11-0: **Binary Search Trees**

- Binary Tree data structure
- All values in left subtree < value stored in root
- All values in the right subtree > value stored in root

11-1: **Generalizing BSTs**

- Generalized Binary Search Trees
 - Each node can store several keys, instead of just one
 - Values in subtrees between values in surrounding keys
 - For non leaves, # of children = # of keys + 1

11-2: **2-3 Trees**

- Generalized Binary Search Tree
 - Each node has 1 or 2 keys
 - Each (non-leaf) node has 2-3 children
 - hence the name, 2-3 Trees
 - All leaves are at the same depth

11-3: **Example 2-3 Tree**

11-4: **Finding in 2-3 Trees**

- How can we find an element in a 2-3 tree?

11-5: **Finding in 2-3 Trees**

- How can we find an element in a 2-3 tree?
 - If the tree is empty, return false
 - If the element is stored at the root, return true
11-6: **Inserting into 2-3 Trees**

- Always insert at the leaves
- To insert an element:
 - Find the leaf where the element would live, if it was in the tree
 - Add the element to that leaf

11-7: **Inserting into 2-3 Trees**

- Always insert at the leaves
- To insert an element:
 - Find the leaf where the element would live, if it was in the tree
 - Add the element to that leaf
 - What if the leaf already has 2 elements?

11-8: **Inserting into 2-3 Trees**

- Always insert at the leaves
- To insert an element:
 - Find the leaf where the element would live, if it was in the tree
 - Add the element to that leaf
 - What if the leaf already has 2 elements?
 - Split!

11-9: **Splitting Nodes**

```
5  6  7
```

```
6

5  7
```

11-10: **Splitting Nodes**
11-11: Splitting Nodes

Too many elements

11-12: Splitting Nodes

Promote to parent

11-13: Splitting Root

- When we split the root:
 - Create a new root
 - Tree grows in height by 1

11-14: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

11-15: 2-3 Tree Example
- Inserting elements 1-9 (in order) into a 2-3 tree

11-16: **2-3 Tree Example**

- Inserting elements 1-9 (in order) into a 2-3 tree

11-17: **2-3 Tree Example**

- Inserting elements 1-9 (in order) into a 2-3 tree

Too many keys, need to split

11-18: **2-3 Tree Example**

- Inserting elements 1-9 (in order) into a 2-3 tree

11-19: **2-3 Tree Example**

- Inserting elements 1-9 (in order) into a 2-3 tree

Too many keys, need to split

11-20: **2-3 Tree Example**

- Inserting elements 1-9 (in order) into a 2-3 tree
11-21: **2-3 Tree Example**
- Inserting elements 1-9 (in order) into a 2-3 tree

![2-3 Tree Example](image)

11-22: **2-3 Tree Example**
- Inserting elements 1-9 (in order) into a 2-3 tree

![2-3 Tree Example](image)

Too many keys need to split

11-23: **2-3 Tree Example**
- Inserting elements 1-9 (in order) into a 2-3 tree

![2-3 Tree Example](image)

Too many keys need to split

11-24: **2-3 Tree Example**
- Inserting elements 1-9 (in order) into a 2-3 tree

![2-3 Tree Example](image)
11-25: **2-3 Tree Example**
- Inserting elements 1-9 (in order) into a 2-3 tree

11-26: **2-3 Tree Example**
- Inserting elements 1-9 (in order) into a 2-3 tree

11-27: **2-3 Tree Example**
- Inserting elements 1-9 (in order) into a 2-3 tree

11-28: **Deleting from 2-3 Tree**
• As with BSTs, we will have 2 cases:
 • Deleting a key from a leaf
 • Deleting a key from an internal node

11-29: **Deleting Leaves**

• If leaf contains 2 keys
 • Can safely remove a key

11-30: **Deleting Leaves**

```
4  8
3  5  7  11
```

• Deleting 7

11-31: **Deleting Leaves**

```
4  8
3  5  11
```

• Deleting 7

11-32: **Deleting Leaves**

• If leaf contains 1 key
 • Cannot remove key without making leaf empty
 • Try to steal extra key from sibling

11-33: **Deleting Leaves**

```
4  8
3  5  7  11
```
• Deleting 3 – we can steal the 5

11-34: Deleting Leaves

- Not a 2-3 tree. What can we do?

11-35: Deleting Leaves

- Steal key from sibling through parent

11-36: Deleting Leaves

- Steal key from sibling through parent

11-37: Deleting Leaves

- If leaf contains 1 key, and no sibling contains extra keys
 - Cannot remove key without making leaf empty
 - Cannot steal a key from a sibling
 - Merge with sibling
 - split in reverse
11-38: **Merging Nodes**

![Diagram](image)

- Removing the 4

11-39: **Merging Nodes**

![Diagram](image)

- Removing the 4
- Combine 5, 7 into one node

11-40: **Merging Nodes**

![Diagram](image)

11-41: **Merging Nodes**

- Merge decreases the number of keys in the parent
 - May cause parent to have too few keys
 - Parent can steal a key, or merge again

11-42: **Merging Nodes**
- Deleting the 3 – cause a merge

11-43: Merging Nodes

- Deleting the 3 – cause a merge
- Not enough keys in parent

11-44: Merging Nodes

- Steal key from sibling

11-45: Merging Nodes

- Steal key from sibling
11-46: Merging Nodes

- When we steal a key from an internal node, steal nearest subtree as well

11-47: Merging Nodes

- When we steal a key from an internal node, steal nearest subtree as well

11-48: Merging Nodes

- Deleting the 7 – cause a merge

11-49: Merging Nodes

- Parent has too few keys – merge again
11-50: **Merging Nodes**

- Root has no keys – delete

11-51: **Merging Nodes**

11-52: **Deleting Interior Keys**

- How can we delete keys from non-leaf nodes?
 - *HINT:* How did we delete non-leaf nodes in standard BSTs?

11-53: **Deleting Interior Keys**

- How can we delete keys from non-leaf nodes?
 - Replace key with smallest element subtree to right of key
 - Recursively delete smallest element from subtree to right of key
 - (can also use largest element in subtree to left of key)

11-54: **Deleting Interior Keys**

- Deleting the 4

11-55: **Deleting Interior Keys**
• Deleting the 4
• Replace 4 with smallest element in tree to right of 4

11-56: Deleting Interior Keys

• Deleting the 5
• Replace the 5 with the smallest element in tree to right of 5

11-57: Deleting Interior Keys

• Deleting the 5

11-58: Deleting Interior Keys
11-59: Deleting Interior Keys

- Deleting the 5
- Replace the 5 with the smallest element in tree to right of 5
- Node with two few keys

11-60: Deleting Interior Keys

- Node with two few keys
- Steal a key from a sibling

11-61: Deleting Interior Keys

11-62: Deleting Interior Keys
- Removing the 6

11-63: **Deleting Interior Keys**

```
     6 10
    /  \
   /    \
  2     8
 /   \   /   \n1     7   9   11
```

- Removing the 6
- Replace the 6 with the smallest element in the tree to the right of the 6

11-64: **Deleting Interior Keys**

```
     7 10
    /   \
   /     \
  2      8
 /   \   /   \n1     3   9   12
```

- Node with too few keys
 - Can’t steal key from sibling
 - Merge with sibling

11-65: **Deleting Interior Keys**

```
     7 10
    /   \
   /     \
  2      11
 /   \   /   \n1     3   8   9
```

- Node with too few keys
 - Can’t steal key from sibling
 - Merge with sibling
 - (arbitrarily pick right sibling to merge with)
11-66: **Deleting Interior Keys**

![Image of a 2-3 B-Tree]

11-67: **Generalizing 2-3 Trees**

- In 2-3 Trees:
 - Each node has 1 or 2 keys
 - Each interior node has 2 or 3 children
- We can generalize 2-3 trees to allow more keys / node

11-68: **B-Trees**

- A B-Tree of maximum degree \(k \):
 - All interior nodes have \(\lceil k/2 \rceil \ldots k \) children
 - All nodes have \(\lceil k/2 \rceil - 1 \ldots k - 1 \) keys
- 2-3 Tree is a B-Tree of maximum degree 3

11-69: **B-Trees**

![Image of a B-Tree with maximum degree 5]

- B-Tree with maximum degree 5
 - Interior nodes have 3 – 5 children
 - All nodes have 2-4 keys

11-70: **B-Trees**

- Inserting into a B-Tree
 - Find the leaf where the element would go
 - If the leaf is not full, insert the element into the leaf
 - Otherwise, split the leaf (which may cause further splits up the tree), and insert the element
11-71: **B-Trees**

- Inserting a 6 ..

11-72: **B-Trees**

11-73: **B-Trees**

- Inserting a 10 ..

11-74: **B-Trees**

- Promote 8 to parent (between 5 and 11)
- Make nodes out of (6, 7) and (9, 10)

11-75: **B-Trees**

- Promote 11 to parent (new root)
- Make nodes out of (5, 8) and (6, 19)
• Note that the root only has 1 key, 2 children
• All nodes in B-Trees with maximum degree 5 should have at least 2 keys
• The root is an exception – it may have as few as one key and two children for any maximum degree

Why do we need to make exceptions for the root?

Why do we need to make exceptions for the root?

Why do we need to make exceptions for the root?

Why do we need to make exceptions for the root?
• Consider a B-Tree of maximum degree 5 with only one element
• Consider a B-Tree of maximum degree 5 with 5 elements
• Even when a B-Tree could be created for a specific number of elements, creating an exception for the root allows our split/merge algorithm to work correctly.

11-82: B-Trees
• Deleting from a B-Tree (Key is in a leaf)
 • Remove key from leaf
 • Steal / Split as necessary
 • May need to split up tree as far as root

11-83: B-Trees

```
      5    11   16   19
     /      \
  1     3   7  8  9  12  15  17  18  22  23
```

• Deleting the 15

11-84: B-Trees

```
      5    11   16   19
     /      \
  1     3   7  8  9  12  17  18  22  23
```

Too few keys

11-85: B-Trees

```
      5    11   16   19
     /      \
  1     3   7  8  9
```

• Steal a key from sibling

11-86: B-Trees

```
      5    9   16   19
     /      \
  1     3   7  8  11  12  17  18  22  23
```

11-87: B-Trees

```
      5    9   16   19
     /      \
  1     3   7  8  11  12  17  18  22  23
```
• Delete the 11

11-88: B-Trees

Too few keys

11-89: B-Trees

Combine into 1 node

• Merge with a sibling (pick the left sibling arbitrarily)

11-90: B-Trees

11-91: B-Trees

• Deleting from a B-Tree (Key in internal node)
 • Replace key with largest key in right subtree
 • Remove largest key from right subtree
 • (May force steal / merge)

11-92: B-Trees

• Remove the 5

11-93: B-Trees
- Remove the 5

11-94: B-Trees

![Tree Diagram]

11-95: B-Trees

![Tree Diagram]

- Remove the 19

11-96: B-Trees

![Tree Diagram]

- Remove the 19

11-97: B-Trees

![Tree Diagram]

Too few keys

11-98: B-Trees

![Tree Diagram]

- Merge with left sibling

11-99: B-Trees

![Tree Diagram]

11-100: B-Trees
Almost all databases that are large enough to require storage on disk use B-Trees

- Disk accesses are very slow
 - Accessing a byte from disk is 10,000 – 100,000 times as slow as accessing from main memory
 - Recently, this gap has been getting even bigger
- Compared to disk accesses, all other operations are essentially free
- Most efficient algorithm minimizes disk accesses as much as possible

11-101: B-Trees

- Disk accesses are slow – want to minimize them
- Single disk read will read an entire sector of the disk
- Pick a maximum degree \(k \) such that a node of the B-Tree takes up exactly one disk block
 - Typically on the order of 100 children / node

11-102: B-Trees

- With a maximum degree around 100, B-Trees are very shallow
- Very few disk reads are required to access any piece of data
- Can improve matters even more by keeping the first few levels of the tree in main memory
 - For large databases, we can’t store the entire tree in main memory – but we can limit the number of disk accesses for each operation to be very small

11-103: B-Trees

- If the maximum degree of a B-Tree is odd (2-3 tree, 3-4-5 tree), then we can only split a node when it gets “over-full”
 - Examples for 2-3 trees on board
- If the maximum degree of a B-Tree is even (2-3-4 tree, 3-4-5-6, etc.):
 - We can split a node before it is “over-full”
 - We can merge nodes before they are “under-full”

11-104: B-Trees

- Preemptive Splitting
 - If the maximum degree is even, we can implement an insert with a single pass down the tree (instead of a pass down, and then a pass up to clean up)
 - When inserting into any subtree tree, if the root of that tree is full, split the root before inserting
 - Every time we want to do a split, we know our parent is not full.

(examples, use visualization) **11-105: B-Trees**

- Preemptive Combining – Deleting from Leaves
• If the maximum degree is even, we can implement a delete with a single pass down the tree (instead of a pass down, and then a pass up to clean up)
• When deleting from any node (other than the root), combine / steal as necessary so that the node has more then the minimum # of keys
• When you get to a leaf, you are guaranteed that there will be an extra key in the leaf

(examples, deleting from leaves)

11-106: B-Trees

• Preemptive Combining

 • Deleting k from a non-leaf:
 • If the subtree left of k has $>$ minimum number of elements, replace k with largest element in the left subtree, splitting as you go down
 • If the subtree right of k has $>$ minimum number of elements, replace k with smallest element in the right subtree, splitting as you go down

(examples)

11-107: B-Trees

Deleting 5:

11-108: B-Trees

Deleting 5:

Replace 5 with largest element in left subtree

11-109: B-Trees

Deleting 5:
11-110: **B-Trees**
Deleting 5:

Replace 5 with smallest element in right subtree

11-111: **B-Trees**

- Preemptive Combining
 - Deleting k from a non-leaf:
 - If the subtrees to the left & right of k subtrees both have the minimum # of elements, combine around k
 - Recursively remove k from this new node

11-112: **B-Trees**
Deleting 5:

11-113: **B-Trees**
Merge around 5:

Delete 5 from new node:

11-114: B-Trees

Delete 5 from new node:

11-115: B-Trees

- Preemptive Combining
 - Deleting k from a non-leaf:
 - If the subtrees to the left & right of k subtrees both have the minimum # of elements, combine around k
 - Recursively remove k from this new node
 - Why do we need this case? Why can’t we just replace key with largest value in left subtree, or smallest value in right subtree?

11-116: B-Trees

- Preemptive Combining
 - Deleting k from a non-leaf:
 - If the subtrees to the left & right of k subtrees both have the minimum # of elements, combine around k
 - Recursively remove k from this new node
 - Why do we need this case? Why can’t we just replace key with largest value in left subtree?
 - Immediately cause a merge, anyway
 - Harder to determine which location to copy largest element into
11-117: **B-Trees**

- Preemptive split/merge vs. “standard” split/merge
 - Advantages of the “standard” method?
 - Advantages of the “preemptive” method?
- Textbook uses “preemptive” method
 - Defines “minimum degree k” (with maximum degree $2k$) instead of “maximum degree k” (with minimum degree $\left\lceil \frac{k}{2} \right\rceil$)