Graduate Algorithms

CS673-2016F-14

Disjoint Sets

David Galles

Department of Computer Science
University of San Francisco
14-0: Disjoint Sets

- Maintain a collection of sets
- Operations:
 - Determine which set an element is in
 - Union (merge) two sets
- Initially, each element is in its own set
 - # of sets = # of elements
Elements will be integers (for now)

Operations:

- **CreateSets(n)** – Create n sets, for integers 0..(n-1)
- **Union(x,y)** – merge the set containing x and the set containing y
- **Find(x)** – return a representation of x’s set
 - **Find(x) = Find(y)** iff x,y are in the same set
14-2: Disjoint Sets

- Implementing Disjoint sets
 - How should disjoint sets be implemented?
14-3: Implementing Disjoint Sets

- Implementing Disjoint sets (First Try)
 - Array of set identifiers:
 Set[i] = set containing element i
 - Initially, Set[i] = i
Creating sets:
• Creating sets: (pseudo-Java)

```java
void CreateSets(n) {
    for (i=0; i<n; i++) {
        Set[i] = i;
    }
}
```
14-6: Implementing Disjoint Sets

- Find:
14-7: Implementing Disjoint Sets

- Find: (pseudo-Java)

```java
int Find(x) {
    return Set[x];
}
```
14-8: Implementing Disjoint Sets

- Union:
14-9: Implementing Disjoint Sets

- Union: (pseudo-Java)

```java
def void Union(x, y):
    set1 = Set[x];
    set2 = Set[y];

    for (i=0; i < n; i=+)
        if (Set[i] == set2)
            Set[i] = set1;
```

14-10: Disjoint Sets $\Theta()$

- CreateSets
- Find
- Union
14-11: Disjoint Sets $\Theta()$

- CreateSets: $\Theta(n)$
- Find: $\Theta(1)$
- Union: $\Theta(n)$
14-12: **Disjoint Sets** $\Theta()$

- CreateSets: $\Theta(n)$
- Find: $\Theta(1)$
- Union: $\Theta(n)$

We can do better! (At least for Union ...)
Implementing Disjoint Sets II

- Store elements in trees
- All elements in the same set will be in the same tree
- Find(x) returns the element at the root of the tree containing x
 - How can we easily find the root of a tree containing x?
Implementing Disjoint Sets II

- Store elements in trees
- All elements in the same set will be in the same tree
- Find(x) returns the element at the root of the tree containing x
 - How can we easily find the root of a tree containing x?
 - Implement trees using *parent pointers* instead of *children pointers*
14-15: Trees Using Parent Pointers

- Examples:
Each element is represented by a node in a tree
Maintain an array of pointers to nodes
Implementing Disjoint Sets II

- Each element is represented by a node in a tree
- Maintain an array of pointers to nodes
Find:
Find:

- Follow parent pointers, until root is reached.
 - Root is node with null parent pointer.
 - (alternately, root points to itself)

- Return element at root
Find: (pseudo-Java)

```java
int Find(x) {
    Node tmp = Sets[x];
    while (tmp.parent != null)
        tmp = tmp.parent;
    return tmp.element;
}
```
• Union(x,y)
14-22: Implementing Disjoint Sets II

- **Union(x,y)**
 - **Calculate:**
 - Root of x’s tree, rootx
 - Root of y’s tree, rooty
 - Set parent(rootx) = rooty
14-23: Implementing Disjoint Sets II

- **Union(x,y)** (pseudo-Java)

```java
void Union(x, y) {
    rootx = Find(x);
    rooty = Find(y);
    Sets[rootx].parent = Sets[rooty];
}
```
Removing pointers

- We don’t need any pointers
- Instead, use index into set array

```
-1  -1  -1  -1  -1  -1  -1  -1  -1
 0   1   2   3   4   5   6   7   8
```
14-25: Removing pointers

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

- Union(2,3), Union(6,8), Union(0,2), Union(2,6)
14-26: Removing pointers

- Union(2,3), Union(6,8), Union(0,2), Union(2,8)

<table>
<thead>
<tr>
<th>3</th>
<th>-1</th>
<th>3</th>
<th>8</th>
<th>-1</th>
<th>-1</th>
<th>8</th>
<th>-1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Implementing Disjoint Sets III

- Find: (pseudo-Java)

```java
int Find(x) {
    while (Parent[x] >= 0)
        x = Parent[x]
    return x
}
```
Union(x,y) (pseudo-Java)

```java
void Union(x, y) {
    rootx = Find(x);
    rooty = Find(y);
    Link(rootx, rooty);
}

Link(x, y) {
    Parent[x] = y;
}
```
So far, we haven’t done much to improve the run-time efficiency of Disjoint sets.

Two improvements will make a huge difference:

- Union by rank
- Path compression
Merging sets:
- We want to avoid long chains of elements
- When merging two sets, which should become the parent, and why?
• Merging sets:
 • We want to avoid long chains of elements
 • When merging two sets, which should become the parent, and why?
 • The tree with the largest height should be the parent.
 • Keep track of an estimate of the height of each tree (until we add path compression, the estimate will be exact)
For each node, keep a rank, which is an estimate of the depth of the tree rooted at that node.

Initially, rank for each node is 0.

How should ranks be used / updated?
union(x,y) {
 rootx = Find(x);
 rooty = Find(y);
 Link(rootx, rooty);
}

Link(x,y) {
 Parent[x] = y
}
14-34: Union by Rank

union(x, y) {
 rootx = Find(x);
 rooty = Find(y);
 Link(rootx, rooty);
}

Link(x, y) {
 if (rank[x] > rank[y]);
 Parent[y] = x;
 else
 Parent[x] = y;
 if (rank[x] == rank[y]);
 rank[y]++;
}
For each node, we need either the rank or the parent – not both

We can use the same array to store both pieces of information

- If a node x is not a root, $\text{Parent}[x] = \text{parent of } x$
- If a node x is a root, $\text{Parent}[x] = 0$ - height of tree

Assuming we don’t allow 0 to be a set, if $\text{Parent}[x]$ is positive, then x is not a root. If $\text{Parent}[x]$ is 0 or negative, then x is a root

(note – text does not do this! Roots point to themselves, rank is separate)
14-36: Path Compression

- After each call to $\text{Find}(x)$, change x’s parent pointer to point directly at root
- Also, change all parent pointers on path from x to root
Find: (pseudo-Java)

```java
int Find(x) {
    if (Parent[x] < 0)
        return x;
    else {
        Parent[x] = Find(Parent[x]);
        return Parent[x];
    }
}
```
14-38: Disjoint Set

- Time to do a Find / Union proportional to the depth of the trees
- “Union by Rank” tends to keep tree sizes down
- “Path compression” causes Find and Union to flatten trees
- Union / Find take roughly time $O(1)$ on average
Technically, m Find/Unions on n sets take time $O(m \lg^* n)$

- $\lg^* n$ is the number of times we need to take \lg of n to get to 1.
 - $\lg 2 = 1$, $\lg^* 2 = 1$
 - $\lg(\lg 4) = 1$, $\lg^* 4 = 2$
 - $\lg(\lg(\lg 16)) = 1$, $\lg^* 16 = 3$
 - $\lg(\lg(\lg(\lg 65536))) = 1$, $\lg^* 65536 = 4$
 - \ldots
 - $\lg^* 2^{65536} = 5$

- # of atoms in the universe $\approx 10^{80} \ll 2^{65536}$
- $\lg^* n \leq 5$ for all practical values of n