Graduate Algorithms
CS673-2016F-13

Binomial Heaps & Fibonacci Heaps

Davi |

Department of Computer Science
University of San Francisco



http://www.cs.usfca.edu/galles

13-0: Binomial Trees

® /3, I1s atree containing a single node
® To build By:

e Start with B;._;

e Add 5;,_; as left subtree




13-1: Binomial Trees

[ I/i{I | W




13-2: Binomial Trees
BO Bl B2 B3
© 7

1 A

o ﬁfﬁ

I l l




13-3: Binomial Trees

® Equivalent defintion
* 3, Is a binomial heap with a single node

e 3, Is a binomial heap with £ children:
* BO S Bk—l




13-4: Binomial Trees

[ I/i{I | W




13-5: Binomial Trees
B, B, B B,
a1 A

l I/iie’ /ﬁiiﬁiié




13-6: Binomial Trees

® Properties of binomial trees B,

e Contains 2 nodes
* Has height £

e Contains (’:) nodes atdepth i for: =0...k




13-7: Binomial Trees

® 5, contains ( ) nodes at depth ¢

e D(k,7) # of nodes at depth 7 in B,
e D(k,i)=D(k—1,i) +D(k—1,i—1) (why?)

D(k,i) = D(k—1,i)+ D(k —1,i— 1)
- ()6
(i)




13-s: Binomial Heaps

® A Binomial Heap is:

e Set of binomial trees, each of which has the
heap property
- Each node in every tree is <= all of its
children

e All trees in the set have a different root degree
- Can’t have two Bj’s, for instance




13-0: Binomial Heaps

S i
2‘2 [ /1‘2 5‘9 15
25 13 15 20

17




13-10: Binomial Heaps

® Representing Binomial Heaps

 Each node contains:
- left child, right sibling, parent pointers
- degreee (is the tree rooted at this node B5,,
B, etc.)
- data

e Each list of children sorted by degree




13-11: Binomial Heaps

Head—»

A
&

22 12 9
1 2 1
e — o — =
VT __Jgjjjjj;T VT
25 13 15 20
0 1 1 0
T ——>




13-12: Binomial Heaps

® How can we find the minimum element in a
binomial heap?

® How long does it take?




13-13: Binomial Heaps

® How can we find the minimum element in a
binomial heap?

* Look at the root of each tree in the list, find
smallest value
® How long does it take?
* Heap has n elements
* Represent n as a binary number
3, isin heap iff £th binary digit of n is 1
e Number of trees in heap € O(Ign)




13-14: Binomial Heaps

® Merging Heaps H; and H,
* Merge root lists of H, and H,

 What property of binomial heaps may be
broken?

e How do we fix it?




13-15: Binomial Heaps

® Merging Heaps H; and H,

* Merge root lists of H, and H,
 Could now have two trees with same degree

* Go through list from smallest degree to largest
degree
- If two trees have same degree, combine
them into one tree of larger degree
- If three trees have same degree (how can
this happen?) leave one, combine other two
into tree of larger degree




13-16: Binomial Heaps

Sl i
2‘2 7 /1‘2 5‘9 15
25 13 15 20

17

11

va

14 ©

30




13-17: Binomial Heaps

10

11

Vi
Zf 7

25

Va
lf: 6

30

i
///lf Si 15
13 15 20

17




13-18: Binomial Heaps

v T T T

\ / / s

11 2‘2 7 1‘4 6 /1‘2 5‘9 15
25 30 13 15 20

17




13-19: Binomial Heaps

10 i‘% T
\ 7 s
11 5 1‘4 6 12 9 15

/| /1

29 7 30 13 15 20

25 17




13-20: Binomial Heaps

L

8 5
pyiyins
/1‘2 T 15 2‘2 7 30

13 15 20 29

17




13-21: Binomial Heaps

® Removing minimum element
e How can we remove the minimum element

e HINT': Be lazy — use operations that we
already have




13-22: Binomial Heaps

® Removing minimum element

e Find tree 7' that has minimum value at root,
remove T’ from the list

* Remove the root of T’
 Leaving a list of smaller trees

e Reverse list of smaller trees
* Merge two lists of trees together




13-23: Binomial Heaps

® Removing minimum element
3

| i

14 ©

. //T /T \
///lf T 15 2f 7 30
13 15 20 25

17




13-24: Binomial Heaps

® Removing minimum element

10
1‘1 8 5 1‘4 6
A/

12 9 1‘5 22 l 30

13/1‘5 z‘o 2‘5

17




13-25: Binomial Heaps

® Removing minimum element

10 6 1‘4 /T //T
11 30 2‘2 7 /1‘2 s‘a 15

25 13 15 20

17




13-26: Binomial Heaps

® Removing minimum element

B R B
11 30 2‘2 [ /1‘2 S‘) 15

25 13 15 20

17




13-27: Binomial Heaps
® Removing minimum element
10 5} ///////,8
14 11 22 7 12 9 15

| \ /1

30 25 13 15 20

17

6




13-28: Binomial Heaps

® Removing minimum element

IO{/E 12/9/175
AT

14 11 25 13 15 20

30 17

6




13-20: Binomial Heaps

® Removing minimum element

6 5

—7

—7
)

12 9 1‘5 14 11 2‘5
13/1‘5 2‘0 3‘0

17




13-30: Binomial Heaps

® Removing minimum element
e Time?




13-31: Binomial Heaps

® Removing minimum element
e Time?
- Find the smallest element:

- Reverse list of children
- Merge heaps




13-32: Binomial Heaps

® Removing minimum element
e Time?
- Find the smallest element: O(1gn)
- Reverse list of children O(lgn)
- Merge heaps O(lgn)




13-33: Binomial Heaps

® Decreasing the key of an element (assuming you
have a pointer to it)

A i
22 7 12 9 15
‘ / ‘ ‘ Decrease

25 13 15 20 < this key

17




13-3¢: Binomial Heaps

® Decreasing the key of an element (assuming you
have a pointer to it)

* Decrease key value
 While value < parent, swap with parent
- Exactly like standard, binary heaps

® Time: O(lgn)




13-35: Binomial Heaps

® How could we delete an arbitrary element
(assuming we had a pointer to this element)?

Delete
G 5 this key
/| \ // \
22 7
| / \ \
25 20

17




13-36: Binomial Heaps

® How could we delete an arbitrary element
(assuming we had a pointer to this element)?

e Decrease key to —oo, Time O(Ign)
e Remove smallest, Time O(Ign)




13-37: Fibonacci Heaps

® A Fibonacci Heap, like a Binomial Heap, is a
collection of min-heap ordered trees

 No restriction on the # of trees of the same size
e (We'll relax some of the other restrictions later

)

® Maintain a pointer to tree with smallest root




13-38: Fibonacci Heaps

l
N AN

13 15 21

20 28

10




13-30: Fibonacci Heaps

® |mplementation
 Each node has pointer to parent

e Children are stored in circular linked list
- No ordering among the children

 Maintain a pointer to the tree with the smallest
root




13-40: Fibonacci Heaps

7 10 5 §) 11
/L‘ — Pu— < & < o
T N
A 4 \\ Y // N
7 8 13 15 21
- | T ~ | e—L
@ @ A)




13-41: Fibonacci Heaps

® We will use amortized analysis, using the potential
method, to analyze Fibonacci heaps

® & =cxt(H)
e {(H) = # of trees in the heap
e (We will modify this ® in a bit ...)




13-42: Fibonacci Heaps -Min

® Finding the minimum element




13-43: Fibonacci Heaps - Min

® Finding the minimum element

* Look at the element pointed to by minimum
pointer
- Potential not changed
- Takes time O(1)




13-44: Fibonacci Heaps - Merge

® Merging two heaps H; and H,

e Combine their root lists into one list
- Takes a constant # of pointer changes
(example on board)

e Set minimum pointer
e Change in potential:

O(H) — (®(Hy) + (H)) = t(H) = (t(Hy) +t(H,))

|
-




13-45: Flbonacci Heaps - Delete Min

® To delete the minimum node:
e Remove smallest node
e Add its children to root list

* Consolidate root list
- Link together nodes of the same degree until
there is at most one node of each degree
- Make it back into a Binomial Heap
- Common practice when you only care about
amortized running time — put off work, and do
it all at once




13-46: Flbonacci Heaps - Delete Min

Consolidate
Create an array A||, initially empty
// Eventually, Alz] will hold tree of degree ¢
For each node w in the root list
T <— W
d <—degree(x)
while Ald|! =nil do
y < Ald]
x < link(z, y)
Ald] < nil
d<—d+1
Ald] < x
Link elements of A together as new root list
Recalculate min




13-47: Fibonacci Heaps - Delete Min

® Amortized cost to remove min:

am(crem—mz’n) = Crem—min T (I)(Hnew) -~ (I)(HOZd)
= (Cy *t+ co*xmax_deg) + c*x max_deg — c*t

e O(max_deg)

® max_deg € O(lgn)
® am(Crem—min) € O(lgn)




13-48: Fib. Heaps - Decrease Key

® | ike to Implement decrease key in amortized time
O(1)
 Add a new “Mark” field to each node in the tree

- Mark is true iIf node has lost a child since
parent pointer changed

 New Potential function
O(H)=t(H)+2+xm(H)
- (extra constant c left out for clarity)




13-49: Fib. Heaps - Decrease Key

® With new potential function, merge and find still
have amortized running time O(1), and
remove-min still has amortized running time
O(lg n)
 Since none of those operations increase m(H )

® We can use the marks to make decrease-key work
in time O(1)




13-50: Fib. Heaps - Decrease Key

® Decreasing a key can break the heap property

® Cut: Move Decreased node to root list
* Now the heap property still holds

® Cascading cut:
 |f parent is not marked, mark parent
* |f parent is marked, cut parent, Cascading cut
parent

® Examples (on board)




13-51: Fib. Heaps - Decrease Key

® Amortized cost for Decrease Key:
e Actual Cost + Change in potential

e Actual Cost:
- O(1) to move element to root list
- # of cascading cuts c

e Change in Potential
- # of added trees - 2 * # of nodes unmarked
4 -

® Amortized cost: O(1) +c+4 —c € O(1)




13-52: Fib. Heaps - Decrease Key

® Fibonacci heaps are no longer binomial heaps

® Analysis of Extract-min used the fact that they are
binomial heaps to show that maximum degree of

any node € O(lgn)

® Even with cuts/cascading cuts, maximum degree
of any node is still € O(lgn)

* See textbook, section 20.4 for details
® Previous analysis still correct




	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heaps -Minaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heaps - Minaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heaps - Mergeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heaps - Delete Minaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heaps - Delete Minaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heaps - Delete Minaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fib. Heaps - Decrease Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fib. Heaps - Decrease Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fib. Heaps - Decrease Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fib. Heaps - Decrease Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fib. Heaps - Decrease Keyaddtocounter {blocknumber}{1}

