Graduate Algorithms *CS673-2016F-12 Amortized Analysis*

David Galles

Department of Computer Science University of San Francisco

12-0: Amortized Analysis

- Standard Stack
 - Push(S,elem)
 - Pop(S)
- How much time for each operation?

12-1: Amortized Analysis

- Standard Stack
 - Push(S,elem) O(1)
 - Pop(S) O(1)
 - Multipop(S,k) for $i \leftarrow 1$ to k do Pop(S)
- How much time for multipop?

12-2: Amortized Analysis

- Standard Stack
 - Push(S,elem) O(1)
 - Pop(S) O(1)
 - Multipop(S,k) O(k)

12-3: Amortized Analysis

- Do n operations, each of which could be either a Push, Pop, or Multipop
- How long will each operation take?
 - Push
 - Pop
 - Multipop

12-4: Amortized Analysis

- Do n operations, each of which could be either a Push, Pop, or Multipop
- How long will each operation take?
 - Push O(1)
 - Pop O(1)
 - Multipop O(n)
- What if we were to do n operations in a row, each of which is either a push/pop/multipop – how long would those n operations take?

12-5: Amortized Analysis

- n operations in a row, each is either a push/pop/multipop. How long will it take?
 - Naive Method: n operations, each takes time O(n) total time: $O(n^2)$
- Looking closer:
 - How many times can Pop be called (even Pop in Multipop)?
 - Once for each push!
 - Total number of Pushes $\in O(n)$
 - Total number of Pops (including pops in multipop) $\in O(n)$
 - Total time for n operations: O(n)

12-6: Amortized Analysis

- n operations in a row, each is either a push/pop/multipop.
- Total time for n operations is O(n)
- Amortized cost for a Push, Pop, Multipop is O(1)

12-7: Aggregate Method

- Aggregate method
 - Total cost for n operations is g(n)
 - Amortized cost for 1 operation is $\frac{g(n)}{n}$
- Previous analysis of push/pop/Multipop used aggregate method

12-8: Aggregate Method

- Ripple counter, width k
 - Examples on board
- How long does an increment take?

12-9: Aggregate Method

- Ripple counter, width k
- How long does an increment take?
 - \bullet O(k)
 - But ...
 - Least sig. bit flips every time
 - · 2nd least sig. bit flips every other time
 - 3rd least sig. bit flips every 4th time
 - kth least sig. bit flips every 2^k th time
- For n increments (if no overflow):

$$\sum_{i=1}^{\lg n} \left\lfloor \frac{n}{2^i} \right\rfloor < n * \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n$$

12-10: Aggregate Method

- Ripple counter, width k
- Worst case time for a sequence of n increment operations, if counter starts at 0:
 - O(n)
- Amortized cost for a single increment
 - $\bullet \ O(1)$

12-11: Accounting Method

- Accounting Method
 - Assign a cost for each operation
 - Called "amortized cost"
 - When amortized cost > actual cost, create a "credit" which can be used when actual cost > amortized cost
 - Must design costs so that all sequences of operations always leave a "positive account"

12-12: Accounting Method

actual cost amortized cost

Push 1

Pop 1

Multipop min(k,s)

 What amortized costs should I give, so that any valid sequence of push/pop/multipop will never have a debt?

12-13: Accounting Method

actual cost amortized cost

Push 1 2

Pop 1 0

Multipop min(k,s) C

12-14: Accounting Method

- Binary Counter
 - Actual Cost of setting a bit to 1 is 1
 - Actual Cost of setting a bit to 0 is 1
 - Actual Cost of an increment = # of bits flipped from 1 to 0 + 1
- What should our amortized costs be, and why?

12-15: Accounting Method

- Binary Counter
 - Amortized cost of setting a bit to 1 is: 2
 - Amortized cost of setting a bit to 0 is: ?
 - Amortized cost of an increment is: ?

12-16: Accounting Method

- Binary Counter
 - Amortized cost of setting a bit to 1 is: 2
 - Amortized cost of setting a bit to 0 is: 0 (!)
 - Amortized cost of an increment is: 2

For n increments, the total amortized cost is O(n), which is also a bound on the actual cost

12-17: Potential Method

- Definte a "potential" for data structures that your algorithm uses
 - Kind of like potential energy
- When the amortized cost is greater than the actual cost, increase the potential of the data structure
- When the amortize cost is less than the actual cost, decrease the potential of the data structure
 - Potential can never be negative

12-18: Potential Method

- $\Phi(D)$ = potential of the data structure
- Amortized cost of operation c_i is $am(c_i)$
 - $\overline{\bullet} \ \operatorname{am}(c_i) = c_i + (\Phi(D_i) \Phi(D_{i-1}))$
- Total amortized cost for a sequence of n operations:

$$\sum_{i=1}^{n} am(c_i) = \sum_{i=1}^{n} (c_i \Phi(D_i) - \Phi(D_{i-1}))$$
$$= (\sum_{i=1}^{n} c_i) + \Phi(D_n) - \Phi(D_0)$$

Aclang as the notantial starts at 0 and nover does

12-19: Potential Method

- The potential function is on the *Data Structure*, not the operations
- Don't talk about the potential of a push or a pop
- Instead, talk about the potential of the stack
 - Define a potential function on the data structure
 - Use the potential function and actual cost to determine amortized cost

12-20: Potential Method

- Potential Method Examples:
 - Stack, with push/pop/multipop
 - What should the potential be?
 - What are the resulting amortized costs?

12-21: Potential Method

- Potential Method Examples:
 - Stack, with push/pop/multipop
 - Potential = # of elements in the stack
 - amortized cost = actual cost + change in potential
 - amortized cost of push = 1 + 1 = 2
 - amortized cost for pop = 1 + (-1) = 0
 - amortzied cost for multipop = k + (-k) = 0

12-22: Potential Method

- Potential Method Examples:
 - Binary Ripple-Carry Counter
 - What is the potential?
 - What are the resulting amortized costs

12-23: Potential Method

- Potential Method Examples:
 - Binary Ripple-Carry Counter
 - Potential = # of 1's in the counter
 - amortized cost = actual cost + change in potential
 - actual cost = # of bits flipped
 - Change in potential = # of bits fliped from 1 to
 0 # of bits flipped from 1 to 0
 - = # of bits flipped, if counter reset to 0
 - = 2 # of bits flipped, otherwise
 - Amortized cost < 2

12-24: Dynamic Hash Tables

- Standard Hash Table
 - Insert/find in time O(1) (no delete for now)
 - Need to know an upper bound on the table size beforehand
- If we don't know the table size beforehand?
 - Pick a size to start with
 - If table fills, double the table size, and add everything from old table to new table
- What is the time for an insert if the table can grow?

12-25: Dynamic Hash Tables

- Standard Hash Table
 - Insert/find in time O(1) (no delete for now)
 - Need to know an upper bound on the table size beforehand
- If we don't know the table size beforehand?
 - Pick a size to start with
 - If table fills, double the table size, and add everything from old table to new table
- What is the time for an insert if the table can grow?
 - \bullet O(n)

12-26: Dynamic Hash Tables

- Any single insert into a Dynamic Hash Table can take time ${\cal O}(n)$
- What is the amortized cost for an insert?
 - Aggregate method

$$c_i = egin{cases} i & ext{if } i-1 ext{ is a power of 2} \ 1 & ext{otherwise} \end{cases}$$

12-27: Dynamic Hash Tables

- Aggregate Method
 - Total cost for *n* inserts:

$$\sum_{i=1}^{n} c_i \leq n + \sum_{i=1}^{\lg n} 2^i$$

$$\leq n + 2n$$

$$\leq 3n$$

• Amortized cost per insert is thus O(1)

12-28: Dynamic Hash Tables

- Accounting Method
 - Amortized cost for insert = 3
 - Cost to insert the element
 - Cost to move element when the table is expanded next time
 - Cost to move one other element when the table is expanded next time (Examples)

12-29: Dynamic Hash Tables

- Potential Method
 - Potential starts at 0, grows as we insert elements
 - When the table size increases, potential drops back to 0
 - Extra potential is used to grow the table

12-30: Dynamic Hash Tables

- Potential Method
 - Potential starts at 0, grows as we insert elements
 - When the table size increases, potential drops back to 0
 - $\Phi(T) = 2 * num[T] size[T]$
 - num[T] = number of elements in the table
 - size[T] = size of table
 - Always positive (assuming we start with a table size of 0, when first element is added we go to a table size of 2 containing 1 element)

12-31: Dynamic Hash Tables

- Potential Method
 - Amortized cost for an insert = actual cost + change in potential
 - If *i*th insert did not cause the table to grow:

```
am(c_i) = 1 + (2 * num_i - size_i) - (2 * num_{i-1} - size_{i-1})
= 1 + 2 * i - size_i - 2 * (i - 1) + size_i
= 3
```

• If *i*th insert did cause the table to grow:

```
am(c_i) = 1 + num_{i-1} + (2 * num_i - size_i) - (2 * num_{i-1} - size_{i-1})
= 1 + (i-1) + (2 * i - 2 * (i-1)) - (2 * (i-1) - (i-1))
= 3
```

12-32: Dynamic Hash Tables

- Add in deletes
- Want to keep the table from being too big
- Shrink the table when it gets too large (freeing space)
- First try:
 - When table gets full, double the size of the table, copying elements
 - When table gets less than half full, cut the size of the table in half, copying elements
- Will this still give us O(1) amortized cost for an insert/delete?

12-33: Dynamic Hash Tables

- Consider a table that is full
- What happens when we do the following operations:
 - Insert, Delete, Delete, Insert, Insert Delete, Delete, . . .

12-34: Dynamic Hash Tables

- Consider a table that is full
- What happens when we do the following operations:
 - Insert, Delete, Delete, Insert, Insert Delete, Delete, . . .
 - Every other operation takes time O(n)!
 - Amortized cost per operation is O(n), not O(1)!
- What can we do?

12-35: Dynamic Hash Tables

- When table gets full, double the size of the table, copying elements
- When table gets less than 1/4 full, halve the size of the table, copying elements

12-36: Dynamic Hash Tables

- Potential Function Φ:
 - 0 when list is exactly half full
 - Increase as # of elements in the list increases, so that the potential = # of elements in the list when the list is full
 - Increase as # of elements decreases (below 1/2 full) so that the potential = # of elements in the list when the list is 1/4 full

12-37: Dynamic Hash Tables

- Potential Function ⊕:
 - $\alpha = load$ of the table: Size of table / # of elements

$$\Phi(T) = \begin{cases} 2*num[T] - size[T] & \text{if } \alpha(T) \ge 1/2 \\ size[T]/2 - num[T] & \text{if} \alpha(T) < 1/2 \end{cases}$$

12-38: Dynamic Hash Tables

- Amortized cost for insert:
 - Amortized cost = actual cost + growth in potential
 - $am(c_i) = c_i + \Phi(T_i) \Phi(T_{i-1})$
 - Several cases:
 - $1/4 < \alpha < 1/2$
 - $| \cdot | 1/2 \le \alpha < 1$
 - $\alpha = 1$

12-39: Dynamic Hash Tables

- Amortized cost for insert, $1/2 \le \alpha < 1$
 - $am(c_i) = c_i + \Phi(T_i) \Phi(T_{i-1})$

$$am(c_i) = 1 + (2 * num_i - size_i) - (2 * num_{i-1} - size_{i-1})$$

= $1 + 2 * i - size_i - 2 * (i - 1) + size_i$
= 3

12-40: Dynamic Hash Tables

- Amortized cost for insert, $\alpha = 1$
 - $am(c_i) = c_i + \Phi(T_i) \Phi(T_{i-1})$

$$am(c_i) = 1 + num_{i-1} + (2 * num_i - size_i) - (2 * num_{i-1} - size_{i-1})$$

= $1 + (i-1) + (2 * i - 2 * (i-1)) - (2 * (i-1) - (i-1))$
= 3

12-41: Dynamic Hash Tables

- Amortized cost for insert, $1/4 < \alpha < 1/2$
 - $am(c_i) = c_i + \Phi(T_i) \Phi(T_{i-1})$

$$am(c_i) = 1 + (size_i/2 - num_i) - (size_{i-1}/2 - num_{i-1})$$

= $1 + (size_i/2 - size_i/2) - num_i + (num_i) - 1$
= 0

12-42: Dynamic Hash Tables

- Amortized cost for delete:
 - Amortized cost = actual cost + growth in potential
 - $am(c_i) = c_i + \Phi(T_i) \Phi(T_{i-1})$
 - Several cases:
 - $1/4 < \alpha < 1/2$
 - $1/2 \le \alpha \le 1$
 - $\alpha = 1/4$

12-43: Dynamic Hash Tables

- Amortized cost for delete, $1/2 \le \alpha \le 1$
 - $\bullet \ am(c_i) = c_i + \Phi(T_i) \Phi(T_{i-1})$

$$am(c_i) = 1 + (2 * num_i - size_i) - (2 * num_{i-1} - size_{i-1})$$

= $1 + 2 * num_i - 2 * (num_i + 1) + size_i - size_i$
= -1

12-44: Dynamic Hash Tables

- Amortized cost for delete, $1/4 < \alpha < 1/2$
 - $am(c_i) = c_i + \Phi(T_i) \Phi(T_{i-1})$

$$am(c_i) = 1 + (size_i/2 - num_i) - (size_{i-1}/2 - num_{i-1})$$

= $1 + (size_i/2 - size_i/2) + num_{i-1} - numi$
= 2

12-45: Dynamic Hash Tables

- Amortized cost for delete, $\alpha = 1/4$
 - $am(c_i) = c_i + \Phi(T_i) \Phi(T_{i-1})$

$$size_{i}/2 = size_{i-1}/4 = num_{i-1} = num_{i} + 1$$

$$am(c_{i}) = 1 + num_{i} + (size_{i}/2 - num_{i}) - (size_{i-1}/2 - num_{i-1})$$

$$= 1 + num_{i} + (num_{i} + 1 - num_{i}) - ((2 * num_{i} + 2)$$

$$-(num_{i} + 1)$$

$$= 1$$