<th>Letter</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>3</td>
<td>7</td>
<td>40</td>
<td>20</td>
<td>15</td>
<td>13</td>
</tr>
</tbody>
</table>
Do Huffman codes produce optimal trees?
- Greedy Choice
- Optimal Substructure
• Greedy Choice
 • Optimal tree \(T \)
 • Alphabet \(C, f[c] = \text{frequency of } c \in C \)
 • \(x, y \) two characters in \(C \) with lowest frequency
 • \(a, b \) lowest-depth siblings in \(T \)
 • Swap \(a \) with \(x \), and \(b \) with \(y \), to get \(T' \)
\(B(T) - B(T') = \sum_{c \in T} f[c] \cdot d_T(c) - \sum_{c' \in T'} f[c'] \cdot d_{T'}(c')\)

\(= f[a](d_T(a) - d_{T'}(a)) + f[b](d_T(b) - d_{T'}(b))\)
\(\quad + f[x](d_T(x) - d_{T'}(x)) + f[y](d_T(y) - d_{T'}(y))\)

\(= f[a](d_T(a) - d_{T'}(a)) + f[x](d_T(x) - d_{T'}(x))\)
\(\quad + f[b](d_T(b) - d_{T'}(b)) + f[y](d_T(y) - d_{T'}(y))\)

\(= (f[a] - f[x])(d_T(a) - d_{T'}(a))\)
\(\quad + (f[b] - f(y))(d_T(b) - d_{T'}(b))\)

\(\geq 0\)

- \(B(T') \leq B(T)\)
- If \(T\) is optimal, \(T'\) is, too
Optimal Substructure

Let T be optimal tree

x, y sibling nodes in T, z is the parent

Consider z to be a character with frequency $f[x] + f[y]$

$T' = T - \{x, y\}$ is an optimal prefix code for $C' = C - \{x, y\} \cup \{z\}$

Cost $B(T)$ in terms of cost $B(T')$:
Huffman Coding

- **Cost** $B(T)$ in terms of cost $B(T')$:
 - $\forall c \in C - \{x, y\}, d_T(c) = d_{T'}(c)$, so

 $$f[c]d_T[c] = f[c]d_{T'}(c)$$

 $$f[x]d_T(x) + f[y]d_T[y] = (f[x] + f[y])(d_{T'}(z) + 1)$$
 $$= f[z]d_{T'}(z) + f[x] + f[y]$$

- $B(T) = B(T') + f[x] + f[y]$
- So, if T' is not optimal, neither is T
Matroids

- Matroid is a pair: \(M = (S, I) \)
 - \(S \) is a finite, nonempty set
 - \(I \) is a nonempty family of subsets of \(S \), called “Independent subsets” of \(S \) such that:
 - if \(B \in I \) and \(A \subseteq B \), then \(A \in I \) (Hereditary Property)
 - If \(A \in I \) and \(B \in I \) and \(|A| < |B| \), there is some element \(x \in B \) such that \(A \cup \{x\} \in I \) (Exchange Property)
Matroids

Originally, Matroids used to describe matrices

- S = rows of a matrix
- I = sets of linearly independent rows
 - Hence the name, independent subsets
- Matrix matroids have both hereditary and exchange properties
Example Matroids

- \(S \) = edges of an undirected graph \(G \)
- \(I \) = Subsets of \(S \) that do not form a directed cycle

(Examples on board)
Example Matroids

- Undirected graphs / $I = \text{acyclic subsets}$
- Hereditary property
Example Matroids

- Undirected graphs / $I = \text{acyclic subsets}$
 - Hereditary property
 - Trivial
 - If a graph is acyclic, any subset of edges will also be acyclic
Example Matroids

- Undirected graphs / $I = \text{acyclic subsets}$
 - Exchange Property
 - $A, B \in I, |A| < |B|$
 - A is a forest of $|V| - |A|$ trees (why?)
 - B is a forest of $|V| - |B|$ trees
 - Must be some edge in B that spans two different trees in A (why?)
10-46: Weighted Matroids

- Weighted Matroid:
 - Positive weight $w(x)$ for each element $x \in S$
 - Weight of any member of I is sum of weights of elements of I
 - Optimal subset of S is an element of I with maximal weight

- Problem: Find an optimal subset of S
 - What would greedy solution look like?
 - Does it work?
Greedy(M, w)

$A \leftarrow \{\}$

sort $S[M]$ in non-increasing order by w

for each $x \in S[M]$ (in non-decreasing order)

if $A \cup \{x\} \in I[M]$

$A \leftarrow A \cup \{x\}$

return A
To show that a greedy algorithm is correct (produces optimal solutions) we need to show:

- **Greedy Choice**
 - There exists a solution that contains the greedy choice

- **Optimal Substructure**
 - Optimal solutions are composed of optimal solutions to subproblems
Greedy Choice

Let \(\{x\} \) be independent element with largest weight

Show that there is some maximal matroid that contains \(x \).

What should we do?
Let \(\{x\} \) be independent element with largest weight

Let \(B \) be a maximal matroid

- If \(B \) contains \(x \), we are done
- If \(B \) does not contain \(x \), we can create a set \(A \):
 - start with \(A = \{x\} \)
 - Use exchange property to add elements to \(A \) from \(b \) until \(|A| = |B| \)
 - \(\text{weight}(A) = \text{weight}(B) - \text{weight}(y) + \text{weight}(x) \)
 - \(y \) is element of \(B \) not added to \(A \)
 - \(\text{weight}(x) \geq \text{weight}(y) \) (why?)
10-51: **Weighted Matroids**

- Optimal substructure
 - Let x be first element chosen by Greedy from $M = (S, I)$
 - Remaining subproblem: find maximal weight indep. subset of $M' = (S', I')$:
 - $S' = \{ y \in S : \{x, y\} \in I \}$
 - $I' = \{ B \subseteq S - \{x\} : B \cup \{x\} \in I \}$
If an optimization problem is finding a maximal weighted matroid, then greedy will work.

Minimum Cost Spanning Tree (MST)
- Undirected graph G, each edge k has a positive weight w_k
- Find a spanning tree (connected, acyclic subset of edges) that has minimum cost

Is the MST problem a maximal weighted matroid problem?
If an optimization problem is finding a maximal weighted matroid, then greedy will work.

Minimum Cost Spanning Tree (MST)

- Undirected graph G, each edge k has a positive weight w_k
- Find a spanning tree (connected, acyclic subset of edges) that has minimum cost

Is the MST problem a weighted matroid?

- Want to find minimal total weight, not maximal
- Replace each weight w_k with $w_0 - w_k$, where w_0 is larger than any weight on the graph

Greedy solution will work (Kruskal’s algorithm)
Example: Unit tasks with deadlines and penalties

- Set $S = \{a_1, a_2, \ldots, a_n\}$ of n unit-time tasks
- Set of n deadlines d_1, \ldots, d_n
- Set of n non-negative penalties w_1, w_2, \ldots, w_n

Schedule all n tasks. Each task a_k that is completed after time d_k incurs penalty w_k.

What is the optimal schedule (smallest overall penalty)?
Example: Unit tasks with deadlines and penalties

- Any schedule can be re-arranged so that:
 - All on-time tasks are scheduled before all late tasks
 - On-time tasks are completed by order of deadline

- To create a schedule, decide which tasks will be done on time, and which will be late. Then, order early tasks by increasing deadline, and late tasks afterwards in any order.
Example: Unit tasks with deadlines and penalties

- S = set of tasks
- I = set of subsets of tasks, where all tasks in I are early

Hereditary Property?

Exchange Property?
Weighted Matroids

Example: Unit tasks with deadlines and penalties
- \(S \) = set of tasks
- \(I \) = set of subsets of tasks, where all tasks in \(I \) are early

Hereditary Property
- If we can schedule all elements in \(I \) on time, we can obviously schedule all elements of any subset of \(I \) in time as well.
Exchange Property

- Let A and B be independent subsets, with $|B| > |A|$.
- $N_T(A)$ be the number of tasks in A that have a deadline if t or earlier.
- Let k be the largest integer such that $N_k(B) \leq N_k(A)$.
 - $N_0(B) = N_0(A) = 0$, so such a k must exist.
- $N_n(B) = |B|$, $N_n(A) = |A|$, so $N_n(B) > N_n(A)$.
- $k < n$, for all j in the range $k + 1 \ldots n$, $N_j(B) > N_j(A)$.
- B contains more tasks with deadline $k + 1$ than A does.