13-0: **Binomial Trees**

- B_0 is a tree containing a single node
- To build B_k:
 - Start with B_{k-1}
 - Add B_{k-1} as left subtree

13-1: **Binomial Trees**

13-2: **Binomial Trees**

13-3: **Binomial Trees**

- Equivalent definition
 - B_0 is a binomial heap with a single node
 - B_k is a binomial heap with k children:
 - $B_0 \ldots B_{k-1}$

13-4: **Binomial Trees**
13-5: **Binomial Trees**

- B_0
- B_1
- B_2
- B_3
- B_4

13-6: **Binomial Trees**

- Properties of binomial trees B_k
 - Contains 2^k nodes
 - Has height k
 - Contains $\binom{k}{i}$ nodes at depth i for $i = 0 \ldots k$

13-7: **Binomial Trees**

- B_k contains $\binom{k}{i}$ nodes at depth i
 - $D(k, i)$ # of nodes at depth i in B_k
 - $D(k, i) = D(k - 1, i) + D(k - 1, i - 1)$ (why?)

\[
D(k, i) = D(k - 1, i) + D(k - 1, i - 1) \\
= \binom{k - 1}{i} + \binom{k - 1}{i - 1} \\
= \binom{k}{i}
\]

13-8: **Binomial Heaps**

- A Binomial Heap is:
 - Set of binomial trees, each of which has the heap property
 - Each node in every tree is \leq all of its children
 - All trees in the set have a different root degree
 - Can’t have two B_3’s, for instance

13-9: **Binomial Heaps**
13-10: **Binomial Heaps**

- Representing Binomial Heaps

 - Each node contains:
 - left child, right sibling, parent pointers
 - degree (is the tree rooted at this node B_0, B_1, etc.)
 - data

 - Each list of children sorted by degree

13-11: **Binomial Heaps**

- How can we find the minimum element in a binomial heap?
- How long does it take?
13-13: **Binomial Heaps**

- How can we find the minimum element in a binomial heap?
 - Look at the root of each tree in the list, find smallest value
- How long does it take?
 - Heap has n elements
 - Represent n as a binary number
 - B_k is in heap iff kth binary digit of n is 1
 - Number of trees in heap $\in O(\log n)$

13-14: **Binomial Heaps**

- Merging Heaps H_1 and H_2
 - Merge root lists of H_1 and H_2
 - What property of binomial heaps may be broken?
 - How do we fix it?

13-15: **Binomial Heaps**

- Merging Heaps H_1 and H_2
 - Merge root lists of H_1 and H_2
 - Could now have two trees with same degree
 - Go through list from smallest degree to largest degree
 - If two trees have same degree, combine them into one tree of larger degree
 - If three trees have same degree (how can this happen?) leave one, combine other two into tree of larger degree

13-16: **Binomial Heaps**

```
  10  5
   /  |
  22  7
   /  |
  25 13
   /  |
  17
```

```
  11  3
   /  |
  14  6
   /  |
  30
```

13-17: **Binomial Heaps**
13-21: Binomial Heaps

- Removing minimum element
 - How can we remove the minimum element
 - *HINT:* Be lazy – use operations that we already have

13-22: Binomial Heaps

- Removing minimum element
 - Find tree T that has minimum value at root, remove T from the list
 - Remove the root of T
 - Leaving a list of smaller trees
 - Reverse list of smaller trees
 - Merge two lists of trees together

13-23: Binomial Heaps

- Removing minimum element
13-24: **Binomial Heaps**

- Removing minimum element

```
  10
  /|
 11 / \\
 / 8 \ \
/   5 \ \\
/     14 \ \\
/       6 \\\
 12      9  15  22  7  30
/    \\
/ 13 15  20  25 \\
/    \\
 17
```

13-25: **Binomial Heaps**

- Removing minimum element

```
  10
  |
 11 |
 6 14 5 8
|
30 22 7 12 9 15
|
25 13 15 20
|
17
```

13-26: **Binomial Heaps**

- Removing minimum element
13-27: Binomial Heaps

- Removing minimum element

13-28: Binomial Heaps

- Removing minimum element
13-29: **Binomial Heaps**

- Removing minimum element

```
    6
```

```
  8  10  22  7
  /  /  /  /
12 9 15 14 11 25
| / | / | / | / | / | / |
13 15 20 30
```

13-30: **Binomial Heaps**

- Removing minimum element
 - Time?

13-31: **Binomial Heaps**

- Removing minimum element
 - Time?
 - Find the smallest element:
 - Reverse list of children
 - Merge heaps

13-32: **Binomial Heaps**

- Removing minimum element
 - Time?
 - Find the smallest element: $O(\lg n)$
 - Reverse list of children $O(\lg n)$
 - Merge heaps $O(\lg n)$

13-33: **Binomial Heaps**

- Decreasing the key of an element (assuming you have a pointer to it)
13-34: **Binomial Heaps**

- Decreasing the key of an element (assuming you have a pointer to it)
 - Decrease key value
 - While value < parent, swap with parent
 - Exactly like standard, binary heaps
 - Time: $O(\lg n)$

13-35: **Binomial Heaps**

- How could we delete an arbitrary element (assuming we had a pointer to this element)?
 - Decrease key to $-\infty$, Time $O(\lg n)$
 - Remove smallest, Time $O(\lg n)$

13-37: **Fibonacci Heaps**

- A Fibonacci Heap, like a Binomial Heap, is a collection of min-heap ordered trees
 - No restriction on the # of trees of the same size
 - (We'll relax some of the other restrictions later ...)

Diagram:

```
10   5
   /|
  22 7
   /  |
  25 13 15 17
      /  |  |
      15 20
          /  |
          12 9
              /  |
              8
```

Decrease this key

```
10   5
   /|
  22 7
   /  |
  25 13 15 20
      /  |
      15
          /  |
          12 9
              /  |
              8
```

Delete this key

- Maintain a pointer to tree with smallest root

13-38: **Fibonacci Heaps**

```
7  10  5  6  11
  7  8  13  15  21
    20  28
```

13-39: **Fibonacci Heaps**

- Implementation
 - Each node has pointer to parent
 - Children are stored in circular linked list
 - No ordering among the children
 - Maintain a pointer to the tree with the smallest root

13-40: **Fibonacci Heaps**

```
7  10  5  6  11
  7  8  13  15  21
    20  28
```

13-41: **Fibonacci Heaps**

- We will use amortized analysis, using the potential method, to analyze Fibonacci heaps
- \(\Phi = c \cdot t(H) \)
 - \(t(H) = \# \) of trees in the heap
 - (We will modify this \(\Phi \) in a bit ...)

13-42: **Fibonacci Heaps -Min**
• Finding the minimum element

13-43: Fibonacci Heaps - Min

• Finding the minimum element
 • Look at the element pointed to by minimum pointer
 • Potential not changed
 • Takes time $O(1)$

13-44: Fibonacci Heaps - Merge

• Merging two heaps H_1 and H_2
 • Combine their root lists into one list
 • Takes a constant # of pointer changes (example on board)
 • Set minimum pointer
 • Change in potential:

$$
\Phi(H) - (\Phi(H_1) + \Phi(H_2)) = t(H) - (t(H_1) + t(H_2))
$$

$$
= 0
$$

13-45: Fibonacci Heaps - Delete Min

• To delete the minimum node:
 • Remove smallest node
 • Add its children to root list
 • Consolidate root list
 • Link together nodes of the same degree until there is at most one node of each degree
 • Make it back into a Binomial Heap
 • Common practice when you only care about amortized running time – put off work, and do it all at once

13-46: Fibonacci Heaps - Delete Min

Consolidate
Create an array $A[i]$, initially empty

// Eventually, $A[i]$ will hold tree of degree i

For each node w in the root list

$x \leftarrow w$

$d \leftarrow \text{degree}(x)$

while $A[d]! = \text{nil}$ do

$y \leftarrow A[d]$

$x \leftarrow \text{link}(x, y)$

$A[d] \leftarrow \text{nil}$

$d \leftarrow d + 1$

$A[d] \leftarrow x$

Link elements of A together as new root list

Recalculate min
13-47: **Fibonacci Heaps - Delete Min**

- Amortized cost to remove min:

\[
am(c_{\text{rem-min}}) = c_{\text{rem-min}} + \Phi(H_{\text{new}}) - \Phi(H_{\text{old}}) = (C_1 \cdot t + c_2 \cdot \maxdeg) + c \cdot \maxdeg - c \cdot t \\
\in O(\maxdeg)
\]

- \(\maxdeg \in O(\lg n)\)
- \(am(c_{\text{rem-min}}) \in O(\lg n)\)

13-48: **Fib. Heaps - Decrease Key**

- Like to implement decrease key in amortized time \(O(1)\)
 - Add a new “Mark” field to each node in the tree
 - Mark is true if node has lost a child since parent pointer changed
 - New Potential function \(\Phi(H) = t(H) + 2 \cdot m(H)\)
 - (extra constant \(c\) left out for clarity)

13-49: **Fib. Heaps - Decrease Key**

- With new potential function, merge and find still have amortized running time \(O(1)\), and remove-min still has amortized running time \(O(\lg n)\)
 - Since none of those operations increase \(m(H)\)
 - We can use the marks to make decrease-key work in time \(O(1)\)

13-50: **Fib. Heaps - Decrease Key**

- Decreasing a key can break the heap property
- Cut: Move Decreased node to root list
 - Now the heap property still holds
- Cascading cut:
 - If parent is not marked, mark parent
 - If parent is marked, cut parent, Cascading cut parent
- Examples (on board)

13-51: **Fib. Heaps - Decrease Key**

- Amortized cost for Decrease Key:
 - Actual Cost + Change in potential
 - Actual Cost:
 - \(O(1)\) to move element to root list
 - \# of cascading cuts \(c\)
• Change in Potential
 • # of added trees - 2 * # of nodes unmarked
 • 4 - c

• Amortized cost: $O(1) + c + 4 - c \in O(1)$

13-52: **Fib. Heaps - Decrease Key**

• Fibonacci heaps are no longer binomial heaps

• Analysis of Extract-min used the fact that they are binomial heaps to show that maximum degree of any node $\in O(\lg n)$

• Even with cuts/cascading cuts, maximum degree of any node is still $\in O(\lg n)$
 • See textbook, section 20.4 for details

• Previous analysis still correct