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11-0: Binary Search Trees

® Binary Iree data structure
® All values in left subtree < value stored in root
® All values in the right subtree > value stored in root




11-1: Generalizing BSTs

® Generalized Binary Search Trees

e Each node can store several keys, instead of
just one

e Values in subtrees between values in
surrounding keys

* For non leaves, # of children = # of keys + 1
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11-2: 2=-3 Trees

® Generalized Binary Search Tree
 Each node has 1 or 2 keys

* Each (non-leaf) node has 2-3 children
 hence the name, 2-3 Trees

* All leaves are at the same depth




11-.3: Example 2-3 Tree
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11-4: Finding in 2-3 Trees

® How can we find an element in a 2-3 tree”?




11-5: Finding In 2-3 Trees

® How can we find an element in a 2-3 tree?
* |If the tree is empty, return false
e |f the element is stored at the root, return true

e Otherwise, recursively find in the appropriate
subtree




11-6: Inserting into 2-3 Trees

® Always insert at the leaves

® o insert an element:

e Find the leaf where the element would live, if it
was in the tree

e Add the element to that leaf




11.7: Inserting into 2-3 Trees

® Always insert at the leaves

® o insert an element:

e Find the leaf where the element would live, if it
was in the tree

e Add the element to that leaf
- What if the leaf already has 2 elements?




11-8: Inserting into 2-3 Trees

® Always insert at the leaves

® o insert an element:

e Find the leaf where the element would live, if it
was in the tree

e Add the element to that leaf
- What if the leaf already has 2 elements?
- Split!




11-9: Splitting Nodes




11-10: Splitting Nodes
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11-11: SPlitting Nodes
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11-12: Splitting Nodes
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11-13: Splitting Root

® When we split the root:
e Create a new root
* Tree grows in height by 1




11-14: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree
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11-15: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

1 2




11-16: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

1 2 3

Too many keys,
need to split




11-17: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree
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11-18: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree
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11-19: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree
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11-20: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree
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11-21: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree
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11-22: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree
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Too many keys
need to split




11-23: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

Too many keys
need to split
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11-24: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree
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11-25: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree
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11-26: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree
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11-27: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

L 4 N

TN

/2\

/TN




11-28: Deleting from 2-3 Tree

® As with BSTs, we will have 2 cases:
e Deleting a key from a leaf
* Deleting a key from an internal node




11-29: Deleting Leaves

® |f leaf contains 2 keys
e Can safely remove a key




11-30: Deleting Leaves
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11-31: Deleting Leaves
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® Deleting 7




11-32: Deleting Leaves

® |f leaf contains 1 key
e Cannot remove key without making leaf empty
e Try to steal extra key from sibling




11-33: Deleting Leaves
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® Deleting 3 — we can steal the 5




11-3a: Deleting Leaves
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® Not a 2-3 tree. What can we do?




11-35: Deleting Leaves

I

5 / 11

(448 >

® Steal key from sibling through parent




11-36: Deleting Leaves
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® Steal key from sibling through parent




11-37: Deleting Leaves

® |f leaf contains 1 key, and no sibling contains extra
keys
e Cannot remove key without making leaf empty
e Cannot steal a key from a sibling
* Merge with sibling
- split in reverse




11-38: Merging Nodes
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® Removing the 4




11-39: Merging Nodes
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® Removing the 4
® Combine 5, 7 into one node




11-20: Merging Nodes
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11-41: Merging Nodes

® Merge decreases the number of keys in the parent
* May cause parent to have too few keys

® Parent can steal a key, or merge again




11-42: Merging Nodes
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® Deleting the 3 — cause a merge




11-43: Merging Nodes
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® Deleting the 3 — cause a merge
® Not enough keys in parent




11-44: Merging Nodes
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® Steal key from sibling




11-45: Merging Nodes
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® Steal key from sibling




11-46: Merging Nodes
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® When we steal a key from an internal node, steal
nearest subtree as well




11-47: Merging Nodes
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® When we steal a key from an internal node, steal
nearest subtree as well




11-48: Merging Nodes
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® Deleting the 7 — cause a merge




11-49: Merging Nodes
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® Parent has too few keys — merge again




11-50: Merging Nodes
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® Root has no keys — delete




11-51: Merging Nodes
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11-52: Deleting Interior Keys

® How can we delete keys from non-leaf nodes?

e HINT: How did we delete non-leaf nodes in
standard BSTs?




11-53: Deleting Interior Keys

® How can we delete keys from non-leaf nodes?

* Replace key with smallest element subtree to
right of key

e Recursivly delete smallest element from
subtree to right of key

® (can also use largest element in subtree to left of
key)




11-54: Deleting Interior Keys
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11-55: Deleting Interior Keys
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® Deleting the 4
® Replace 4 with smallest element in tree to right of 4




11-56: Deleting Interior Keys
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11-57: Deleting Interior Keys
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® Deleting the 5
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11-58: Deleting Interior Keys
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® Deleting the 5

® Replace the 5 with the smallest element in tree to
right of 5
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11-50: Deleting Interior Keys
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® Deleting the 5

® Replace the 5 with the smallest element in tree to
right of 5

® Node with two few keys




11-60: Deleting Interior Keys
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® Node with two few keys
® Steal a key from a sibling




11-61: Deleting Interior Keys
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11-62: Deleting Interior Keys
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® Removing the 6
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11-63: Deleting Interior Keys
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® Removing the 6

® Replace the 6 with the smallest element in the tree
to the right of the 6




11-64: Deleting Interior Keys
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® Node with too few keys

e Can'’t steal key from sibling

* Merge with sibling
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11-65: Deleting Interior Keys
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® Node with too few keys
e Can'’t steal key from sibling
* Merge with sibling
 (arbitrarily pick right sibling to merge with)




11-66: Deleting Interior Keys
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11-67: Generalizing 2-3 Trees

® |n 2-3 Trees:
e Each node has 1 or 2 keys
e Each interior node has 2 or 3 children

® We can generalize 2-3 trees to allow more keys /
node




11-68: B-Trees

® A B-Tree of maximum degree K:
e All interior nodes have [k/2] ...k children
e All nodes have [k/2] — 1. ..k — 1 keys

® 2-3 Tree is a B-Tree of maximum degree 3




11-69: B-Trees
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® B-Tree with maximum degree 5
* |nterior nodes have 3 — 5 children
* All nodes have 2-4 keys




11-70: B-Trees

® |nserting into a B-Tree
* Find the leaf where the element would go

e |f the leaf is not full, insert the element into the
eaf

e Otherwise, split the leaf (which may cause
further splits up the tree), and insert the
element




11-711: B-Trees
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11-72: B-Trees
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11-73: B-Trees
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11-74: B-Trees

1 3 6 7 8 9 10 12 15 17 18 22

Too many keys
need to split

® Promote 8 to parent (between 5 and 11)
® Make nodes out of (6, 7) and (9, 10)




11-75: B-Trees

Too many keys
need to split

B
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® Promote 11 to parent (new root)
® Make nodes out of (5, 8) and (6, 19)




11-76: B-Trees
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® Note that the root only has 1 key, 2 chi
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® All nodes in B-Trees with maximum degree 5

should have at least 2 keys

® The root is an exception — it may have as few as
one key and two children for any maximum degree




11-77: B-Trees

® B-Tree of maximum degree £
e Generalized BST
* All leaves are at the same depth
* All nodes (other than the root) have
[k/2] —1...k—1keys
* All interior nodes (other than the root) have
[k/2] ...k children




11-78: B-Trees

® B-Tree of maximum degree £
e Generalized BST
* All leaves are at the same depth
* All nodes (other than the root) have
[k/2] —1...k—1keys
* All interior nodes (other than the root) have
[k/2] ...k children

® Why do we need to make exceptions for the root?




11-79: B-Trees

® Why do we need to make exceptions for the root?

e Consider a B-Tree of maximum degree 5 with
only one element




11-80: B-Trees

® Why do we need to make exceptions for the root?

e Consider a B-Tree of maximum degree 5 with
only one element

e Consider a B-Tree of maximum degree 5 with 5
elements




11-81: B-Trees

® Why do we need to make exceptions for the root?

e Consider a B-Tree of maximum degree 5 with
only one element

e Consider a B-Tree of maximum degree 5 with 5
elements

e Even when a B-Tree could be created for a
specific number of elements, creating an
exception for the root allows our split/merge
algorithm to work correctly.




11-82: B-Trees

® Deleting from a B-Tree (Key is in a leaf)
* Remove key from leaf
e Steal / Split as necessary
 May need to split up tree as far as root




11-83: B-Trees
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11-84: B-Trees
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11-85: B-Trees
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11-86: B-Trees
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11-87: B-Trees
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11-88: B-Trees
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11-89: B-Trees
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® Merge with a sibling (pick the left sibling arbitrarily)
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11-90: B-Trees
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11-91: B-Trees

® Deleting from a B-Tree (Key in internal node)
* Replace key with largest key in right subtree
 Remove largest key from right subtree
* (May force steal / merge)




11-92: B-Trees
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11-93: B-Trees

/5

1

3 |r78912

® Remove the 5

17 18

22

23




11-94: B-Trees
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11-95: B-Trees
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11-96: B-Trees
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11-97: B-Trees

1 3 8 9 12 17 18 23

Too few keys




11-98: B-Trees
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11-99: B-Trees
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11-100: B-Trees

® Almost all databases that are large enough to
require storage on disk use B-Trees
® Disk accesses are very slow

* Accessing a byte from disk is 10,000 — 100,000
times as slow as accessing from main memory

* Recently, this gap has been getting even bigger

® Compared to disk accesses, all other operations
are essentially free

® Most efficient algorithm minimizes disk accesses
as much as possible




11-101: B-Trees

® Disk accesses are slow — want to minimize them

® Single disk read will read an entire sector of the
disk

® Pick a maximum degree k£ such that a node of the
B-Tree takes up exactly one disk block

* Typically on the order of 100 children / node




11-102: B-Trees

® With a maximum degree around 100, B-Trees are
very shallow

® \ery few disk reads are required to access any
piece of data

® Can improve matters even more by keeping the
first few levels of the tree in main memory

e For large databases, we can’t store the entire
tree in main memory — but we can limit the
number of disk accesses for each operation to
be very small




11-103: B-Trees

® |f the maximum degree of a B-Tree is odd (2-3 tree,
3-4-5 tree), then we can only split a node when it
gets “over-full”

e Examples for 2-3 trees on board
® |f the maximum degree of a B-Tree is even (2-3-4
tree, 3-4-5-6, etc.):
 We can split a node before it is “over-full”

 We can merge nodes before they are
“‘under-full”




11-104: B-Trees

® Preemptive Splitting
* |f the maximum degree is even, we can
implement an insert with a single pass down
the tree (instead of a pass down, and then a
pass up to clean up)

* When inserting into any subtree tree, if the root
of that tree is full, split the root before inserting
- Every time we want to do a split, we know
our parent is not full.

(examples, use visualization)




11-105: B-Trees

® Preemptive Combining — Deleting from Leaves

 |f the maximum degree is even, we can
iImplement a delete with a single pass down the
tree (instead of a pass down, and then a pass
up to clean up)

* When deleting from any node (other than the
root), combine / steal as necessary so that the
node has more then the minimum # of keys

* When you get to a leaf, you are guaranteed that
there will be an extra key In the leaf

(examples, deleting from leaves)




11-106: B-Trees

® Preemptive Combining

e Deleting £ from a non-leaf:

- If the subtree left of £ has > minimum
number of elements, replace k£ with largest
element in the left subtree, splitting as you go
down

- If the subtree right of £ has > minimum
number of elements, replace k& with smallest
element in the right subtree, splitting as you
go down

(examples)




11-107: B-Trees

Deleting 5:
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11-108: B-Trees

Deleting 5:
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11-109: B-Trees

Deleting 5:
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11-110: B-Trees

Deleting 5:
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11-111: B-Trees

® Preemptive Combining

e Deleting k£ from a non-leatf:

- If the subtrees to the left & right of £ subtrees
both have the minimum # of elements,
combine around k

 Recursively remove £ from this new node




11-112: B-Trees

Deleting 5:




11-113: B-Trees

Merge around 5:
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11-114: B-Trees

Delete 5 from new node:




11-115: B=-Trees

® Preemptive Combining

e Deleting k£ from a non-leatf:

- If the subtrees to the left & right of £ subtrees
both have the minimum # of elements,
combine around k

 Recursively remove £ from this new node

® Why do we need this case? Why can’t we just
replace key with largest value in left subtree, or
smallest value in right subtree?




11-116:

B-Trees

® Preemptive Combining
e Deleting k£ from a non-leatf:

- If the subtrees to the left & right of £ subtrees
both have the minimum # of elements,
combine around k

 Recursively remove £ from this new node

® Why do we need this case? Why can’t we just

rep

ace key with largest value in left subtree?
mmediately cause a merge, anyway
Harder to determine which location to copy

argest element into




11-117: B-Trees

® Preemptive split/merge vs. “standard” split/merge
* Advantages of the “standard” method?
* Advantages of the “preemptive” method?

® Textbook uses “preemptive” method

* Defines “minimum degree £” (with maximum

degree = 2k) instead of “maximum degree £”

(with minimum degree = [£])
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