
Graduate Algorithms
CS673-2016F-14

Disjoint Sets

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

14-0: Disjoint Sets

Maintain a collection of sets

Operations:

Determine which set an element is in

Union (merge) two sets

Initially, each element is in its own set

of sets = # of elements

14-1: Disjoint Sets

Elements will be integers (for now)

Operations:

CreateSets(n) – Create n sets, for integers
0..(n-1)

Union(x,y) – merge the set containing x and the
set containing y

Find(x) – return a representation of x’s set
Find(x) = Find(y) iff x,y are in the same set

14-2: Disjoint Sets

Implementing Disjoint sets

How should disjoint sets be implemented?

14-3: Implementing Disjoint Sets

Implementing Disjoint sets (First Try)

Array of set identifiers:
Set[i] = set containing element i

Initially, Set[i] = i

14-4: Implementing Disjoint Sets

Creating sets:

14-5: Implementing Disjoint Sets

Creating sets: (pseudo-Java)

void CreateSets(n) {
for (i=0; i<n; i++) {

Set[i] = i;
}

}

14-6: Implementing Disjoint Sets

Find:

14-7: Implementing Disjoint Sets

Find: (pseudo-Java)

int Find(x) {
return Set[x];

}

14-8: Implementing Disjoint Sets

Union:

14-9: Implementing Disjoint Sets

Union: (pseudo-Java)

void Union(x,y) {
set1 = Set[x];
set2 = Set[y];

for (i=0; i < n; i=+)
if (Set[i] == set2)

Set[i] = set1;
}

14-10: Disjoint Sets Θ()

CreateSets

Find

Union

14-11: Disjoint Sets Θ()

CreateSets: Θ(n)

Find: Θ(1)

Union: Θ(n)

14-12: Disjoint Sets Θ()

CreateSets: Θ(n)

Find: Θ(1)

Union: Θ(n)

We can do better! (At least for Union ...)

14-13: Implementing Disjoint Sets II

Store elements in trees

All elements in the same set will be in the same
tree

Find(x) returns the element at the root of the tree
containing x

How can we easily find the root of a tree
containing x?

14-14: Implementing Disjoint Sets II

Store elements in trees

All elements in the same set will be in the same
tree

Find(x) returns the element at the root of the tree
containing x

How can we easily find the root of a tree
containing x?

Implement trees using parent pointers instead
of children pointers

14-15: Trees Using Parent Pointers

Examples:

1

2 3

4 5 6 7

1

2 3

4 5 6 7

14-16: Implementing Disjoint Sets II

Each element is represented by a node in a tree

Maintain an array of pointers to nodes

1 2 3 4 5 60 7 8

0 1 2 3 4 5 6 7 8

14-17: Implementing Disjoint Sets II

Each element is represented by a node in a tree

Maintain an array of pointers to nodes

1 2 3 4 5 60 7 8

0

1 2 3

4

5

6 7 8

14-18: Implementing Disjoint Sets II

Find:

14-19: Implementing Disjoint Sets II

Find:

Follow parent pointers, until root is reached.
Root is node with null parent pointer.
(alternately, root points to itself)

Return element at root

14-20: Implementing Disjoint Sets II

Find: (pseudo-Java)

int Find(x) {
Node tmp = Sets[x];
while (tmp.parent != null)

tmp = tmp.parent;
return tmp.element;

}

14-21: Implementing Disjoint Sets II

Union(x,y)

14-22: Implementing Disjoint Sets II

Union(x,y)

Calculate:
Root of x’s tree, rootx
Root of y’s tree, rooty

Set parent(rootx) = rooty

14-23: Implementing Disjoint Sets II

Union(x,y) (pseudo-Java)

void Union(x,y) {
rootx = Find(x);
rooty = Find(y);
Sets[rootx].parent = Sets[rooty];

}

14-24: Removing pointers

We don’t need any pointers

Instead, use index into set array

1 2 3 4 5 60 7 8

-1 -1 -1 -1 -1 -1 -1 -1 -1

14-25: Removing pointers

1 2 3 4 5 60 7 8

-1 -1 -1 -1 -1 -1 -1 -1 -1

Union(2,3), Union(6,8), Union(0,2), Union(2,6)

14-26: Removing pointers

Union(2,3), Union(6,8), Union(0,2), Union(2,8)

1 2 3 4 5 60 7 8

 3 -1 3 8 -1 -1 8 -1 -1

14-27: Implementing Disjoint Sets III

Find: (pseudo-Java)

int Find(x) {
while (Parent[x] >= 0)

x = Parent[x]
return x

}

14-28: Implementing Disjoint Sets II

Union(x,y) (pseudo-Java)

void Union(x,y) {
rootx = Find(x);
rooty = Find(y);
Link(rootx, rooty);

}

Link(x,y) {
Parent[x] = y;

}

14-29: Efficiency of Disjoint Sets II

So far, we haven’t done much to improve the
run-time efficiency of Disjoint sets.

Two improvements will make a huge difference:

Union by rank

Path compression

14-30: Union by Rank

Merging sets:

We want to avoid long chains of elements

When merging two sets, which should become
the parent, and why?

14-31: Union by Rank

Merging sets:

We want to avoid long chains of elements

When merging two sets, which should become
the parent, and why?

The tree with the largest height should be the
parent.
Keep track of an estimate of the height of
each tree (until we add path compression,
the estimate will be exact)

14-32: Union by Rank

For each node, keep a rank, which is an estimate
of the depth of the tree rooted at that node

Initially, rank for each node is 0

How should ranks be used / updated?

14-33: Union by Rank

union(x,y) {
rootx = Find(x);
rooty = Find(y);
Link(rootx,rooty);

}

Link(x,y) {
Parent[x] = y

}

14-34: Union by Rank

union(x,y) {
rootx = Find(x);
rooty = Find(y);
Link(rootx,rooty);

}

Link(x,y) {
if (rank[x] > rank[y]);

Parent[y] = x;
else

Parent[x] = y;
if (rank[x] == rank[y]);

rank[y]++;
}

14-35: Union by Rank

For each node, we need either the rank or the
parent – not both

We can use the same array to store both pieces of
information

If a node x is not a root, Parent[x] = parent of x

If a node x is a root, Parent[x] = 0 - height of
tree

Assuming we don’t allow 0 to be a set, if Parent[x]
is positive, then x is not a root. If Parent[x] is 0 or
negative, then x is a root

(note – text does not do this! Roots point to
themselves, rank is separate)

14-36: Path Compression

After each call to Find(x), change x’s parent
pointer to point directly at root

Also, change all parent pointers on path from x to
root

14-37: Implementing Disjoint Sets III

Find: (pseudo-Java)

int Find(x) {
if (Parent[x] < 0)

return x;
else {

Parent[x] = Find(Parent[x]);
return Parent[x];

}
}

14-38: Disjoint Set Θ

Time to do a Find / Union proportional to the depth
of the trees

“Union by Rank” tends to keep tree sizes down

“Path compression” causes Find and Union to
flatten trees

Union / Find take roughly time O(1) on average

14-39: Disjoint Set Θ

Technically, m Find/Unions on n sets take time

O(m lg∗ n)

lg∗ n is the number of times we need to take lg of n
to get to 1.

lg 2 = 1, lg∗ 2 = 1

lg(lg 4) = 1, lg∗ 4 = 2

lg(lg(lg 16)) = 1, lg∗ 16 = 3

lg(lg(lg(lg 65536))) = 1, lg∗ 65536 = 4

. . .

lg∗ 265536 = 5

of atoms in the universe ≈ 1080 ≪ 265536

lg∗ n <= 5 for all practical values of n

	{small lecturenumber -	heblocknumber :} Disjoint Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Disjoint Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Disjoint Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Disjoint Sets $Theta ()$addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Disjoint Sets $Theta ()$addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Disjoint Sets $Theta ()$addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Sets IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Sets IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Trees Using Parent Pointersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Sets IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Sets IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Sets IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Sets IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Sets IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Sets IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Sets IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Sets IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Removing pointersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Removing pointersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Removing pointersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Sets IIIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Sets IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Efficiency of Disjoint Sets IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Union by Rankaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Union by Rankaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Union by Rankaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Union by Rankaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Union by Rankaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Union by Rankaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Path Compressionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Disjoint Sets IIIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Disjoint Set $Theta $addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Disjoint Set $Theta $addtocounter {blocknumber}{1}

