Graduate Algorithms
CS673-2016F-11

B-Trees

Davi |

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

11-0: Binary Search Trees

® Binary Iree data structure
® All values in left subtree < value stored in root
® All values in the right subtree > value stored in root

11-1: Generalizing BSTs

® Generalized Binary Search Trees

e Each node can store several keys, instead of
just one

e Values in subtrees between values in
surrounding keys

* For non leaves, # of children = # of keys + 1

26

RN

1 3 4 I

11-2: 2=-3 Trees

® Generalized Binary Search Tree
 Each node has 1 or 2 keys

* Each (non-leaf) node has 2-3 children
 hence the name, 2-3 Trees

* All leaves are at the same depth

11-.3: Example 2-3 Tree

6 16 —

/ 8 \13~

SN

2 S 7 11 12 14

11-4: Finding in 2-3 Trees

® How can we find an element in a 2-3 tree”?

11-5: Finding In 2-3 Trees

® How can we find an element in a 2-3 tree?
* |If the tree is empty, return false
e |f the element is stored at the root, return true

e Otherwise, recursively find in the appropriate
subtree

11-6: Inserting into 2-3 Trees

® Always insert at the leaves

® o insert an element:

e Find the leaf where the element would live, if it
was in the tree

e Add the element to that leaf

11.7: Inserting into 2-3 Trees

® Always insert at the leaves

® o insert an element:

e Find the leaf where the element would live, if it
was in the tree

e Add the element to that leaf
- What if the leaf already has 2 elements?

11-8: Inserting into 2-3 Trees

® Always insert at the leaves

® o insert an element:

e Find the leaf where the element would live, if it
was in the tree

e Add the element to that leaf
- What if the leaf already has 2 elements?
- Split!

11-9: Splitting Nodes

11-10: Splitting Nodes

//4

/// To0o nmany

1 2 5 6 7 el enent s

11-11: SPlitting Nodes

//4
/ \\W onpbte to parent

T 2] [56 7]

Left child Ri ght child
of 6 of 6

11-12: Splitting Nodes

4

0\

\

11-13: Splitting Root

® When we split the root:
e Create a new root
* Tree grows in height by 1

11-14: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

1

11-15: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

1 2

11-16: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

1 2 3

Too many keys,
need to split

11-17: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

2\

RN

1 3

11-18: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

2\

7N

1 3 4

11-19: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

2\

RN

1 345

Too many keys,
need to split

11-20: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

SN

1 3 S

11-21: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

N

1 3 5 6

11-22: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

N

1 3 5 6 7

Too many keys
need to split

11-23: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

Too many keys
need to split

2 4 B~

YA N

1 3 S 7

11-24: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

/2/
SN\

L 4

11-25: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

L 4

/2/\
/N

11-26: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

/2////
SN/

1 3 5 /7 89

4\

Too many keys
need to split

11-27: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

L 4 N

TN

/2\

/TN

11-28: Deleting from 2-3 Tree

® As with BSTs, we will have 2 cases:
e Deleting a key from a leaf
* Deleting a key from an internal node

11-29: Deleting Leaves

® |f leaf contains 2 keys
e Can safely remove a key

11-30: Deleting Leaves

/N

5

/ 11

® Deleting 7

11-31: Deleting Leaves

/4\8\

I

5

11

® Deleting 7

11-32: Deleting Leaves

® |f leaf contains 1 key
e Cannot remove key without making leaf empty
e Try to steal extra key from sibling

11-33: Deleting Leaves

/N

5 / 11

® Deleting 3 — we can steal the 5

11-3a: Deleting Leaves

/N

/ 11

® Not a 2-3 tree. What can we do?

11-35: Deleting Leaves

I

5 / 11

(448 >

® Steal key from sibling through parent

11-36: Deleting Leaves

/AN

/ 11

® Steal key from sibling through parent

11-37: Deleting Leaves

® |f leaf contains 1 key, and no sibling contains extra
keys
e Cannot remove key without making leaf empty
e Cannot steal a key from a sibling
* Merge with sibling
- split in reverse

11-38: Merging Nodes

LE 8

/)

A

v

I

11

® Removing the 4

11-39: Merging Nodes

FICE
/T

/ 11

® Removing the 4
® Combine 5, 7 into one node

11-20: Merging Nodes

[8>

/

5

v

I

11

11-41: Merging Nodes

® Merge decreases the number of keys in the parent
* May cause parent to have too few keys

® Parent can steal a key, or merge again

11-42: Merging Nodes

d

y 2\

/

1

\

L 4\

3

S

® Deleting the 3 — cause a merge

11-43: Merging Nodes

L 4\

e

1 2

/6,8 \

\

S

.

® Deleting the 3 — cause a merge
® Not enough keys in parent

11-44: Merging Nodes

A
L

N
| 618 \

A b

1 2 S

® Steal key from sibling

11-45: Merging Nodes

//6\\
4
1 2)

® Steal key from sibling

11-46: Merging Nodes

4//6\\
e

® When we steal a key from an internal node, steal
nearest subtree as well

11-47: Merging Nodes

L 6\

4\/ \
AN

1 2 S 7 9

® When we steal a key from an internal node, steal
nearest subtree as well

11-48: Merging Nodes

L 6\

NN

14

1 2 S 7 9

® Deleting the 7 — cause a merge

11-49: Merging Nodes

L 6\

SN
N

1 2 5 8 9

® Parent has too few keys — merge again

11-50: Merging Nodes

,4\6

N

N

1 2

S}

N

® Root has no keys — delete

11-51: Merging Nodes

RN

N

N

1 2

5

N

11-52: Deleting Interior Keys

® How can we delete keys from non-leaf nodes?

e HINT: How did we delete non-leaf nodes in
standard BSTs?

11-53: Deleting Interior Keys

® How can we delete keys from non-leaf nodes?

* Replace key with smallest element subtree to
right of key

e Recursivly delete smallest element from
subtree to right of key

® (can also use largest element in subtree to left of
key)

11-54: Deleting Interior Keys

AN

L 4\

d

y 2\

/

1

\

® Deleting the 4

) !

S

6

38

9

11-55: Deleting Interior Keys

/Z/i_\!\
/N N

1 3 |5 8 9

® Deleting the 4
® Replace 4 with smallest element in tree to right of 4

11-56: Deleting Interior Keys

L D\

1

.

AN

) !

6

38

9

11-57: Deleting Interior Keys

L D\

d

y 2\

/

1

\

® Deleting the 5

AN

) !

38

9

11-58: Deleting Interior Keys

//2\ /7

N
1 3 }j 8 9
® Deleting the 5

® Replace the 5 with the smallest element in tree to
right of 5

5

11-50: Deleting Interior Keys

2/,6\\
PARRVAN

® Deleting the 5

® Replace the 5 with the smallest element in tree to
right of 5

® Node with two few keys

11-60: Deleting Interior Keys

'

/2\

/

1

\

L 6 N

3

s

[\

[89

® Node with two few keys
® Steal a key from a sibling

11-61: Deleting Interior Keys

L 6\

DN
/N N

1 3 ! 2

11-62: Deleting Interior Keys

10

) 2

/

1

&K

/’
:

—

® Removing the 6

9

13

11-63: Deleting Interior Keys

,2/%6 10\\
N N A

1 3 [z] 9 12 13

® Removing the 6

® Replace the 6 with the smallest element in the tree
to the right of the 6

11-64: Deleting Interior Keys

/’

2\

/

1

\

10

3

/

@K

—

9

® Node with too few keys

e Can'’t steal key from sibling

* Merge with sibling

13

11-65: Deleting Interior Keys

2/,7 10 \
/ 7\ /\

1 3 38 9 12

® Node with too few keys
e Can'’t steal key from sibling
* Merge with sibling
 (arbitrarily pick right sibling to merge with)

11-66: Deleting Interior Keys

-/

) 2

/

1

/
:

/

38

9

13

11-67: Generalizing 2-3 Trees

® |n 2-3 Trees:
e Each node has 1 or 2 keys
e Each interior node has 2 or 3 children

® We can generalize 2-3 trees to allow more keys /
node

11-68: B-Trees

® A B-Tree of maximum degree K:
e All interior nodes have [k/2] ...k children
e All nodes have [k/2] — 1. ..k — 1 keys

® 2-3 Tree is a B-Tree of maximum degree 3

11-69: B-Trees

///5/ —+ Q\\\

1 3 /7 8 9 12 15 17 18 22

® B-Tree with maximum degree 5
* |nterior nodes have 3 — 5 children
* All nodes have 2-4 keys

11-70: B-Trees

® |nserting into a B-Tree
* Find the leaf where the element would go

e |f the leaf is not full, insert the element into the
eaf

e Otherwise, split the leaf (which may cause
further splits up the tree), and insert the
element

11-711: B-Trees

1

3 /7 8 9

12 15

® |nserting a6 ..

17 18

22

23

11-72: B-Trees

1

3

6 7 8 9

12 15

17 18

22

23

11-73: B-Trees

1

3 6 7 8 9

12 15

® |nsertinga 10 ..

17 18

22

23

11-74: B-Trees

1 3 6 7 8 9 10 12 15 17 18 22

Too many keys
need to split

® Promote 8 to parent (between 5 and 11)
® Make nodes out of (6, 7) and (9, 10)

11-75: B-Trees

Too many keys
need to split

B

1 3 6 7 9 10 12 15 17 18 22

® Promote 11 to parent (new root)
® Make nodes out of (5, 8) and (6, 19)

11-76: B-Trees

11 <

TN

P

1 3 6 7 9 10 12 15 17 18

® Note that the root only has 1 key, 2 chi

22 23

dren

® All nodes in B-Trees with maximum degree 5

should have at least 2 keys

® The root is an exception — it may have as few as
one key and two children for any maximum degree

11-77: B-Trees

® B-Tree of maximum degree £
e Generalized BST
* All leaves are at the same depth
* All nodes (other than the root) have
[k/2] —1...k—1keys
* All interior nodes (other than the root) have
[k/2] ...k children

11-78: B-Trees

® B-Tree of maximum degree £
e Generalized BST
* All leaves are at the same depth
* All nodes (other than the root) have
[k/2] —1...k—1keys
* All interior nodes (other than the root) have
[k/2] ...k children

® Why do we need to make exceptions for the root?

11-79: B-Trees

® Why do we need to make exceptions for the root?

e Consider a B-Tree of maximum degree 5 with
only one element

11-80: B-Trees

® Why do we need to make exceptions for the root?

e Consider a B-Tree of maximum degree 5 with
only one element

e Consider a B-Tree of maximum degree 5 with 5
elements

11-81: B-Trees

® Why do we need to make exceptions for the root?

e Consider a B-Tree of maximum degree 5 with
only one element

e Consider a B-Tree of maximum degree 5 with 5
elements

e Even when a B-Tree could be created for a
specific number of elements, creating an
exception for the root allows our split/merge
algorithm to work correctly.

11-82: B-Trees

® Deleting from a B-Tree (Key is in a leaf)
* Remove key from leaf
e Steal / Split as necessary
 May need to split up tree as far as root

11-83: B-Trees

1

3 /7 8 9

12 15

® Deleting the 15

17 18

22

23

11-84: B-Trees

16 <19 -
\

1 3 /7 8 9

12

Too few keys

17

18

ST

22

23

11-85: B-Trees

16 <19 -
\

-5, 1
_—

1

A

3 789_‘

12

® Steal a key from sibling

17 18

\

22

23

11-86: B-Trees

1

3

v

8

11 12

17 18

22

23

11-87: B-Trees

L5, 9
p

7

1

3 /7 8

® Delete the 11

11 12

17 18

22

23

11-88: B-Trees

1

3

16 <19 -
\

v

8

N

12

Too few keys

17 18

\

22

23

11-89: B-Trees

1 3 ‘78

12

Conmbi ne into 1 node

® Merge with a sibling (pick the left sibling arbitrarily)

17 18

\

22

23

11-90: B-Trees

/

1 3 /7 8 9 12

17 18

22

23

11-91: B-Trees

® Deleting from a B-Tree (Key in internal node)
* Replace key with largest key in right subtree
 Remove largest key from right subtree
* (May force steal / merge)

11-92: B-Trees

/

1

3 /7 8 9 12

® Remove the 5

17 18

22

23

11-93: B-Trees

/5

1

3 |r78912

® Remove the 5

17 18

22

23

11-94: B-Trees

/

1

3

8 9 12

17 18

22

23

11-95: B-Trees

/

1

3 8 9 12

® Remove the 19

17 18

22

23

11-96: B-Trees

/

1

3 8 9 12

® Remove the 19

17 18

— 1

22

23

11-97: B-Trees

1 3 8 9 12 17 18 23

Too few keys

11-98: B-Trees

7 16 «%\
/ S

1

3 8 9 12

® Merge with left sibling

17 18

23

11-99: B-Trees

/

1

3

16

8 9 12

I

17 18 22 23

11-100: B-Trees

® Almost all databases that are large enough to
require storage on disk use B-Trees
® Disk accesses are very slow

* Accessing a byte from disk is 10,000 — 100,000
times as slow as accessing from main memory

* Recently, this gap has been getting even bigger

® Compared to disk accesses, all other operations
are essentially free

® Most efficient algorithm minimizes disk accesses
as much as possible

11-101: B-Trees

® Disk accesses are slow — want to minimize them

® Single disk read will read an entire sector of the
disk

® Pick a maximum degree k£ such that a node of the
B-Tree takes up exactly one disk block

* Typically on the order of 100 children / node

11-102: B-Trees

® With a maximum degree around 100, B-Trees are
very shallow

® \ery few disk reads are required to access any
piece of data

® Can improve matters even more by keeping the
first few levels of the tree in main memory

e For large databases, we can’t store the entire
tree in main memory — but we can limit the
number of disk accesses for each operation to
be very small

11-103: B-Trees

® |f the maximum degree of a B-Tree is odd (2-3 tree,
3-4-5 tree), then we can only split a node when it
gets “over-full”

e Examples for 2-3 trees on board
® |f the maximum degree of a B-Tree is even (2-3-4
tree, 3-4-5-6, etc.):
 We can split a node before it is “over-full”

 We can merge nodes before they are
“‘under-full”

11-104: B-Trees

® Preemptive Splitting
* |f the maximum degree is even, we can
implement an insert with a single pass down
the tree (instead of a pass down, and then a
pass up to clean up)

* When inserting into any subtree tree, if the root
of that tree is full, split the root before inserting
- Every time we want to do a split, we know
our parent is not full.

(examples, use visualization)

11-105: B-Trees

® Preemptive Combining — Deleting from Leaves

 |f the maximum degree is even, we can
iImplement a delete with a single pass down the
tree (instead of a pass down, and then a pass
up to clean up)

* When deleting from any node (other than the
root), combine / steal as necessary so that the
node has more then the minimum # of keys

* When you get to a leaf, you are guaranteed that
there will be an extra key In the leaf

(examples, deleting from leaves)

11-106: B-Trees

® Preemptive Combining

e Deleting £ from a non-leaf:

- If the subtree left of £ has > minimum
number of elements, replace k£ with largest
element in the left subtree, splitting as you go
down

- If the subtree right of £ has > minimum
number of elements, replace k& with smallest
element in the right subtree, splitting as you
go down

(examples)

11-107: B-Trees

Deleting 5:

=y

11-108: B-Trees

Deleting 5:

/5 8-

11-109: B-Trees

Deleting 5:

20 <

=/

11-110: B-Trees

Deleting 5:

AN

11-111: B-Trees

® Preemptive Combining

e Deleting k£ from a non-leatf:

- If the subtrees to the left & right of £ subtrees
both have the minimum # of elements,
combine around k

 Recursively remove £ from this new node

11-112: B-Trees

Deleting 5:

11-113: B-Trees

Merge around 5:

L5

[

11-114: B-Trees

Delete 5 from new node:

11-115: B=-Trees

® Preemptive Combining

e Deleting k£ from a non-leatf:

- If the subtrees to the left & right of £ subtrees
both have the minimum # of elements,
combine around k

 Recursively remove £ from this new node

® Why do we need this case? Why can’t we just
replace key with largest value in left subtree, or
smallest value in right subtree?

11-116:

B-Trees

® Preemptive Combining
e Deleting k£ from a non-leatf:

- If the subtrees to the left & right of £ subtrees
both have the minimum # of elements,
combine around k

 Recursively remove £ from this new node

® Why do we need this case? Why can’t we just

rep

ace key with largest value in left subtree?
mmediately cause a merge, anyway
Harder to determine which location to copy

argest element into

11-117: B-Trees

® Preemptive split/merge vs. “standard” split/merge
* Advantages of the “standard” method?
* Advantages of the “preemptive” method?

® Textbook uses “preemptive” method

* Defines “minimum degree £” (with maximum

degree = 2k) instead of “maximum degree £”

(with minimum degree = [£])

	{small lecturenumber -	heblocknumber :} Binary Search Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Generalizing BSTsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-3 Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Example 2-3 Treeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding in 2-3 Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding in 2-3 Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inserting into 2-3 Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inserting into 2-3 Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inserting into 2-3 Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Splitting Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Splitting Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Splitting Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Splitting Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Splitting Rootaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-3 Tree Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-3 Tree Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-3 Tree Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-3 Tree Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-3 Tree Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-3 Tree Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-3 Tree Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-3 Tree Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-3 Tree Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-3 Tree Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-3 Tree Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-3 Tree Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-3 Tree Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-3 Tree Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting from 2-3 Treeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Leavesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Leavesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Leavesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Leavesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Leavesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Leavesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Leavesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Leavesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Leavesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Merging Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Merging Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Merging Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Merging Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Merging Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Merging Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Merging Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Merging Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Merging Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Merging Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Merging Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Merging Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Merging Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Merging Nodesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Interior Keysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Interior Keysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Interior Keysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Interior Keysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Interior Keysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Interior Keysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Interior Keysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Interior Keysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Interior Keysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Interior Keysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Interior Keysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Interior Keysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Interior Keysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Interior Keysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting Interior Keysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Generalizing 2-3 Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} B-Treesaddtocounter {blocknumber}{1}

