
Graduate Algorithms
CS673-2016F-12

Amortized Analysis

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles


12-0: Amortized Analysis

Standard Stack

Push(S,elem)

Pop(S)

How much time for each operation?



12-1: Amortized Analysis

Standard Stack

Push(S,elem) O(1)

Pop(S) O(1)
Multipop(S,k)

for i← 1 to k do
Pop(S)

How much time for multipop?



12-2: Amortized Analysis

Standard Stack

Push(S,elem) O(1)

Pop(S) O(1)

Multipop(S,k) O(k)



12-3: Amortized Analysis

Do n operations, each of which could be either a
Push, Pop, or Multipop

How long will each operation take?

Push

Pop

Multipop



12-4: Amortized Analysis

Do n operations, each of which could be either a
Push, Pop, or Multipop

How long will each operation take?

Push O(1)

Pop O(1)

Multipop O(n)

What if we were to do n operations in a row, each
of which is either a push/pop/multipop – how long
would those n operations take?



12-5: Amortized Analysis

n operations in a row, each is either a
push/pop/multipop. How long will it take?

Naive Method: n operations, each takes time

O(n) – total time: O(n2)

Looking closer:

How many times can Pop be called (even Pop
in Multipop)?

Once for each push!
Total number of Pushes ∈ O(n)
Total number of Pops (including pops in

multipop) ∈ O(n)
Total time for n operations: O(n)



12-6: Amortized Analysis

n operations in a row, each is either a
push/pop/multipop.

Total time for n operations is O(n)

Amortized cost for a Push, Pop, Multipop is O(1)



12-7: Aggregate Method

Aggregate method

Total cost for n operations is g(n)

Amortized cost for 1 operation is
g(n)

n

Previous analysis of push/pop/Multipop used
aggregate method



12-8: Aggregate Method

Ripple counter, width k

Examples on board

How long does an increment take?



12-9: Aggregate Method

Ripple counter, width k

How long does an increment take?

O(k)

But ...
Least sig. bit flips every time
2nd least sig. bit flips every other time
3rd least sig. bit flips every 4th time

kth least sig. bit flips every 2kth time

For n increments (if no overflow):

lgn
∑

i=1

⌊n

2i

⌋

< n ∗
∞
∑

i=0

1

2i
= 2n



12-10: Aggregate Method

Ripple counter, width k

Worst case time for a sequence of n increment
operations, if counter starts at 0:

O(n)

Amortized cost for a single increment

O(1)



12-11: Accounting Method

Accounting Method

Assign a cost for each operation
Called “amortized cost”

When amortized cost > actual cost, create a
“credit” which can be used when actual cost >
amortized cost

Must design costs so that all sequences of
operations always leave a “positive account”



12-12: Accounting Method

actual cost amortized cost

Push 1

Pop 1

Multipop min(k,s)

What amortized costs should I give, so that any
valid sequence of push/pop/multipop will never
have a debt?



12-13: Accounting Method

actual cost amortized cost

Push 1 2

Pop 1 0

Multipop min(k,s) 0



12-14: Accounting Method

Binary Counter

Actual Cost of setting a bit to 1 is 1

Actual Cost of setting a bit to 0 is 1

Actual Cost of an increment = # of bits flipped
from 1 to 0 + 1

What should our amortized costs be, and why?



12-15: Accounting Method

Binary Counter

Amortized cost of setting a bit to 1 is: 2

Amortized cost of setting a bit to 0 is: ?

Amortized cost of an increment is: ?



12-16: Accounting Method

Binary Counter

Amortized cost of setting a bit to 1 is: 2

Amortized cost of setting a bit to 0 is: 0 (!)

Amortized cost of an increment is: 2

For n increments, the total amortized cost is O(n),
which is also a bound on the actual cost



12-17: Potential Method

Definte a “potential” for data structures that your
algorithm uses

Kind of like potential energy

When the amortized cost is greater than the actual
cost, increase the potential of the data structure

When the amortize cost is less than the actual
cost, decrease the potential of the data structure

Potential can never be negative



12-18: Potential Method

Φ(D) = potential of the data structure

Amortized cost of operation ci is am(ci)

am(ci) = ci + (Φ(Di)− Φ(Di−1))

Total amortized cost for a sequence of n
operations:

n
∑

i=1

am(ci) =
n

∑

i=1

(ciΦ(Di)− Φ(Di−1))

= (
n

∑

i=1

ci) + Φ(Dn)− Φ(D0)

As long as the potential starts at 0, and never goes
negative, the amoritzed cost will always be larger



12-19: Potential Method

The potential function is on the Data Structure, not
the operations

Don’t talk about the potential of a push or a pop

Instead, talk about the potential of the stack

Define a potential function on the data structure

Use the potential function and actual cost to
determine amortized cost



12-20: Potential Method

Potential Method Examples:

Stack, with push/pop/multipop
What should the potential be?
What are the resulting amortized costs?



12-21: Potential Method

Potential Method Examples:

Stack, with push/pop/multipop
Potential = # of elements in the stack
amortized cost = actual cost + change in
potential
amortized cost of push = 1 + 1 = 2
amortized cost for pop = 1 + (-1) = 0
amortzied cost for multipop = k + (-k) = 0



12-22: Potential Method

Potential Method Examples:

Binary Ripple-Carry Counter
What is the potential?
What are the resulting amortized costs



12-23: Potential Method

Potential Method Examples:

Binary Ripple-Carry Counter
Potential = # of 1’s in the counter
amortized cost = actual cost + change in
potential
actual cost = # of bits flipped
Change in potential = # of bits fliped from 1 to
0 - # of bits flipped from 1 to 0

= - # of bits flipped, if counter reset to 0
= 2 - # of bits flipped, otherwise

Amortized cost ≤ 2



12-24: Dynamic Hash Tables

Standard Hash Table

Insert/find in time O(1) (no delete for now)

Need to know an upper bound on the table size
beforehand

If we don’t know the table size beforehand?

Pick a size to start with

If table fills, double the table size, and add
everything from old table to new table

What is the time for an insert if the table can grow?



12-25: Dynamic Hash Tables

Standard Hash Table

Insert/find in time O(1) (no delete for now)

Need to know an upper bound on the table size
beforehand

If we don’t know the table size beforehand?

Pick a size to start with

If table fills, double the table size, and add
everything from old table to new table

What is the time for an insert if the table can grow?

O(n)



12-26: Dynamic Hash Tables

Any single insert into a Dynamic Hash Table can

take time O(n)

What is the amortized cost for an insert?

Aggregate method

ci =

{

i if i− 1 is a power of 2

1 otherwise



12-27: Dynamic Hash Tables

Aggregate Method

Total cost for n inserts:

n
∑

i=1

ci ≤ n+
lgn
∑

i=1

2i

≤ n+ 2n

≤ 3n

Amortized cost per insert is thus O(1)



12-28: Dynamic Hash Tables

Accounting Method

Amortized cost for insert = 3
Cost to insert the element
Cost to move element when the table is
expanded next time
Cost to move one other element when the
table is expanded next time
(Examples)



12-29: Dynamic Hash Tables

Potential Method

Potential starts at 0, grows as we insert
elements

When the table size increases, potential drops
back to 0

Extra potential is used to grow the table



12-30: Dynamic Hash Tables

Potential Method

Potential starts at 0, grows as we insert
elements

When the table size increases, potential drops
back to 0

Φ(T ) = 2 ∗ num[T ]− size[T ]
num[T ] = number of elements in the table

size[T ] = size of table

Always positive (assuming we start with a table
size of 0, when first element is added we go to
a table size of 2 containing 1 element)



12-31: Dynamic Hash Tables

Potential Method

Amortized cost for an insert = actual cost +
change in potential

If ith insert did not cause the table to grow:

am(ci) = 1 + (2 ∗ numi − sizei)− (2 ∗ numi−1 − sizei−1)

= 1 + 2 ∗ i− sizei − 2 ∗ (i− 1) + sizei

= 3

If ith insert did cause the table to grow:

am(ci) = 1 + numi−1 + (2 ∗ numi − sizei)− (2 ∗ numi−1 − sizei−1)

= 1 + (i− 1) + (2 ∗ i− 2 ∗ (i− 1))− (2 ∗ (i− 1)− (i− 1))

= 3



12-32: Dynamic Hash Tables

Add in deletes

Want to keep the table from being too big

Shrink the table when it gets too large (freeing
space)

First try:

When table gets full, double the size of the
table, copying elements

When table gets less than half full, cut the size
of the table in half, copying elements

Will this still give us O(1) amortized cost for an
insert/delete?



12-33: Dynamic Hash Tables

Consider a table that is full

What happens when we do the following
operations:

Insert, Delete, Delete, Insert, Insert Delete,
Delete, . . .



12-34: Dynamic Hash Tables

Consider a table that is full

What happens when we do the following
operations:

Insert, Delete, Delete, Insert, Insert Delete,
Delete, . . .

Every other operation takes time O(n)!

Amortized cost per operation is O(n), not
O(1)!

What can we do?



12-35: Dynamic Hash Tables

When table gets full, double the size of the table,
copying elements

When table gets less than 1/4 full, halve the size of
the table, copying elements



12-36: Dynamic Hash Tables

Potential Function Φ:

0 when list is exactly half full

Increase as # of elements in the list increases,
so that the potential = # of elements in the list
when the list is full

Increase as # of elements decreases (below
1/2 full) so that the potential = # of elements in
the list when the list is 1/4 full

1/2

Full
1/4

Full

3/4

Full
Full

P
o
t
e
n

t
ia

l



12-37: Dynamic Hash Tables

Potential Function Φ:

α = load of the table: Size of table / # of
elements

Φ(T ) =

{

2 ∗ num[T ]− size[T ] if α(T ) ≥ 1/2

size[T ]/2− num[T ] ifα(T ) < 1/2



12-38: Dynamic Hash Tables

Amortized cost for insert:

Amortized cost = actual cost + growth in
potential

am(ci) = ci +Φ(Ti)− Φ(Ti−1)

Several cases:
1/4 < α < 1/2
1/2 ≤ α < 1
α = 1



12-39: Dynamic Hash Tables

Amortized cost for insert, 1/2 ≤ α < 1

am(ci) = ci +Φ(Ti)− Φ(Ti−1)

am(ci) = 1 + (2 ∗ numi − sizei)− (2 ∗ numi−1 − sizei−1)

= 1 + 2 ∗ i− sizei − 2 ∗ (i− 1) + sizei

= 3



12-40: Dynamic Hash Tables

Amortized cost for insert, α = 1

am(ci) = ci +Φ(Ti)− Φ(Ti−1)

am(ci) = 1 + numi−1 + (2 ∗ numi − sizei)− (2 ∗ numi−1 − sizei−1)

= 1 + (i− 1) + (2 ∗ i− 2 ∗ (i− 1))− (2 ∗ (i− 1)− (i− 1))

= 3



12-41: Dynamic Hash Tables

Amortized cost for insert, 1/4 < α < 1/2

am(ci) = ci +Φ(Ti)− Φ(Ti−1)

am(ci) = 1 + (sizei/2− numi)− (sizei−1/2− numi−1)

= 1 + (sizei/2− sizei/2)− numi + (numi)− 1

= 0



12-42: Dynamic Hash Tables

Amortized cost for delete:

Amortized cost = actual cost + growth in
potential

am(ci) = ci +Φ(Ti)− Φ(Ti−1)

Several cases:
1/4 < α < 1/2
1/2 ≤ α ≤ 1
α = 1/4



12-43: Dynamic Hash Tables

Amortized cost for delete, 1/2 ≤ α ≤ 1

am(ci) = ci +Φ(Ti)− Φ(Ti−1)

am(ci) = 1 + (2 ∗ numi − sizei)− (2 ∗ numi−1 − sizei−1)

= 1 + 2 ∗ numi − 2 ∗ (numi + 1) + sizei − sizei

= −1



12-44: Dynamic Hash Tables

Amortized cost for delete, 1/4 < α < 1/2

am(ci) = ci +Φ(Ti)− Φ(Ti−1)

am(ci) = 1 + (sizei/2− numi)− (sizei−1/2− numi−1)

= 1 + (sizei/2− sizei/2) + numi−1 − numi

= 2



12-45: Dynamic Hash Tables

Amortized cost for delete, α = 1/4

am(ci) = ci +Φ(Ti)− Φ(Ti−1)

sizei/2 = sizei−1/4 = numi−1 = numi + 1

am(ci) = 1 + numi + (sizei/2− numi)− (sizei−1/2− numi−1)

= 1 + numi + (numi + 1− numi)− ((2 ∗ numi + 2)

−(numi + 1)

= 1


	{small lecturenumber -	heblocknumber :} Amortized Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Amortized Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Amortized Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Amortized Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Amortized Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Amortized Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Amortized Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Aggregate Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Aggregate Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Aggregate Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Aggregate Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Accounting Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Accounting Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Accounting Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Accounting Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Accounting Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Accounting Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Potential Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Potential Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Potential Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Potential Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Potential Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Potential Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Potential Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Hash Tablesaddtocounter {blocknumber}{1}

