14-0: **Disjoint Sets**

- Maintain a collection of sets
- Operations:
 - Determine which set an element is in
 - Union (merge) two sets
- Initially, each element is in its own set
 - # of sets = # of elements

14-1: **Disjoint Sets**

- Elements will be integers (for now)
- Operations:
 - CreateSets(n) – Create n sets, for integers 0..(n-1)
 - Union(x,y) – merge the set containing x and the set containing y
 - Find(x) – return a representation of x’s set
 - Find(x) = Find(y) iff x,y are in the same set

14-2: **Disjoint Sets**

- Implementing Disjoint sets
 - How should disjoint sets be implemented?

14-3: **Implementing Disjoint Sets**

- Implementing Disjoint sets (First Try)
 - Array of set identifiers:
 - Set[i] = set containing element i
 - Initially, Set[i] = i

14-4: **Implementing Disjoint Sets**

- Creating sets:

14-5: **Implementing Disjoint Sets**

- Creating sets: (pseudo-Java)

```java
void CreateSets(n) {
    for (i=0; i<n; i++) {
        Set[i] = i;
    }
}
```

14-6: **Implementing Disjoint Sets**

- Find:
14-7: **Implementing Disjoint Sets**

- Find: (pseudo-Java)

```java
int Find(x) {
    return Set[x];
}
```

14-8: **Implementing Disjoint Sets**

- Union:

14-9: **Implementing Disjoint Sets**

- Union: (pseudo-Java)

```java
void Union(x, y) {
    set1 = Set[x];
    set2 = Set[y];

    for (i=0; i < n; i++)
        if (Set[i] == set2)
            Set[i] = set1;
}
```

14-10: **Disjoint Sets** $\Theta()$

- CreateSets
- Find
- Union

14-11: **Disjoint Sets** $\Theta()$

- CreateSets: $\Theta(n)$
- Find: $\Theta(1)$
- Union: $\Theta(n)$

14-12: **Disjoint Sets** $\Theta()$

- CreateSets: $\Theta(n)$
- Find: $\Theta(1)$
- Union: $\Theta(n)$

We can do better! (At least for Union ...)

14-13: **Implementing Disjoint Sets II**

- Store elements in trees
- All elements in the same set will be in the same tree
- Find(x) returns the element at the root of the tree containing x
• How can we easily find the root of a tree containing x?

14-14: **Implementing Disjoint Sets II**

• Store elements in trees
• All elements in the same set will be in the same tree
• Find(x) returns the element at the root of the tree containing x
 • How can we easily find the root of a tree containing x?
 • Implement trees using *parent pointers* instead of *children pointers*

14-15: **Trees Using Parent Pointers**

• Examples:

```
  1
 /|
/ |\  
2 3  
/   |
4   5 6 7
```

14-16: **Implementing Disjoint Sets II**

• Each element is represented by a node in a tree
• Maintain an array of pointers to nodes

```
0 1 2 3 4 5 6 7 8
```

14-17: **Implementing Disjoint Sets II**

• Each element is represented by a node in a tree
• Maintain an array of pointers to nodes
14-18: **Implementing Disjoint Sets II**

- Find:

14-19: **Implementing Disjoint Sets II**

- Find:
 - Follow parent pointers, until root is reached.
 - Root is node with null parent pointer.
 - (alternately, root points to itself)
 - Return element at root

14-20: **Implementing Disjoint Sets II**

- Find: (pseudo-Java)

```java
int Find(x) {
    Node tmp = Sets[x];
    while (tmp.parent != null)
        tmp = tmp.parent;
    return tmp.element;
}
```

14-21: **Implementing Disjoint Sets II**

- Union(x,y)

14-22: **Implementing Disjoint Sets II**

- Union(x,y)
 - Calculate:
 - Root of x’s tree, rootx
 - Root of y’s tree, rooty
 - Set parent(rootx) = rooty

14-23: **Implementing Disjoint Sets II**
Union(x,y) (pseudo-Java)

```java
void Union(x, y) {
    rootx = Find(x);
    rooty = Find(y);
    Sets[rootx].parent = Sets[rooty];
}
```

14-24: Removing pointers

- We don’t need any pointers
- Instead, use index into set array

<table>
<thead>
<tr>
<th>-1</th>
<th>-1</th>
<th>-1</th>
<th>-1</th>
<th>-1</th>
<th>-1</th>
<th>-1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

14-25: Removing pointers

<table>
<thead>
<tr>
<th>-1</th>
<th>-1</th>
<th>-1</th>
<th>-1</th>
<th>-1</th>
<th>-1</th>
<th>-1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

- Union(2,3), Union(6,8), Union(0,2), Union(2,6)

14-26: Removing pointers

- Union(2,3), Union(6,8), Union(0,2), Union(2,8)

<table>
<thead>
<tr>
<th>3</th>
<th>-1</th>
<th>3</th>
<th>8</th>
<th>-1</th>
<th>-1</th>
<th>8</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

14-27: Implementing Disjoint Sets III

Find: (pseudo-Java)

```java
int Find(x) {
    while (Parent[x] >= 0)
        x = Parent[x]
    return x
}
```

14-28: Implementing Disjoint Sets II

- Union(x,y) (pseudo-Java)
void Union(x, y) {
 rootx = Find(x);
 rooty = Find(y);
 Link(rootx, rooty);
}

Link(x, y) {
 Parent[x] = y;
}

14-29: Efficiency of Disjoint Sets II

- So far, we haven’t done much to improve the run-time efficiency of Disjoint sets.
- Two improvements will make a huge difference:
 - Union by rank
 - Path compression

14-30: Union by Rank

- Merging sets:
 - We want to avoid long chains of elements
 - When merging two sets, which should become the parent, and why?
- Union by Rank

- Merging sets:
 - We want to avoid long chains of elements
 - When merging two sets, which should become the parent, and why?
 - The tree with the largest height should be the parent.
 - Keep track of an estimate of the height of each tree (until we add path compression, the estimate will be exact)

14-32: Union by Rank

- For each node, keep a rank, which is an estimate of the depth of the tree rooted at that node
- Initially, rank for each node is 0
- How should ranks be used / updated?

14-33: Union by Rank

union(x, y) {
 rootx = Find(x);
 rooty = Find(y);
 Link(rootx, rooty);
}

Link(x, y) {
 Parent[x] = y
}
14-34: **Union by Rank**

```java
union(x, y) {
    rootx = Find(x);
    rooty = Find(y);
    Link(rootx, rooty);
}
```

```java
Link(x, y) {
    if (rank[x] > rank[y]);
        Parent[y] = x;
    else
        Parent[x] = y;
    if (rank[x] == rank[y]);
        rank[y]++;  
}
```

14-35: **Union by Rank**

- For each node, we need either the rank or the parent – not both
- We can use the same array to store both pieces of information
 - If a node x is not a root, $\text{Parent}[x] =$ parent of x
 - If a node x is a root, $\text{Parent}[x] = 0$ - height of tree
- Assuming we don’t allow 0 to be a set, if $\text{Parent}[x]$ is positive, then x is not a root. If $\text{Parent}[x]$ is 0 or negative, then x is a root
- (note – text does not do this! Roots point to themselves, rank is separate)

14-36: **Path Compression**

- After each call to $\text{Find}(x)$, change x’s parent pointer to point directly at root
- Also, change all parent pointers on path from x to root

14-37: **Implementing Disjoint Sets III**

- Find: (pseudo-Java)

```java
int Find(x) {
    if (Parent[x] < 0)
        return x;
    else {
        Parent[x] = Find(Parent[x]);
        return Parent[x];
    }
}
```

14-38: **Disjoint Set Θ**

- Time to do a Find / Union proportional to the depth of the trees
• “Union by Rank” tends to keep tree sizes down
• “Path compression” causes Find and Union to flatten trees
• Union / Find take roughly time O(1) on average

14-39: Disjoint Set

- Technically, m Find/Unions on n sets take time $O(m \log^* n)$
- $\log^* n$ is the number of times we need to take \log of n to get to 1.
 - $\log 2 = 1, \log^* 2 = 1$
 - $\log(\log 4) = 1, \log^* 4 = 2$
 - $\log(\log(\log 16)) = 1, \log^* 16 = 3$
 - $\log(\log(\log(\log 65536))) = 1, \log^* 65536 = 4$
 - ...
 - $\log^* 2^{65536} = 5$
- # of atoms in the universe $\approx 10^{80} \ll 2^{65536}$
- $\log^* n \leq 5$ for all practical values of n