12-0: **Amortized Analysis**

- Standard Stack
 - Push(S, elem)
 - Pop(S)
- How much time for each operation?

12-1: **Amortized Analysis**

- Standard Stack
 - Push(S, elem) $O(1)$
 - Pop(S) $O(1)$
 - Multipop(S, k)
 for $i \leftarrow 1$ to k do
 Pop(S)
- How much time for multipop?

12-2: **Amortized Analysis**

- Standard Stack
 - Push(S, elem) $O(1)$
 - Pop(S) $O(1)$
 - Multipop(S, k) $O(k)$

12-3: **Amortized Analysis**

- Do n operations, each of which could be either a Push, Pop, or Multipop
- How long will each operation take?
 - Push
 - Pop
 - Multipop

12-4: **Amortized Analysis**

- Do n operations, each of which could be either a Push, Pop, or Multipop
- How long will each operation take?
 - Push $O(1)$
 - Pop $O(1)$
 - Multipop $O(n)$
- What if we were to do n operations in a row, each of which is either a push/pop/multipop – how long would those n operations take?

12-5: **Amortized Analysis**
- \(n \) operations in a row, each is either a push/pop/multipop. How long will it take?
 - Naive Method: \(n \) operations, each takes time \(O(n) \) – total time: \(O(n^2) \)

- Looking closer:
 - How many times can Pop be called (even Pop in Multipop)?
 - Once for each push!
 - Total number of Pushes \(\in O(n) \)
 - Total number of Pops (including pops in multipop) \(\in O(n) \)
 - Total time for \(n \) operations: \(O(n) \)

12-6: **Amortized Analysis**

- \(n \) operations in a row, each is either a push/pop/multipop.
- Total time for \(n \) operations is \(O(n) \)
- Amortized cost for a Push, Pop, Multipop is \(O(1) \)

12-7: **Aggregate Method**

- Aggregate method
 - Total cost for \(n \) operations is \(g(n) \)
 - Amortized cost for 1 operation is \(\frac{g(n)}{n} \)
- Previous analysis of push/pop/Multipop used aggregate method

12-8: **Aggregate Method**

- Ripple counter, width \(k \)
 - Examples on board
- How long does an increment take?

12-9: **Aggregate Method**

- Ripple counter, width \(k \)
- How long does an increment take?
 - \(O(k) \)
 - But ...
 - Least sig. bit flips every time
 - 2nd least sig. bit flips every other time
 - 3rd least sig. bit flips every 4th time
 - \(k \)th least sig. bit flips every \(2^k \)th time
- For \(n \) increments (if no overflow):
 \[
 \sum_{i=1}^{\lg n} \left\lfloor \frac{n}{2^i} \right\rfloor < n * \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n
 \]
12-10: **Aggregate Method**

- Ripple counter, width k
- Worst case time for a sequence of n increment operations, if counter starts at 0:
 - $O(n)$
- Amortized cost for a single increment
 - $O(1)$

12-11: **Accounting Method**

- Accounting Method
 - Assign a cost for each operation
 - Called “amortized cost”
 - When amortized cost > actual cost, create a “credit” which can be used when actual cost > amortized cost
 - Must design costs so that all sequences of operations always leave a “positive account”

12-12: **Accounting Method**

<table>
<thead>
<tr>
<th>actual cost</th>
<th>amortized cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push 1</td>
<td></td>
</tr>
<tr>
<td>Pop 1</td>
<td></td>
</tr>
<tr>
<td>Multipop $\min(k,s)$</td>
<td></td>
</tr>
</tbody>
</table>

- What amortized costs should I give, so that any valid sequence of push/pop/multipop will never have a debt?

12-13: **Accounting Method**

<table>
<thead>
<tr>
<th>actual cost</th>
<th>amortized cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push 1</td>
<td>2</td>
</tr>
<tr>
<td>Pop 1</td>
<td>0</td>
</tr>
<tr>
<td>Multipop $\min(k,s)$</td>
<td>0</td>
</tr>
</tbody>
</table>

12-14: **Accounting Method**

- Binary Counter
 - Actual Cost of setting a bit to 1 is 1
 - Actual Cost of setting a bit to 0 is 1
 - Actual Cost of an increment = # of bits flipped from 1 to 0 + 1

- What should our amortized costs be, and why?

12-15: **Accounting Method**

- Binary Counter
 - Amortized cost of setting a bit to 1 is: 2
 - Amortized cost of setting a bit to 0 is: ?
 - Amortized cost of an increment is: ?

12-16: **Accounting Method**
• Binary Counter
 • Amortized cost of setting a bit to 1 is: 2
 • Amortized cost of setting a bit to 0 is: 0 (!)
 • Amortized cost of an increment is: 2

For \(n \) increments, the total amortized cost is \(O(n) \), which is also a bound on the actual cost

12-17: Potential Method

• Define a “potential” for data structures that your algorithm uses
 • Kind of like potential energy
 • When the amortized cost is greater than the actual cost, increase the potential of the data structure
 • When the amortized cost is less than the actual cost, decrease the potential of the data structure
 • Potential can never be negative

12-18: Potential Method

• \(\Phi(D) \) = potential of the data structure
• Amortized cost of operation \(c_i \) is \(\text{am}(c_i) \)
 • \(\text{am}(c_i) = c_i + (\Phi(D_i) - \Phi(D_{i-1})) \)
• Total amortized cost for a sequence of \(n \) operations:

\[
\sum_{i=1}^{n} \text{am}(c_i) = \sum_{i=1}^{n} (c_i \Phi(D_i) - \Phi(D_{i-1})) \\
= (\sum_{i=1}^{n} c_i) + \Phi(D_n) - \Phi(D_0)
\]

• As long as the potential starts at 0, and never goes negative, the amortized cost will always be larger than the actual cost

12-19: Potential Method

• The potential function is on the Data Structure, not the operations
• Don’t talk about the potential of a push or a pop
• Instead, talk about the potential of the stack
 • Define a potential function on the data structure
 • Use the potential function and actual cost to determine amortized cost

12-20: Potential Method

• Potential Method Examples:
 • Stack, with push/pop/multipop
• What should the potential be?
• What are the resulting amortized costs?

12-21: **Potential Method**

• Potential Method Examples:
 - Stack, with push/pop/multipop
 • Potential = # of elements in the stack
 • amortized cost = actual cost + change in potential
 • amortized cost of push = $1 + 1 = 2$
 • amortized cost for pop = $1 + (-1) = 0$
 • amortized cost for multipop = $k + (-k) = 0$

12-22: **Potential Method**

• Potential Method Examples:
 - Binary Ripple-Carry Counter
 • What is the potential?
 • What are the resulting amortized costs

12-23: **Potential Method**

• Potential Method Examples:
 - Binary Ripple-Carry Counter
 • Potential = # of 1’s in the counter
 • amortized cost = actual cost + change in potential
 • actual cost = # of bits flipped
 • Change in potential = # of bits flipped from 1 to 0 - # of bits flipped from 0 to 1
 = - # of bits flipped, if counter reset to 0
 = 2 - # of bits flipped, otherwise
 • Amortized cost ≤ 2

12-24: **Dynamic Hash Tables**

• Standard Hash Table
 • Insert/find in time $O(1)$ (no delete for now)
 • Need to know an upper bound on the table size beforehand

• If we don’t know the table size beforehand?
 • Pick a size to start with
 • If table fills, double the table size, and add everything from old table to new table
 • What is the time for an insert if the table can grow?

12-25: **Dynamic Hash Tables**

• Standard Hash Table
• Insert/find in time $O(1)$ (no delete for now)
• Need to know an upper bound on the table size beforehand

• If we don’t know the table size beforehand?
 • Pick a size to start with
 • If table fills, double the table size, and add everything from old table to new table

• What is the time for an insert if the table can grow?
 • $O(n)$

12-26: Dynamic Hash Tables

• Any single insert into a Dynamic Hash Table can take time $O(n)$
• What is the amortized cost for an insert?
 • Aggregate method

\[
c_i = \begin{cases}
 i & \text{if } i - 1 \text{ is a power of 2} \\
 1 & \text{otherwise}
\end{cases}
\]

12-27: Dynamic Hash Tables

• Aggregate Method
 • Total cost for n inserts:

\[
\sum_{i=1}^{n} c_i \leq n + \sum_{i=1}^{\lfloor \log n \rfloor} 2^i \\
\leq n + 2n \\
\leq 3n
\]

• Amortized cost per insert is thus $O(1)$

12-28: Dynamic Hash Tables

• Accounting Method
 • Amortized cost for insert = 3
 • Cost to insert the element
 • Cost to move element when the table is expanded next time
 • Cost to move one other element when the table is expanded next time
 (Examples)

12-29: Dynamic Hash Tables

• Potential Method
 • Potential starts at 0, grows as we insert elements
• When the table size increases, potential drops back to 0
 • Extra potential is used to grow the table

12-30: **Dynamic Hash Tables**

• Potential Method
 • Potential starts at 0, grows as we insert elements
 • When the table size increases, potential drops back to 0
 • \(\Phi(T) = 2 \times \text{num}[T] - \text{size}[T] \)
 • \(\text{num}[T] \) = number of elements in the table
 • \(\text{size}[T] \) = size of table
 • Always positive (assuming we start with a table size of 0, when first element is added we go to a table size of 2 containing 1 element)

12-31: **Dynamic Hash Tables**

• Potential Method
 • Amortized cost for an insert = actual cost + change in potential
 • If \(i \)th insert did **not** cause the table to grow:
 \[
 \begin{align*}
 am(c_i) &= 1 + (2 \times \text{num}_{i-1} - \text{size}_{i-1}) - (2 \times \text{num}_{i-1} - \text{size}_{i-1}) \\
 &= 1 + 2 \times i - \text{size}_{i-1} - 2 \times (i - 1) + \text{size}_{i-1} \\
 &= 3
 \end{align*}
 \]
 • If \(i \)th insert **did** cause the table to grow:
 \[
 \begin{align*}
 am(c_i) &= 1 + \text{num}_{i-1} + (2 \times \text{num}_i - \text{size}_i) - (2 \times \text{num}_{i-1} - \text{size}_{i-1}) \\
 &= 1 + (i - 1) + 2 \times (i - 1) - 2 \times (i - 1) + (i - 1) \\
 &= 3
 \end{align*}
 \]

12-32: **Dynamic Hash Tables**

• Add in deletes
• Want to keep the table from being too big
• Shrink the table when it gets too large (freeing space)
• First try:
 • When table gets full, double the size of the table, copying elements
 • When table gets less than half full, cut the size of the table in half, copying elements
• Will this still give us \(O(1) \) amortized cost for an insert/delete?

12-33: **Dynamic Hash Tables**

• Consider a table that is full
• What happens when we do the following operations:
 • Insert, Delete, Delete, Insert, Insert Delete, Delete, . . .

12-34: **Dynamic Hash Tables**
Consider a table that is full

What happens when we do the following operations:

- Insert, Delete, Delete, Insert, Insert Delete, Delete, . . .
- Every other operation takes time $O(n)!$
- Amortized cost per operation is $O(n)$, not $O(1)!$

What can we do?

12-35: **Dynamic Hash Tables**

- When table gets full, double the size of the table, copying elements
- When table gets less than 1/4 full, halve the size of the table, copying elements

12-36: **Dynamic Hash Tables**

- Potential Function Φ:
 - 0 when list is exactly half full
 - Increase as # of elements in the list increases, so that the potential = # of elements in the list when the list is full
 - Increase as # of elements decreases (below 1/2 full) so that the potential = # of elements in the list when the list is 1/4 full

12-37: **Dynamic Hash Tables**

- Potential Function Φ:
 - $\alpha = \text{load of the table}: \frac{\text{Size of table}}{\# \text{ of elements}}$
 - $\Phi(T) = \begin{cases}
 2 \times \text{num}[T] - \text{size}[T] & \text{if } \alpha(T) \geq 1/2 \\
 \frac{\text{size}[T]}{2} - \text{num}[T] & \text{if } \alpha(T) < 1/2
\end{cases}$

12-38: **Dynamic Hash Tables**

- Amortized cost for insert:
 - Amortized cost = actual cost + growth in potential
 - $am(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1})$
 - Several cases:
 - $1/4 < \alpha < 1/2$
 - $1/2 \leq \alpha < 1$
 - $\alpha = 1$

12-39: **Dynamic Hash Tables**
• Amortized cost for insert, $1/2 \leq \alpha < 1$
 • $am(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1})$

$$am(c_i) = 1 + (2 \cdot num_i - size_i) - (2 \cdot num_{i-1} - size_{i-1})$$

$$= 1 + 2 \cdot i - size_i - 2 \cdot (i - 1) + size_i$$

$$= 3$$

12-40: Dynamic Hash Tables

• Amortized cost for insert, $\alpha = 1$
 • $am(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1})$

$$am(c_i) = 1 + num_{i-1} + (2 \cdot num_i - size_i) - (2 \cdot num_{i-1} - size_{i-1})$$

$$= 1 + (i - 1) + (2 \cdot i - 2 \cdot (i - 1)) - (2 \cdot (i - 1) - (i - 1))$$

$$= 3$$

12-41: Dynamic Hash Tables

• Amortized cost for insert, $1/4 < \alpha < 1/2$
 • $am(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1})$

$$am(c_i) = 1 + (size_i/2 - num_i) - (size_{i-1}/2 - num_{i-1})$$

$$= 1 + (size_i/2 - size_i/2 - num_i + (num_i) - 1$$

$$= 0$$

12-42: Dynamic Hash Tables

• Amortized cost for delete:
 • Amortized cost = actual cost + growth in potential
 • $am(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1})$
 • Several cases:
 • $1/4 < \alpha < 1/2$
 • $1/2 \leq \alpha \leq 1$
 • $\alpha = 1/4$

12-43: Dynamic Hash Tables

• Amortized cost for delete, $1/2 \leq \alpha \leq 1$
 • $am(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1})$
\[am(c_i) = 1 + (2 \cdot \text{num}_i - \text{size}_i) - (2 \cdot \text{num}_{i-1} - \text{size}_{i-1}) \]
\[= 1 + 2 \cdot \text{num}_i - 2 \cdot (\text{num}_i + 1) + \text{size}_i - \text{size}_i \]
\[= -1 \]

12-44: Dynamic Hash Tables

- Amortized cost for delete, \(1/4 < \alpha < 1/2\)
 - \(am(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1})\)

\[am(c_i) = 1 + (\text{size}_i/2 - \text{num}_i) - (\text{size}_{i-1}/2 - \text{num}_{i-1}) \]
\[= 1 + (\text{size}_i/2 - \text{size}_i/2) + \text{num}_{i-1} - \text{num}_i \]
\[= 2 \]

12-45: Dynamic Hash Tables

- Amortized cost for delete, \(\alpha = 1/4\)
 - \(am(c_i) = c_i + \Phi(T_i) - \Phi(T_{i-1})\)

\[\text{size}_i/2 = \text{size}_{i-1}/4 = \text{num}_{i-1} = \text{num}_i + 1 \]
\[am(c_i) = 1 + \text{num}_i + (\text{size}_i/2 - \text{num}_i) - (\text{size}_{i-1}/2 - \text{num}_{i-1}) \]
\[= 1 + \text{num}_i + (\text{num}_i + 1 - \text{num}_i) - ((2 \cdot \text{num}_i + 2) \]
\[- (\text{num}_i + 1) \]
\[= 1 \]