10-0: Dynamic Programming

- Hallmarks of Dynamic Programming
 - Optimal Program Substructure
 - Overlapping Subproblems
- If a problem has optimal program structure, there may be a faster method than dynamic programming

10-1: Greedy Algorithms

- Always takes the step that seems best in the short run
 - Locally Optimal Choice
- With some problems, this can lead to an optimal solution
 - Globally Optimal Solution

10-2: Greedy Algorithms

- Matrix Chain Multiplication
 - What would the locally optimal choice be?
 - Will that lead to a globally optimal solution?

10-3: Greedy Algorithms

- Matrix Chain Multiplication
 - What would the locally optimal choice be?
 - Choose k to minimize just $p_{i-1} p_k p_j$
 - (Don’t consider how long subproblems take)
 - Will that lead to a globally optimal solution?
 - No!
 - Left as “an exercise to the reader”
- Need to be sure that the greedy solution is correct before you use it!

10-4: Activity Scheduling

- n activities to schedule $S = \{a_1, a_2, \ldots, a_n\}$
- Each activity has a start time and an end time
- Two activities are compatible if their times do not overlap
- Problem: Find a maximal subset S' of S such that all activities in S' are compatible with each other

10-5: Activity Scheduling

- Solution
 - Sort the activities by increasing end time
 - Go through the list in order, selecting each activity that is compatible with all previously selected activities
• Why does this work?

10-6: **Proving Greedy**

• To prove a greedy algorithm is correct:
 • Greedy Choice
 • At least one optimal solution contains the greedy choice
 • Optimal Substructure
 • An optimal solution can be made from the greedy choice plus an optimal solution to the remaining subproblem
• Why is this enough?

10-7: **Activity Selection**

• Activity Selection problem:
 • Prove Greedy Choice
 • Prove Optimal Substructure

10-8: **Proving Greedy Choice**

• Let a_1 be the activity that ends first – greedy choice.
• Let S be an optimal solution to the problem.
• If S contains a_1, then we are done.

10-9: **Proving Greedy Choice**

• Let a_1 be the activity that ends first – greedy choice.
• Let S be an optimal solution to the problem.
• If S does not contain a_1:
 • Let a_k be the first activity in S. Remove a_k from S to get S'.
 • Since no activity in S' conflicts with a_k, all activities in S' must start after a_k finishes.
 • Since a_1 ends at or before when a_k ends, all activities in S' start after a_1 finishes – and a_1 is compatible with all activities in S'
 • Add a_1 to S' to get S''. $|S''| = |S|$, and hence S'' is optimal, and contains a_1

10-10: **Proving Optimal Substructure**

• Proof by contradiction: Assume no optimal solution that contains the greedy choice has optimal substructure
• Let S be an optimal solution to the problem, which contains the greedy choice
• Consider $S' = S - \{a_1\}$. S' is not an optimal solution to the problem of selecting activities that do not conflict with a_1
• Let S'' be an optimal solution to the subproblem of picking activities that do not conflict with a_1.
• Consider $S''' = S'' \cup \{a_1\}$. S''' is a valid solution to the problem, $|S'''| = |S''| + 1 > |S'| + 1 = |S|$ (since S' is not optimal).
• S is thus not optimal, a contradiction

10-11: Proving Optimal Substructure

• Proof by contradiction: Assume no optimal solution that contains the greedy choice has optimal substructure
• Let S be an optimal solution to the problem, which contains the greedy choice...

• S is thus not optimal, a contradiction

10-12: Activity Scheduling

• WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that all greedy solutions lead to an optimal solution
 • Picking the activity with the earliest start time can lead to a non-optimal solution

10-13: Activity Scheduling

• WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that all greedy solutions lead to an optimal solution
 • Picking the activity with the earliest start time can lead to a non-optimal solution

10-14: Activity Scheduling

• WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that all greedy solutions lead to an optimal solution
 • Picking the activity with the shortest duration can lead to a non-optimal solution

10-15: Activity Scheduling

• WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that all greedy solutions lead to an optimal solution
 • Picking the activity with the shortest duration can lead to a non-optimal solution

10-16: Activity Scheduling

• WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that all greedy solutions lead to an optimal solution
 • Picking the activity with the smallest # of conflicts can lead to a non-optimal solution
10-17: Activity Scheduling

- WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that all greedy solutions lead to an optimal solution
 - Picking the activity with the smallest # of conflicts can lead to a non-optimal solution

10-18: Greedy Algorithms

- Dynamic vs. Greedy
 - It can sometimes be difficult to tell when a Greedy Algorithm can be used, and when Dynamic Programming must be used
 - Subtle changes in a problem can kill greedy choice

10-19: Knapsack Problem

- Thief has a knapsack (backpack) that can hold k pounds
- n elements, each of which has a value and a weight
- Add items to the backpack to maximize total value
 - What are some greedy solutions?
 - Do they produce optimal solutions?

10-20: Knapsack Problem

- Pick most densely valued items first:
 - Knapsack holds 100 pounds

Weight	Value	Value / Weight
60	70	7/6
50	50	1
45	45	1

- No other greedy algorithm works, either

10-21: Fractional Knapsack

- Thief has a knapsack (backpack) that can hold k pounds
- n elements, each of which has a value and a weight
- Add items to the backpack to maximize total value
 - This time you can take a fraction of any item
 - Like gold dust
- Is there a greedy algorithm for this problem? Can you prove it?
10-22: **0-1 Knapsack Problem**
- Standard version of the knapsack problem
 - Can’t take fractional items
- Order of elements by increasing weight = order by decreasing value
- Is there a valid greedy algorithm for this problem?

10-23: **Driving Problem**
- Need to get across the country in a car
 - Gas tank holds enough gas for n miles
 - Have a chart with location of all gas stations on it
 - Want to make as few stops as possible
- How do we decide which stations to stop at?

10-24: **Job Scheduling**
- Series of jobs to execute on a uniprocessor machine
- Each job takes a different amount of time to complete
 - j_1, j_2, \ldots, j_n
- Want to minimize the average wait time
 - Same as minimizing the total wait time (why?)
- Algorithm?
- Correctness Proof?

10-25: **Huffman Coding**
- Standard encoding (ASCII)
 - Each letter uses the same number of bits
- We’d like to use fewer bits for more common letters, more bits for less common letters
 - Use less space overall for the file

10-26: **Huffman Coding**
- If different letters use a different # of bits, how do we determine which bits go with which letter?

10-27: **Huffman Coding**
- If different letters use a different # of bits, how do we determine which bits go with which letter?
- Prefix Codes
 - No code is a prefix of any other code
 - Decoding is unambiguous
10-28: Huffman Coding

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>43K</td>
<td>12K</td>
<td>12k</td>
<td>16k</td>
<td>9k</td>
<td>5k</td>
</tr>
<tr>
<td>Fixed-Length</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>Variable-Length</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>

Input	Fixed-Length	Variable-Length
abc | 000001010 | 0101100
fee | 101100100 | 110011011011
aaba | 000000001000 | 001010

10-29: Huffman Coding

- abaac
- 11010010111000100

10-30: Huffman Coding

- abaac ⇒ 010100100
- 11010010111000100 ⇒ eaabfac
10-31: **Huffman Coding**

<table>
<thead>
<tr>
<th>Letter</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>3K</td>
<td>43K</td>
<td>12K</td>
<td>16k</td>
<td>9k</td>
<td>5k</td>
</tr>
<tr>
<td>Fixed-Length</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>Variable-Length</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>

- Total size of file in fixed-length encoding: 300K bits
- Total size of file in variable-length encoding: 224k bits

10-32: **Huffman Coding**

- Are fixed-length codes prefix codes?
 - Can we form a binary tree for fixed-length codes?
 - What is the cost of a tree T for a specific file (given the frequency $f[c]$ of each character c in the file)?

10-33: **Huffman Coding**

- Are fixed-length codes prefix codes?
 - Can we form a binary tree for fixed-length codes?
 - What is the cost of a tree T for a specific file (given the frequency $f[c]$ of each character c in the file)?

$$B(T) = \sum_{c \in T} f[c] \cdot d_T(c)$$

$(d_T(c)$ is the depth of the character c in the tree $T)$

10-34: **Huffman Coding**

- Build a tree to minimize $B(T) = \sum_{c \in T} f[c] \cdot d_T(c)$
 - Create set of trees: one for each character in the input file
 - Each tree has a single node w/ character & frequency information
 - While >1 tree in the set:
 - Take the two trees with the smallest frequency, t_1, t_2
 - Create a new root, with t_1 and t_2 as subtrees

Letter a b c d e f
Frequency 3 7 40 20 15 13

10-35: **Huffman Coding**

- Do Huffman codes produce optimal trees?
 - Greedy Choice
 - Optimal Substructure

10-36: **Huffman Coding**

- Greedy Choice
 - Optimal tree T
 - Alphabet $C, f[c] =$ frequency of $c \in C$
• \(x, y\) two characters in \(C\) with lowest frequency
• \(a, b\) lowest-depth siblings in \(T\)
• Swap \(a\) with \(x\), and \(b\) with \(y\), to get \(T'\)

10-37: **Huffman Coding**

\[
B(T) - B(T') = \sum_{c \in T} f[c] \cdot d_T(c) - \sum_{c' \in T'} f[c'] \cdot d_{T'}(c')
\]

\[
= f[a](d_T(a) - d_{T'}(a)) + f[b](d_T(b) - d_{T'}(b))
+ f[x](d_T(x) - d_{T'}(x)) + f[y](d_T(y) - d_{T'}(y))
\]

\[
= f[a](d_T(a) - d_{T'}(a)) + f[x](d_T(x) - d_{T'}(x))
+ f[b](d_T(b) - d_{T'}(b)) + f[y](d_T(y) - d_{T'}(y))
\]

\[
= (f[a] - f[x])(d_T(a) - d_{T'}(a))
+ (f[b] - f[y])(d_T(b) - d_{T'}(b))
\geq 0
\]

• \(B(T') \leq B(T)\)

• If \(T\) is optimal, \(T'\) is, too

10-38: **Huffman Coding**

• Optimal Substructure
 • Let \(T\) be optimal tree
 • \(x, y\) sibling nodes in \(T\), \(z\) is the parent
 • Consider \(z\) to be a character with frequency \(f[x] + f[y]\)
 • \(T' = T - \{x, y\}\) is an optimal prefix code for \(C' = C - \{x, y\} \cup \{z\}\)
 • Cost \(B(T)\) in terms of cost \(B(T')\):

10-39: **Huffman Coding**

• Cost \(B(T)\) in terms of cost \(B(T')\):
 • \(\forall c \in C - \{x, y\}, d_T(c) = d_{T'}(c)\), so \(f[c]d_T[c] = f[c]d_{T'}[c]\)

\[
f[x]d_T(x) + f[y]d_T[y] = (f[x] + f[y])(d_{T'}(z) + 1)
= f[z]d_{T'}(z) + f[x] + f[y]
\]

• \(B(T) = B(T') + f[x] + f[y]\)

• So, if \(T'\) is not optimal, neither is \(T\)

10-40: **Matroids**

• Matroid is a pair: \(M = (S, I)\)
 • \(S\) is a finite, nonempty set
 • \(I\) is a nonempty family of subsets of \(S\), called “Independent subsets” of \(S\) such that:
• if \(B \in I \) and \(A \subseteq B \), then \(A \in I \) (Hereditary Property)
• If \(A \in I \) and \(B \in I \) and \(|A| < |B| \), there is some element \(x \in B \) such that \(A \cup \{x\} \in I \) (Exchange Property)

10-41: Matroids

• Originally, Matroids used to describe matrices
 • \(S \) = rows of a matrix
 • \(I \) = sets of linearly independent rows
 • Hence the name, independent subsets
 • Matrix matroids have both hereditary and exchange properties

10-42: Example Matroids

• \(S \) = edges of an undirected graph \(G \)
• \(I \) = Subsets of \(S \) that do not form a directed cycle

(Examples on board)

10-43: Example Matroids

• Undirected graphs / \(I \) = acyclic subsets
 • Hereditary property

10-44: Example Matroids

• Undirected graphs / \(I \) = acyclic subsets
 • Hereditary property
 • Trivial
 • If a graph is acyclic, any subset of edges will also be acyclic

10-45: Example Matroids

• Undirected graphs / \(I \) = acyclic subsets
 • Exchange Property
 • \(A, B \in I \), \(|A| < |B| \)
 • \(A \) is a forest of \(|V| - |A| \) trees (why?)
 • \(B \) is a forest of \(|V| - |B| \) trees
 • Must be some edge in \(B \) that spans two different trees in \(A \) (why?)

10-46: Weighted Matroids

• Weighted Matroid:
 • Positive weight \(w(x) \) for each element \(x \in S \)
 • Weight of any member of \(I \) is sum of weights of elements of \(I \)
 • Optimal subset of \(S \) is an element of \(I \) with maximal weight
• Problem: Find an optimal subset of S
 • What would greedy solution look like?
 • Does it work?

10-47: **Weighted Matroids**

Greedy(M, w)

$A \leftarrow \{\}$

sort $S[M]$ in non-increasing order by w

for each $x \in S[M]$ (in non-decreasing order)
 if $A \cup \{x\} \in I[M]$
 $A \leftarrow A \cup \{x\}$

return A

10-48: **Weighted Matroids**

• To show that a greedy algorithm is correct (produces optimal solutions) we need to show:
 • Greedy Choice
 • There exists a solution that contains the greedy choice
 • Optimal Substructure
 • Optimal solutions are composed of optimal solutions to subproblems

10-49: **Weighted Matroids**

• Greedy Choice
 • Let $\{x\}$ be independent element with largest weight
 • Show that there is some maximal matroid that contains x.

• What should we do?

10-50: **Weighted Matroids**

• Let $\{x\}$ be independent element with largest weight

• Let B be a maximal matroid
 • If B contains x, we are done
 • If B does not contain x, we can create a set A:
 • start with $A = \{x\}$
 • Use exchange property to add elements to A from b until $|A| = |B|$
 • weight(A) = weight(B) - weight(y) + weight(x)
 • y is element of B not added to A
 • weight(x) \geq weight(y) (why?)

10-51: **Weighted Matroids**

• Optimal substructure
• Let x be first element chosen by Greedy from $M = (S, I)$
• Remaining subproblem: find maximal weight independent subset of $M' = (S', I')$:
 • $S' = \{y \in S : \{x, y\} \in I\}$
 • $I' = \{B \subseteq S - \{x\} : B \cup \{x\} \in I\}$

10-52: **Weighted Matroids**

• If an optimization problem is finding a maximal weighted matroid, then greedy will work.

• Minimum Cost Spanning Tree (MST)
 • Undirected graph G, each edge k has a positive weight w_k
 • Find a spanning tree (connected, acyclic subset of edges) that has minimum cost

• Is the MST problem a maximal weighted matroid problem?

10-53: **Weighted Matroids**

• If an optimization problem is finding a maximal weighted matroid, then greedy will work.

• Minimum Cost Spanning Tree (MST)
 • Undirected graph G, each edge k has a positive weight w_k
 • Find a spanning tree (connected, acyclic subset of edges) that has minimum cost

• Is the MST problem a weighted matroid?
 • Want to find minimal total weight, not maximal
 • Replace each weight w_k with $w_0 - w_k$, where w_0 is larger than any weight on the graph

• Greedy solution will work (Kruskal’s algorithm)

10-54: **Weighted Matroids**

• Example: Unit tasks with deadlines and penalties
 • Set $S = \{a_1, a_2, \ldots, a_n\}$ of n unit-time tasks
 • Set of n deadlines d_1, \ldots, d_n
 • Set of n non-negative penalties w_1, w_2, \ldots, w_n

• Schedule all n tasks. Each task a_k that is completed after time d_k incurs penalty w_k.

• What is the optimal schedule (smallest overall penalty)?

10-55: **Weighted Matroids**

• Example: Unit tasks with deadlines and penalties
 • Any schedule can be re-arranged so that:
 • All on-time tasks are scheduled before all late tasks
 • On-time tasks are completed by order of deadline
 • To create a schedule, decide which tasks will be done on time, and which will be late. Then, order early tasks by increasing deadline, and late tasks afterwards in any order.
10-56: **Weighted Matroids**

- Example: Unit tasks with deadlines and penalties
 - S = set of tasks
 - I = set of subsets of tasks, where all tasks in I are early
- Hereditary Property?
- Exchange Property?

10-57: **Weighted Matroids**

- Example: Unit tasks with deadlines and penalties
 - S = set of tasks
 - I = set of subsets of tasks, where all tasks in I are early
- Hereditary Property
 - If we can schedule all elements in I on time, we can obviously schedule all elements of any subset of I in time as well.

10-58: **Weighted Matroids**

- Exchange Property
 - Let A and B be independent subsets, with $|B| > |A|$.
 - $N_0(A)$ be the number of tasks in A that have a deadline if t or earlier
 - Let k be the largest integer such that $N_k(B) \leq N_k(A)$
 - $N_0(B) = N_0(A) = 0$, so such a k must exist
 - $N_n(B) = |B|$, $N_n(A) = |A|$, so $N_n(B) > N_n(A)$
 - $k < n$, for all j in the range $k + 1 \ldots n$, $N_j(B) > N_j(A)$.
 - B contains more tasks with deadline $k + 1$ than A does
 - Add any task with deadline $k + 1$ to A from B