Graduate Algorithms
CS673-2016F-12

Amortized Analysis

Davi |

Department of Computer Science
University of San Francisco



http://www.cs.usfca.edu/galles

12.0: Amortized Analysis

® Standard Stack
* Push(S,elem)
* Pop(S)

® How much time for each operation?




12-1: Amortized Analysis

® Standard Stack
e Push(S,elem) O(1)
* Pop(S) O(1)
e Multipop(S,k)
for: < 1to k do
Pop(S)

® How much time for multipop?




12-2: Amortized Analysis

® Standard Stack
e Push(S,elem) O(1)
e Pop(S) O(1)
e Multipop(S,k) O(k)




12.3: Amortized Analysis

® Do n operations, each of which could be either a
Push, Pop, or Multipop
® How long will each operation take?

e Push

* Pop

* Multipop




12-4: Amortized Analysis

® Do n operations, each of which could be either a
Push, Pop, or Multipop

® How long will each operation take?
e Push O(1)
e Pop O(1)
e Multipop O(n)
® What if we were to do n operations in a row, each

of which is either a push/pop/multipop — how long
would those n operations take?




12.5: Amortized Analysis

® n operations in a row, each is either a
push/pop/multipop. How long will it take?
* Naive Method: n operations, each takes time
O(n) — total time: O(n?)

® | ooking closer:

e How many times can Pop be called (even Pop
in Multipop)?
 Once for each push!
- Total number of Pushes € O(n)
- Total number of Pops (including pops in
multipop) € O(n)
- Total time for n operations: O(n)




12.6: Amortized Analysis

® n operations in a row, each is either a
push/pop/multipop.

® Total time for n operations is O(n)
® Amortized cost for a Push, Pop, Multipop is O(1)




12.7: Aggregate Method

® Aggregate method
 Total cost for n operations is g(n)

 Amortized cost for 1 operation is 22

n

® Previous analysis of push/pop/Multipop used
aggregate method




12.8: Aggregate Method

® Ripple counter, width £
e Examples on board

® How long does an increment take?




12.0: Aggregate Method

® Ripple counter, width £

® How long does an increment take?
* O(k)
e But ...
- Least sig. bit flips every time

- 2nd least sig. bit flips every other time
- 3rd least sig. bit flips every 4th time

- kth least sig. bit flips every 2*th time
® For n increments (if no overflow):

lgn

n =1

1=1




12.10: Aggregate Method

® Ripple counter, width £

® Worst case time for a sequence of n increment
operations, if counter starts at O:

* O(n)
® Amortized cost for a single increment
* O(1)




12-11: Accounting Method

® Accounting Method

* Assign a cost for each operation
- Called “amortized cost”

e When amortized cost > actual cost, create a
“credit” which can be used when actual cost >
amortized cost

* Must design costs so that all sequences of
operations always leave a “positive account”




12-12z Accounting Method

actual cost amortized cost
Push 1

Pop 1
Multipop min(k,s)

® What amortized costs should | give, so that any

valid sequence of push/pop/multipop will never
have a debt?




12-13: Accounting Method

actual cost amortized cost
Push 1 2

Pop 1 0
Multipop min(k,s) 0




12-14: Accounting Method

® Binary Counter
* Actual Cost of setting a bitto 1 is 1
* Actual Cost of setting a bitto O is 1

e Actual Cost of an increment = # of bits flipped
from 1100 + 1

® What should our amortized costs be, and why?




12-15: Accounting Method

® Binary Counter
 Amortized cost of setting a bitto 1 is: 2
 Amortized cost of setting a bitto 0 is: ?
 Amortized cost of an increment is: ?




12-16: Accounting Method

® Binary Counter
 Amortized cost of setting a bitto 1 is: 2
 Amortized cost of setting a bit to O is: 0 (!)
* Amortized cost of an increment is: 2

For n increments, the total amortized cost is O(n),
which is also a bound on the actual cost




12-17: Potential Method

® Definte a “potential” for data structures that your
algorithm uses

e Kind of like potential energy

® When the amortized cost is greater than the actual
cost, increase the potential of the data structure

® When the amortize cost is less than the actual
cost, decrease the potential of the data structure

* Potential can never be negative




12-18: Potential Method

® ®(D) = potential of the data structure
® Amortized cost of operation c¢; is am(c;)
® am(Ci) =C; + ((I)(Dz) -~ (I)(Dz—l))

® Total amortized cost for a sequence of n
operations:

Zn:am(ci) = Z(ciCI)(DZ-) — ®(D;_,))




12-19: Potential Method

® The potential function is on the Data Structure, not
the operations

® Don't talk about the potential of a push or a pop

® |nstead, talk about the potential of the stack
* Define a potential function on the data structure

* Use the potential function and actual cost to
determine amortized cost




12-20: Potential Method

® Potential Method Examples:

e Stac
- W
- W

K, With push/pop/multipop
nat should the potential be?

nat are the resulting amortized costs?




12-21: Potential Method

® Potential Method Examples:

e Stack, with push/pop/multipop
- Potential = # of elements in the stack
- amortized cost = actual cost + change in
potential
- amortized cost of push=1+1=2
- amortized costforpop=1+(-1) =0
« amortzied cost for multipop = K + (-k) = 0




12-22: Potential Method

® Potential Method Examples:

* Binary Ripple-Carry Counter
- What is the potential ?
- What are the resulting amortized costs




12-23: Potential Method

® Potential Method Examples:

* Binary Ripple-Carry Counter
- Potential = # of 1’s in the counter
- amortized cost = actual cost + change in
potential
- actual cost = # of bits flipped
- Change in potential = # of bits fliped from 1 to
0 - # of bits flipped from 1 to O
= - # of bits flipped, If counter resetto 0
= 2 - # of bits flipped, otherwise
- Amortized cost < 2




12-24: Dynamic Hash Tables

® Standard Hash Table
e Insert/find in time O(1) (no delete for now)
* Need to know an upper bound on the table size
beforehand
® |f we don’t know the table size beforehand?
* Pick a size to start with
* |f table fills, double the table size, and add
everything from old table to new table

® What is the time for an insert if the table can grow?




12-25: Dynamic Hash Tables

® Standard Hash Table
e Insert/find in time O(1) (no delete for now)
* Need to know an upper bound on the table size
beforehand
® |f we don’t know the table size beforehand?
* Pick a size to start with
* |f table fills, double the table size, and add
everything from old table to new table
® What is the time for an insert if the table can grow?
e O(n)




12-26: Dynamic Hash Tables

® Any single insert into a Dynamic Hash Table can
take time O(n)

® \What is the amortized cost for an insert?
e Aggregate method

)

v 1f2— 11is a power of 2

=00 ailhemie:




1227z Dynamic Hash Tables

® Aggregate Method
e Total cost for n inserts:

mn
E C; >
i=1

A\
S
oL
I
N2

VANRVAN

e Amortized cost per insert is thus O(1)




12-28: Dynamic Hash Tables

® Accounting Method

e Amortized cost for insert = 3
- Cost to insert the element
- Cost to move element when the table is
expanded next time
- Cost to move one other element when the
table is expanded next time
(Examples)




12-20: Dynamic Hash Tables

® Potential Method

* Potential starts at 0, grows as we insert
elements

* When the table size increases, potential drops
back to 0
- Extra potential is used to grow the table




12.30: Dynamic Hash Tables

® Potential Method

* Potential starts at 0, grows as we insert
elements

* When the table size increases, potential drops
back to 0

e &(T) =2« numl|T| — size|T]
- num/|T’| = number of elements in the table
- size|T| = size of table

* Always positive (assuming we start with a table

size of 0, when first element is added we go to
a table size of 2 containing 1 element)




12.31: Dynamic Hash Tables

® Potential Method
e Amortized cost for an insert = actual cost +
change in potential
* |f sth insert did not cause the table to grow:

am(c;) = 14 (2*xnum; — size;) — (2xnum;_1 — size;_1)
= 1+2xi—size; —2x% (i — 1)+ size;
= 3

* |f 2th insert did cause the table to grow:

am(c;) = 14+ num;—1 + (2*xnum; — size;) — (2« num;_1 — size;_1)
= 1+G—-1D+2*i—2*x(i—1)—2*(—1)—(i—1))
= 3




12.32: Dynamic Hash Tables

® Add in deletes
® Want to keep the table from being too big
® Shrink the table when it gets too large (freeing
space)
® First try:
 When table gets full, double the size of the
table, copying elements
 When table gets less than half full, cut the size
of the table in half, copying elements

® Will this still give us O(1) amortized cost for an
insert/delete?




12.33: Dynamic Hash Tables

® Consider a table that is full
® What happens when we do the following
operations:

* |Insert, Delete, Delete, Insert, Insert Delete,
Delete, ...




12.3¢: Dynamic Hash Tables

® Consider a table that is full
® What happens when we do the following
operations:

* |Insert, Delete, Delete, Insert, Insert Delete,
Delete, ...

e Every other operation takes time O(n)!
e Amortized cost per operation is O(n), not
O(1)!

® \What can we do?




12.35: Dynamic Hash Tables

® When table gets full, double the size of the table,
copying elements

® When table gets less than 1/4 full, halve the size of
the table, copying elements




12.3s: Dynamic Hash Tables

® Potential Function &:
* 0 when list is exactly half full

e |ncrease as # of elements in the list increases,
so that the potential = # of elements in the list
when the list is full

* Increase as # of elements decreases (below
1/2 tull) so that the potential = # of elements Iin
the list when the list is 1/4 full

llllllll




12.37: Dynamic Hash Tables

® Potential Function o:

e o = |load of the table: Size of table / # of
elements

(2 % num|T| — size|T] fa(T)>1/2

>(T) = <\size[T]/2 —num|T| ifa(T) < 1/2




12.3s: Dynamic Hash Tables

® Amortized cost for insert:

 Amortized cost = actual cost + growth in
potential
* am(c;) = ¢+ O(T;) — ©(T;-1)
e Several cases:
- 1/d<a<1/2
- 1/2<a<1
e =1




12.30: Dynamic Hash Tables

® Amortized cost forinsert, 1/2 < a < 1
* am(c) = ¢ + (1;) — O(Ti-1)

am(c;) = 1+ (2% num; — size;) — (2 x num;_1 — size;_1)
= 14+2x%¢—size; — 2% (2 — 1) + size;
= 3




12-40: Dynamic Hash Tables

® Amortized cost for insert, o« = 1
* am(c;) = ¢ + ®(T;) — ®(Ti-1)

am(c;) = 1+ num;_1+ (2% num; — size;) — (2 x num;_1 — size;_1)
= 14+@G@—-1)+2xi—2x(—1)—2*(t—1)—(i—1))
=




12.41: Dynamic Hash Tables

® Amortized cost for insert, 1/4 < a < 1/2
* am(c) = ¢ + (1;) — O(Ti-1)

am(c;)) = 14 (size;/2 —num;) — (size;_1/2 — num;_1)
= 1+ (size;/2 — size;/2) — num; + (num;) — 1
=




12.42: Dynamic Hash Tables

® Amortized cost for delete:

 Amortized cost = actual cost + growth in
potential
* am(c;) = ¢+ O(T;) — ©(T;-1)
e Several cases:
- 1/d<a<1/2
- 1/2<a<1
-a=1/4




12.43: Dynamic Hash Tables

® Amortized cost for delete, 1/2 < a <1
* am(c) = ¢ + (1;) — O(Ti-1)

am(c;) = 1+ (2% num; — size;) — (2 x num;_1 — Size;_1)
= 14 2%xnum; — 2% (num; + 1) + size; — size;

= -1




12.44: Dynamic Hash Tables

® Amortized cost for delete, 1/4 < o < 1/2
* am(c) = ¢ + (1;) — O(Ti-1)

am(c;)) = 14 (size;/2 —num;) — (size;_1/2 — num;_1)
= 1+ (size;/2 — size;/2) + num;_1 — numi

= 2




12.45: Dynamic Hash Tables

® Amortized cost for delete, a = 1/4
* am(c) = ¢ + (1;) — O(Ti-1)

size; /2 = size;_1 /4 = num;_; = num,; + 1

am(c;)) = 14+ num; + (size;/2 — num;) — (size;_1/2 — num;_q)
= 1+ num; + (num; + 1 — numy;) — ((2 * num; + 2)
—(num; + 1)
= 1




	{small lecturenumber -	heblocknumber :} Amortized Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Amortized Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Amortized Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Amortized Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Amortized Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Amortized Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Amortized Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Aggregate Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Aggregate Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Aggregate Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Aggregate Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Accounting Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Accounting Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Accounting Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Accounting Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Accounting Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Accounting Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Potential Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Potential Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Potential Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Potential Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Potential Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Potential Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Potential Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}

