12-0: Amortized Analysis

- Standard Stack
 - Push(S, elem)
 - Pop(S)
- How much time for each operation?
12-1: Amortized Analysis

- **Standard Stack**
 - Push(S, elem) $O(1)$
 - Pop(S) $O(1)$
 - Multipop(S, k)

 for $i \leftarrow 1$ to k do

 Pop(S)

- How much time for multipop?
12-2: Amortized Analysis

- Standard Stack
 - Push(S, elem) $O(1)$
 - Pop(S) $O(1)$
 - Multipop(S, k) $O(k)$
12-3: Amortized Analysis

- Do n operations, each of which could be either a Push, Pop, or Multipop
- How long will each operation take?
 - Push
 - Pop
 - Multipop
12-4: Amortized Analysis

- Do \(n \) operations, each of which could be either a Push, Pop, or Multipop
- How long will each operation take?
 - Push \(O(1) \)
 - Pop \(O(1) \)
 - Multipop \(O(n) \)
- What if we were to do \(n \) operations in a row, each of which is either a push/pop/multipop – how long would those \(n \) operations take?
12-5: Amortized Analysis

- n operations in a row, each is either a push/pop/multipop. How long will it take?
 - Naive Method: n operations, each takes time $O(n)$ – total time: $O(n^2)$

- Looking closer:
 - How many times can Pop be called (even Pop in Multipop)?
 - Once for each push!
 - Total number of Pushes $\in O(n)$
 - Total number of Pops (including pops in multipop) $\in O(n)$
 - Total time for n operations: $O(n)$
Amortized Analysis

- n operations in a row, each is either a push/pop/multipop.
- Total time for n operations is $O(n)$
- Amortized cost for a Push, Pop, Multipop is $O(1)$
12-7: Aggregate Method

- Aggregate method
 - Total cost for n operations is $g(n)$
 - Amortized cost for 1 operation is $\frac{g(n)}{n}$
- Previous analysis of push/pop/Multipop used aggregate method
Aggregate Method

- Ripple counter, width k
 - Examples on board
- How long does an increment take?
Aggregate Method

- Ripple counter, width k
- How long does an increment take?
 - $O(k)$
 - But ...
 - Least sig. bit flips every time
 - 2nd least sig. bit flips every other time
 - 3rd least sig. bit flips every 4th time
 - kth least sig. bit flips every 2^kth time
- For n increments (if no overflow):

$$\sum_{i=1}^{\log n} \left\lfloor \frac{n}{2^i} \right\rfloor < n \times \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n$$
12-10: **Aggregate Method**

- Ripple counter, width k
- Worst case time for a sequence of n increment operations, if counter starts at 0:
 - $O(n)$
- Amortized cost for a single increment
 - $O(1)$
Accounting Method

- Assign a cost for each operation
 - Called “amortized cost”
- When amortized cost > actual cost, create a “credit” which can be used when actual cost > amortized cost
- Must design costs so that all sequences of operations always leave a “positive account”
12-12: Accounting Method

<table>
<thead>
<tr>
<th></th>
<th>actual cost</th>
<th>amortized cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pop</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Multipop</td>
<td>min(k,s)</td>
<td></td>
</tr>
</tbody>
</table>

• What amortized costs should I give, so that any valid sequence of push/pop/multipop will never have a debt?
12-13: Accounting Method

<table>
<thead>
<tr>
<th>Operation</th>
<th>Actual Cost</th>
<th>Amortized Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Pop</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Multipop</td>
<td>min(k,s)</td>
<td>0</td>
</tr>
</tbody>
</table>
12-14: Accounting Method

- Binary Counter
 - Actual Cost of setting a bit to 1 is 1
 - Actual Cost of setting a bit to 0 is 1
 - Actual Cost of an increment = # of bits flipped from 1 to 0 + 1
- What should our amortized costs be, and why?
12-15: Accounting Method

- Binary Counter
 - Amortized cost of setting a bit to 1 is: 2
 - Amortized cost of setting a bit to 0 is: ?
 - Amortized cost of an increment is: ?
Binary Counter

- Amortized cost of setting a bit to 1 is: 2
- Amortized cost of setting a bit to 0 is: 0 (!)
- Amortized cost of an increment is: 2

For n increments, the total amortized cost is $O(n)$, which is also a bound on the actual cost.
12-17: Potential Method

- Define a “potential” for data structures that your algorithm uses
 - Kind of like potential energy
- When the amortized cost is greater than the actual cost, increase the potential of the data structure
- When the amortize cost is less than the actual cost, decrease the potential of the data structure
 - Potential can never be negative
Potential Method

- $\Phi(D) = \text{potential of the data structure}$
- Amortized cost of operation c_i is $\text{am}(c_i)$
 - $\text{am}(c_i) = c_i + (\Phi(D_i) - \Phi(D_{i-1}))$
- Total amortized cost for a sequence of n operations:

$$\sum_{i=1}^{n} \text{am}(c_i) = \sum_{i=1}^{n} (c_i \Phi(D_i) - \Phi(D_{i-1}))$$

$$= (\sum_{i=1}^{n} c_i) + \Phi(D_n) - \Phi(D_0)$$

- As long as the potential starts at 0 and never goes negative, the amortized cost will always be larger.
The potential function is on the *Data Structure*, not the operations.

Don’t talk about the potential of a push or a pop.

Instead, talk about the potential of the stack.
- Define a potential function on the data structure.
- Use the potential function and actual cost to determine amortized cost.
12-20: **Potential Method**

- Potential Method Examples:
 - Stack, with push/pop/multipop
 - What should the potential be?
 - What are the resulting amortized costs?
12-21: **Potential Method**

- Potential Method Examples:
 - Stack, with push/pop/multipop
 - Potential = # of elements in the stack
 - amortized cost = actual cost + change in potential
 - amortized cost of push = 1 + 1 = 2
 - amortized cost for pop = 1 + (-1) = 0
 - amortized cost for multipop = k + (-k) = 0
Potential Method Examples:

- Binary Ripple-Carry Counter
 - What is the potential?
 - What are the resulting amortized costs
Potential Method Examples:

- Binary Ripple-Carry Counter
 - Potential = # of 1’s in the counter
 - amortized cost = actual cost + change in potential
 - actual cost = # of bits flipped
 - Change in potential = # of bits flipped from 1 to 0 - # of bits flipped from 1 to 0
 - = - # of bits flipped, if counter reset to 0
 - = 2 - # of bits flipped, otherwise
 - Amortized cost ≤ 2
Standard Hash Table
- Insert/find in time $O(1)$ (no delete for now)
- Need to know an upper bound on the table size beforehand

If we don’t know the table size beforehand?
- Pick a size to start with
- If table fills, double the table size, and add everything from old table to new table

What is the time for an insert if the table can grow?
12-25: Dynamic Hash Tables

- **Standard Hash Table**
 - Insert/find in time $O(1)$ (no delete for now)
 - Need to know an upper bound on the table size beforehand

- If we don’t know the table size beforehand?
 - Pick a size to start with
 - If table fills, double the table size, and add everything from old table to new table

- What is the time for an insert if the table can grow?
 - $O(n)$
• Any single insert into a Dynamic Hash Table can take time $O(n)$
• What is the amortized cost for an insert?
 • Aggregate method

\[c_i = \begin{cases}
 i & \text{if } i - 1 \text{ is a power of 2} \\
 1 & \text{otherwise}
\end{cases} \]
• Aggregate Method
 • Total cost for \(n \) inserts:

\[
\sum_{i=1}^{n} c_i \leq n + \sum_{i=1}^{\lg n} 2^i \\
\leq n + 2n \\
\leq 3n
\]

• Amortized cost per insert is thus \(O(1) \)
Dynamic Hash Tables

- Accounting Method
 - Amortized cost for insert = 3
 - Cost to insert the element
 - Cost to move element when the table is expanded next time
 - Cost to move one other element when the table is expanded next time (Examples)
Potential Method
- Potential starts at 0, grows as we insert elements
- When the table size increases, potential drops back to 0
 - Extra potential is used to grow the table
Potential Method
- Potential starts at 0, grows as we insert elements
- When the table size increases, potential drops back to 0
- $\Phi(T) = 2 \times num[T] - size[T]$
 - $num[T] = \text{number of elements in the table}$
 - $size[T] = \text{size of table}$
- Always positive (assuming we start with a table size of 0, when first element is added we go to a table size of 2 containing 1 element)
Potential Method

- Amortized cost for an insert = actual cost + change in potential
- If ith insert did not cause the table to grow:

$$am(c_i) = 1 + (2 \times num_i - size_i) - (2 \times num_{i-1} - size_{i-1})$$
$$= 1 + 2 \times i - size_i - 2 \times (i - 1) + size_i$$
$$= 3$$

- If ith insert did cause the table to grow:

$$am(c_i) = 1 + num_{i-1} + (2 \times num_i - size_i) - (2 \times num_{i-1} - size_{i-1})$$
$$= 1 + (i - 1) + 2 \times i - 2 \times (i - 1) - (2 \times (i - 1) - (i - 1))$$
$$= 3$$
Add in deletes
Want to keep the table from being too big
Shrink the table when it gets too large (freeing space)
First try:
 - When table gets full, double the size of the table, copying elements
 - When table gets less than half full, cut the size of the table in half, copying elements
Will this still give us $O(1)$ amortized cost for an insert/delete?
Consider a table that is full

What happens when we do the following operations:
- Insert, Delete, Delete, Insert, Insert Delete, Delete, ...
Consider a table that is full

What happens when we do the following operations:
 - Insert, Delete, Delete, Insert, Insert Delete, Delete, . . .
 - Every other operation takes time $O(n)$!
 - Amortized cost per operation is $O(n)$, not $O(1)$!

What can we do?
Dynamic Hash Tables

- When table gets full, double the size of the table, copying elements
- When table gets less than 1/4 full, halve the size of the table, copying elements
Dynamic Hash Tables

- Potential Function Φ:
 - 0 when list is exactly half full
 - Increase as # of elements in the list increases, so that the potential = # of elements in the list when the list is full
 - Increase as # of elements decreases (below 1/2 full) so that the potential = # of elements in the list when the list is 1/4 full
12-37: Dynamic Hash Tables

- Potential Function Φ:
 - $\alpha = \text{load of the table: Size of table / # of elements}$

$$
\Phi(T) = \begin{cases}
2 \cdot \text{num}[T] - \text{size}[T] & \text{if } \alpha(T) \geq 1/2 \\
\frac{\text{size}[T]}{2} - \text{num}[T] & \text{if } \alpha(T) < 1/2
\end{cases}
$$
Amortized cost for insert:

- Amortized cost = actual cost + growth in potential

\[\text{am}(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1}) \]

Several cases:

- \(1/4 < \alpha < 1/2 \)
- \(1/2 \leq \alpha < 1 \)
- \(\alpha = 1 \)
• Amortized cost for insert, $1/2 \leq \alpha < 1$
 - $am(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1})$

\[
\begin{align*}
am(c_i) &= 1 + (2 \times \text{num}_i - \text{size}_i) - (2 \times \text{num}_{i-1} - \text{size}_{i-1}) \\
&= 1 + 2i - \text{size}_i - 2(i - 1) + \text{size}_i \\
&= 3
\end{align*}
\]
• Amortized cost for insert, $\alpha = 1$

• $am(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1})$

\[
am(c_i) = 1 + num_{i-1} + (2 \cdot num_i - size_i) - (2 \cdot num_{i-1} - size_{i-1})
\]

\[
= 1 + (i - 1) + (2 \cdot i - 2 \cdot (i - 1)) - (2 \cdot (i - 1) - (i - 1))
\]

\[
= 3
\]
Amortized cost for insert, $1/4 < \alpha < 1/2$

- $am(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1})$

\[
am(c_i) = 1 + \frac{\text{size}_i}{2} - \text{num}_i - \left(\frac{\text{size}_{i-1}}{2} - \text{num}_{i-1}\right)
= 1 + \frac{\text{size}_i}{2} - \frac{\text{size}_i}{2} - \text{num}_i + (\text{num}_i) - 1
= 0
\]
Amortized cost for delete:

- Amortized cost = actual cost + growth in potential
- \(\text{am}(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1}) \)
- Several cases:
 - \(1/4 < \alpha < 1/2 \)
 - \(1/2 \leq \alpha \leq 1 \)
 - \(\alpha = 1/4 \)
• Amortized cost for delete, $\frac{1}{2} \leq \alpha \leq 1$

 $$\text{am}(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1})$$

\[
\begin{align*}
\text{am}(c_i) &= 1 + (2 \times \text{num}_i - \text{size}_i) - (2 \times \text{num}_{i-1} - \text{size}_{i-1}) \\
&= 1 + 2 \times \text{num}_i - 2 \times (\text{num}_i + 1) + \text{size}_i - \text{size}_i \\
&= -1
\end{align*}
\]
12-44: Dynamic Hash Tables

- Amortized cost for delete, $1/4 < \alpha < 1/2$
- $am(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1})$

\[
am(c_i) = 1 + \left(\frac{\text{size}_i}{2} - \text{num}_i\right) - \left(\frac{\text{size}_{i-1}}{2} - \text{num}_{i-1}\right)
= 1 + \left(\frac{\text{size}_i}{2} - \frac{\text{size}_i}{2}\right) + \text{num}_{i-1} - \text{num}_i
= 2
\]
Amortized cost for delete, $\alpha = 1/4$

- $am(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1})$

\[
\frac{size_i}{2} = \frac{size_{i-1}}{4} = num_{i-1} = num_i + 1
\]

\[
am(c_i) = 1 + num_i + \left(\frac{size_i}{2} - num_i\right) - \left(\frac{size_{i-1}}{2} - num_{i-1}\right)
= 1 + num_i + (num_i + 1 - num_i) - ((2 \times num_i + 2) - (num_i + 1))
= 1
\]