
CS673-2016F-12 Amortized Analysis 1

12-0: Amortized Analysis

• Standard Stack

• Push(S,elem)

• Pop(S)

• How much time for each operation?

12-1: Amortized Analysis

• Standard Stack

• Push(S,elem) O(1)

• Pop(S) O(1)

• Multipop(S,k)

for i← 1 to k do

Pop(S)

• How much time for multipop?

12-2: Amortized Analysis

• Standard Stack

• Push(S,elem) O(1)

• Pop(S) O(1)

• Multipop(S,k) O(k)

12-3: Amortized Analysis

• Do n operations, each of which could be either a Push, Pop, or Multipop

• How long will each operation take?

• Push

• Pop

• Multipop

12-4: Amortized Analysis

• Do n operations, each of which could be either a Push, Pop, or Multipop

• How long will each operation take?

• Push O(1)

• Pop O(1)

• Multipop O(n)

• What if we were to do n operations in a row, each of which is either a push/pop/multipop – how long would

those n operations take?

12-5: Amortized Analysis



CS673-2016F-12 Amortized Analysis 2

• n operations in a row, each is either a push/pop/multipop. How long will it take?

• Naive Method: n operations, each takes time O(n) – total time: O(n2)

• Looking closer:

• How many times can Pop be called (even Pop in Multipop)?

• Once for each push!

• Total number of Pushes ∈ O(n)

• Total number of Pops (including pops in multipop) ∈ O(n)

• Total time for n operations: O(n)

12-6: Amortized Analysis

• n operations in a row, each is either a push/pop/multipop.

• Total time for n operations is O(n)

• Amortized cost for a Push, Pop, Multipop is O(1)

12-7: Aggregate Method

• Aggregate method

• Total cost for n operations is g(n)

• Amortized cost for 1 operation is
g(n)
n

• Previous analysis of push/pop/Multipop used aggregate method

12-8: Aggregate Method

• Ripple counter, width k

• Examples on board

• How long does an increment take?

12-9: Aggregate Method

• Ripple counter, width k

• How long does an increment take?

• O(k)

• But ...

• Least sig. bit flips every time

• 2nd least sig. bit flips every other time

• 3rd least sig. bit flips every 4th time

• kth least sig. bit flips every 2kth time

• For n increments (if no overflow):

lgn
∑

i=1

⌊ n

2i

⌋

< n ∗
∞
∑

i=0

1

2i
= 2n



CS673-2016F-12 Amortized Analysis 3

12-10: Aggregate Method

• Ripple counter, width k

• Worst case time for a sequence of n increment operations, if counter starts at 0:

• O(n)

• Amortized cost for a single increment

• O(1)

12-11: Accounting Method

• Accounting Method

• Assign a cost for each operation

• Called “amortized cost”

• When amortized cost > actual cost, create a “credit” which can be used when actual cost > amortized cost

• Must design costs so that all sequences of operations always leave a “positive account”

12-12: Accounting Method

actual cost amortized cost

Push 1

Pop 1

Multipop min(k,s)

• What amortized costs should I give, so that any valid sequence of push/pop/multipop will never have a debt?

12-13: Accounting Method

actual cost amortized cost

Push 1 2

Pop 1 0

Multipop min(k,s) 0

12-14: Accounting Method

• Binary Counter

• Actual Cost of setting a bit to 1 is 1

• Actual Cost of setting a bit to 0 is 1

• Actual Cost of an increment = # of bits flipped from 1 to 0 + 1

• What should our amortized costs be, and why?

12-15: Accounting Method

• Binary Counter

• Amortized cost of setting a bit to 1 is: 2

• Amortized cost of setting a bit to 0 is: ?

• Amortized cost of an increment is: ?

12-16: Accounting Method



CS673-2016F-12 Amortized Analysis 4

• Binary Counter

• Amortized cost of setting a bit to 1 is: 2

• Amortized cost of setting a bit to 0 is: 0 (!)

• Amortized cost of an increment is: 2

For n increments, the total amortized cost is O(n), which is also a bound on the actual cost

12-17: Potential Method

• Definte a “potential” for data structures that your algorithm uses

• Kind of like potential energy

• When the amortized cost is greater than the actual cost, increase the potential of the data structure

• When the amortize cost is less than the actual cost, decrease the potential of the data structure

• Potential can never be negative

12-18: Potential Method

• Φ(D) = potential of the data structure

• Amortized cost of operation ci is am(ci)

• am(ci) = ci + (Φ(Di)− Φ(Di−1))

• Total amortized cost for a sequence of n operations:

n
∑

i=1

am(ci) =

n
∑

i=1

(ciΦ(Di)− Φ(Di−1))

= (

n
∑

i=1

ci) + Φ(Dn)− Φ(D0)

• As long as the potential starts at 0, and never goes negative, the amoritzed cost will always be larger than the

actual cost

12-19: Potential Method

• The potential function is on the Data Structure, not the operations

• Don’t talk about the potential of a push or a pop

• Instead, talk about the potential of the stack

• Define a potential function on the data structure

• Use the potential function and actual cost to determine amortized cost

12-20: Potential Method

• Potential Method Examples:

• Stack, with push/pop/multipop



CS673-2016F-12 Amortized Analysis 5

• What should the potential be?

• What are the resulting amortized costs?

12-21: Potential Method

• Potential Method Examples:

• Stack, with push/pop/multipop

• Potential = # of elements in the stack

• amortized cost = actual cost + change in potential

• amortized cost of push = 1 + 1 = 2

• amortized cost for pop = 1 + (-1) = 0

• amortzied cost for multipop = k + (-k) = 0

12-22: Potential Method

• Potential Method Examples:

• Binary Ripple-Carry Counter

• What is the potential?

• What are the resulting amortized costs

12-23: Potential Method

• Potential Method Examples:

• Binary Ripple-Carry Counter

• Potential = # of 1’s in the counter

• amortized cost = actual cost + change in potential

• actual cost = # of bits flipped

• Change in potential = # of bits fliped from 1 to 0 - # of bits flipped from 1 to 0

= - # of bits flipped, if counter reset to 0

= 2 - # of bits flipped, otherwise

• Amortized cost ≤ 2

12-24: Dynamic Hash Tables

• Standard Hash Table

• Insert/find in time O(1) (no delete for now)

• Need to know an upper bound on the table size beforehand

• If we don’t know the table size beforehand?

• Pick a size to start with

• If table fills, double the table size, and add everything from old table to new table

• What is the time for an insert if the table can grow?

12-25: Dynamic Hash Tables

• Standard Hash Table



CS673-2016F-12 Amortized Analysis 6

• Insert/find in time O(1) (no delete for now)

• Need to know an upper bound on the table size beforehand

• If we don’t know the table size beforehand?

• Pick a size to start with

• If table fills, double the table size, and add everything from old table to new table

• What is the time for an insert if the table can grow?

• O(n)

12-26: Dynamic Hash Tables

• Any single insert into a Dynamic Hash Table can take time O(n)

• What is the amortized cost for an insert?

• Aggregate method

ci =

{

i if i− 1 is a power of 2

1 otherwise

12-27: Dynamic Hash Tables

• Aggregate Method

• Total cost for n inserts:

n
∑

i=1

ci ≤ n+

lgn
∑

i=1

2i

≤ n+ 2n

≤ 3n

• Amortized cost per insert is thus O(1)

12-28: Dynamic Hash Tables

• Accounting Method

• Amortized cost for insert = 3

• Cost to insert the element

• Cost to move element when the table is expanded next time

• Cost to move one other element when the table is expanded next time

(Examples)

12-29: Dynamic Hash Tables

• Potential Method

• Potential starts at 0, grows as we insert elements



CS673-2016F-12 Amortized Analysis 7

• When the table size increases, potential drops back to 0

• Extra potential is used to grow the table

12-30: Dynamic Hash Tables

• Potential Method

• Potential starts at 0, grows as we insert elements

• When the table size increases, potential drops back to 0

• Φ(T ) = 2 ∗ num[T ]− size[T ]

• num[T ] = number of elements in the table

• size[T ] = size of table

• Always positive (assuming we start with a table size of 0, when first element is added we go to a table size

of 2 containing 1 element)

12-31: Dynamic Hash Tables

• Potential Method

• Amortized cost for an insert = actual cost + change in potential

• If ith insert did not cause the table to grow:

am(ci) = 1 + (2 ∗ numi − sizei) − (2 ∗ numi−1 − sizei−1)

= 1 + 2 ∗ i − sizei − 2 ∗ (i − 1) + sizei

= 3

• If ith insert did cause the table to grow:

am(ci) = 1 + numi−1 + (2 ∗ numi − sizei) − (2 ∗ numi−1 − sizei−1)

= 1 + (i − 1) + (2 ∗ i − 2 ∗ (i − 1)) − (2 ∗ (i − 1) − (i − 1))

= 3

12-32: Dynamic Hash Tables

• Add in deletes

• Want to keep the table from being too big

• Shrink the table when it gets too large (freeing space)

• First try:

• When table gets full, double the size of the table, copying elements

• When table gets less than half full, cut the size of the table in half, copying elements

• Will this still give us O(1) amortized cost for an insert/delete?

12-33: Dynamic Hash Tables

• Consider a table that is full

• What happens when we do the following operations:

• Insert, Delete, Delete, Insert, Insert Delete, Delete, . . .

12-34: Dynamic Hash Tables



CS673-2016F-12 Amortized Analysis 8

• Consider a table that is full

• What happens when we do the following operations:

• Insert, Delete, Delete, Insert, Insert Delete, Delete, . . .

• Every other operation takes time O(n)!

• Amortized cost per operation is O(n), not O(1)!

• What can we do?

12-35: Dynamic Hash Tables

• When table gets full, double the size of the table, copying elements

• When table gets less than 1/4 full, halve the size of the table, copying elements

12-36: Dynamic Hash Tables

• Potential Function Φ:

• 0 when list is exactly half full

• Increase as # of elements in the list increases, so that the potential = # of elements in the list when the list

is full

• Increase as # of elements decreases (below 1/2 full) so that the potential = # of elements in the list when

the list is 1/4 full

1/2

Full
1/4

Full

3/4

Full
Full

P
o
t
e
n

t
ia

l

12-37: Dynamic Hash Tables

• Potential Function Φ:

• α = load of the table: Size of table / # of elements

Φ(T ) =

{

2 ∗ num[T ]− size[T ] if α(T ) ≥ 1/2

size[T ]/2− num[T ] ifα(T ) < 1/2

12-38: Dynamic Hash Tables

• Amortized cost for insert:

• Amortized cost = actual cost + growth in potential

• am(ci) = ci +Φ(Ti)− Φ(Ti−1)

• Several cases:

• 1/4 < α < 1/2

• 1/2 ≤ α < 1

• α = 1

12-39: Dynamic Hash Tables



CS673-2016F-12 Amortized Analysis 9

• Amortized cost for insert, 1/2 ≤ α < 1

• am(ci) = ci +Φ(Ti)− Φ(Ti−1)

am(ci) = 1 + (2 ∗ numi − sizei)− (2 ∗ numi−1 − sizei−1)

= 1 + 2 ∗ i− sizei − 2 ∗ (i− 1) + sizei

= 3

12-40: Dynamic Hash Tables

• Amortized cost for insert, α = 1

• am(ci) = ci +Φ(Ti)− Φ(Ti−1)

am(ci) = 1 + numi−1 + (2 ∗ numi − sizei)− (2 ∗ numi−1 − sizei−1)

= 1 + (i− 1) + (2 ∗ i− 2 ∗ (i− 1))− (2 ∗ (i− 1)− (i− 1))

= 3

12-41: Dynamic Hash Tables

• Amortized cost for insert, 1/4 < α < 1/2

• am(ci) = ci +Φ(Ti)− Φ(Ti−1)

am(ci) = 1 + (sizei/2− numi)− (sizei−1/2− numi−1)

= 1 + (sizei/2− sizei/2) − numi + (numi)− 1

= 0

12-42: Dynamic Hash Tables

• Amortized cost for delete:

• Amortized cost = actual cost + growth in potential

• am(ci) = ci +Φ(Ti)− Φ(Ti−1)

• Several cases:

• 1/4 < α < 1/2

• 1/2 ≤ α ≤ 1

• α = 1/4

12-43: Dynamic Hash Tables

• Amortized cost for delete, 1/2 ≤ α ≤ 1

• am(ci) = ci +Φ(Ti)− Φ(Ti−1)



CS673-2016F-12 Amortized Analysis 10

am(ci) = 1 + (2 ∗ numi − sizei)− (2 ∗ numi−1 − sizei−1)

= 1 + 2 ∗ numi − 2 ∗ (numi + 1) + sizei − sizei

= −1

12-44: Dynamic Hash Tables

• Amortized cost for delete, 1/4 < α < 1/2

• am(ci) = ci +Φ(Ti)− Φ(Ti−1)

am(ci) = 1 + (sizei/2− numi)− (sizei−1/2− numi−1)

= 1 + (sizei/2− sizei/2) + numi−1 − numi

= 2

12-45: Dynamic Hash Tables

• Amortized cost for delete, α = 1/4

• am(ci) = ci +Φ(Ti)− Φ(Ti−1)

sizei/2 = sizei−1/4 = numi−1 = numi + 1

am(ci) = 1 + numi + (sizei/2− numi)− (sizei−1/2− numi−1)

= 1 + numi + (numi + 1− numi)− ((2 ∗ numi + 2)

−(numi + 1)

= 1


