
Graduate Algorithms
CS673-2016F-16

Spanning Trees

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

16-0: Spanning Trees

Given a connected, undirected graph G

A subgraph of G contains a subset of the
vertices and edges in G

A Spanning Tree T of G is:
subgraph of G
contains all vertices in G
connected
acyclic

16-1: Spanning Tree Examples

Graph

0 1

2 3 4

5 6

16-2: Spanning Tree Examples

Spanning Tree

0 1

2 3 4

5 6

16-3: Spanning Tree Examples

Graph

0 1

2 3 4

5 6

16-4: Spanning Tree Examples

Spanning Tree

0 1

2 3 4

5 6

16-5: Minimal Cost Spanning Tree

Minimal Cost Spanning Tree

Given a weighted, undirected graph G

Spanning tree of G which minimizes the sum of
all weights on edges of spanning tree

16-6: MST Example

0 1

2 3 4

5 6

2

4 1 3 10

2 7

5 8 4 6

1

16-7: MST Example

0 1

2 3 4

5 6

2

1

2

4 6

1

16-8: Minimal Cost Spanning Trees

Can there be more than one minimal cost
spanning tree for a particular graph?

16-9: Minimal Cost Spanning Trees

Can there be more than one minimal cost
spanning tree for a particular graph?

YES!

What happens when all edges have unit cost?

16-10: Minimal Cost Spanning Trees

Can there be more than one minimal cost
spanning tree for a particular graph?

YES!

What happens when all edges have unit cost?

All spanning trees are MSTs

16-11: Calculating MST

Generic MST algorithm:

A← {}
while A does not form a spanning tree

find an edge (u, v) that is safe for A
A← A ∪ {(u, v)}

(u, v) is safe to for A when A ∪ {(u, v)} is a subset
of some MST

16-12: Graph Cut

“Cut” of a undirected graph is a partition of the
vertices in the graph

An edge crosses a cut if the vertices are in
different sets of the partition

A cut respects a series of edges of no edge
crosses the cut

light edge is an edge that crosses the cut that
has minimum cost

16-13: Graph Cut

a b c

d e f g

h i

16-14: Graph Cut

a b c

d e f g

h i
Cut Respects These
Edges

16-15: Graph Cut

a b c

d e f g

h i

These edges cross
the cut

16-16: Graph Cut

a b c

d e f g

h i

2

5

2 3 7

1

2

1

8

2

1

2

Light Edges

16-17: Safe Edges

A is a set of edges, which is a subset of some MST

Cut {S, V − S} which respects A

Any light edge (with respect to the cut {S, V − S})
is safe

That is, A ∪ {(u, v)} is a subset of some MST if

{(u, v)} is a light edge in a cut that respects A

16-18: Safe Edges

Proof by contradiction:

Assume there is:
a subset of a MST A
a Cut {S, V − S} that respects A

a light edge (u, v)

such that A ∪ {(u, v)} is not a subset of any
MST

We will show that this leads to a contradiction

16-19: Safe Edges

Let A′ be a MST that is a superset of A

Add (u, v) to A′ to get A′′ – now have a cycle

This cycle must cross the cut at least twice

(u, v) is one crossing

Must be another crossing (u′, v′) back across
the cut

remove (u′, v′) from A′′ to get A′′′

A′′′ is a spanning tree

cost(A′′′) = cost(A′) - cost((u′, v′)) + cost((u, v))

cost((u, v)) ≤ cost((u′, v′)⇒ cost(A′′′) ≤ cost(A′)

16-20: Safe Edges

Let A′ be a MST that is a superset of A

Add (u, v) to A′ to get A′′ – now have a cycle

This cycle must cross the cut at least twice

Must be another crossing (u′, v′) back across the
cut

remove (u′, v′) from A′′ to get A′′′

A′′′ is a spanning tree

cost(A′′′) = cost(A′) - cost((u′, v′)) + cost((u, v))

cost((u, v)) ≤ cost((u′, v′)⇒ cost(A′′′) ≤ cost(A′)

Thus A′′′ must be a MST that contains A and
{(u, v)}, a contradiction

16-21: Kruskal’s Algorithm

Start with an empty graph (no edges)

Sort the edges by cost

For each edge e (in increasing order of cost)

Add e to G if it would not cause a cycle

16-22: Kruskal’s Algorithm Examples

0 1

2 3 4

5 6

2

4 1 3 10

2 7

5 8 4 6

1

16-23: Kruskal’s Algorithm

Correctness proof:

Kruskal’s algorithm always selects a light edge,
with according to some cut that respects all
edges added so far.

Let (u, v) be the cheapest edge that does not
cause a cycle
Let S be the connected component that
contains u.
{S, V − S} respects edges chosen so far

(u, v) crosses the cut, and is the edge with
the smallest cost that crosses the cut⇒
(u, v) is a light edge

Thus, Kruskal’s algorithm always selects a safe
edge, and produces a MST

16-24: Kruskal’s Algorithm

Coding Kruskal’s Algorithm:

Place all edges into a list

Sort list of edges by cost

For each edge in the list
Select the edge if it does not form a cycle
with previously selected edges
How can we do this?

16-25: Kruskal’s Algorithm

Determining of adding an edge will cause a cycle

Start with a forest of V trees (each containing
one node)

Each added edge merges two trees into one
tree

An edge causes a cycle if both vertices are in
the same tree

(examples)

16-26: Kruskal’s Algorithm

We need to:

Put each vertex in its own tree

Given any two vertices v1 and v2, determine if
they are in the same tree

Given any two vertices v1 and v2, merge the
tree containing v1 and the tree containing v2

... sound familiar?

16-27: Kruskal’s Algorithm

Disjoint sets!

Create a list of all edges

Sort list of edges

For each edge e = (v1, v2) in the list

if FIND(v1) != FIND(v2)
Add e to spanning tree
UNION(v1, v2)

16-28: Kruskal’s Algorithm

Running time?

16-29: Kruskal’s Algorithm

Running time?

Sort edges: Θ(|E| lg |E|)

Build tree: O(E)

Total: Θ(|E| lg |E|)

16-30: Prim’s Algorithm

Grow that spanning tree out from an initial vertex

Divide the graph into two sets of vertices

vertices in the spanning tree

vertices not in the spanning tree

Initially, Start vertex is in the spanning tree, all
other vertices are not in the tree

Pick the initial vertex arbitrarily

16-31: Prim’s Algorithm

While there are vertices not in the spanning tree

Add the cheapest vertex to the spanning tree

16-32: Prims’s Algorithm Examples

0 1

2 3 4

5 6

2

4 1 3 10

2 7

5 8 4 6

1

16-33: Prim’s Algorithm

Maintain a table, which keeps track of:

Whether or not the vertex has been added to
the MST (Known)

Current cheapest cost to add the vertex to the
MST (Cost)

Neighber to connect to, to get the cheapest
cost (Path)

16-34: Prim Code

void Prim(Edge G[], int s, tableEntry T[]) {

int i, v;

Edge e;

for(i=0; i<G.length; i++) {

T[i].distance = Integer.MAX_VALUE;

T[i].path = -1;

T[i].known = false;

}

T[s].distance = 0;

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance > e.cost) {

T[e.neighbor].distance = e.cost;

T[e.neighbor].path = v;

}

}

}

}

16-35: Prim Running Time

If minUnknownVertex(T) is calculated by doing a
linear search through the table:

Each minUnknownVertex call takes time Θ(|V |)
Called |V | times – total time for all calls to

minUnkownVertex: Θ(|V |2)

If statement is executed |E| times, each time

takes time O(1)

Total time: O(|V |2 + |E|) = O(|V |2).

16-36: Prim Running Time

If minUnknownVertex(T) is calculated by inserting
all vertices into a min-heap (using distances as
key) updating the heap as the distances are
changed

Each minUnknownVertex call tatkes time
Θ(lg |V |)

Called |V | times – total time for all calls to

minUnknownVertex: Θ(|V | lg |V |)

If statement is executed |E| times – each time

takes time O(lg |V |), since we need to update
(decrement) keys in heap

Total time:
O(|V | lg |V |+ |E| lg |V |) ∈ O(|E| lg |V |)

Is this better or wose than the previous method?
Explain!

16-37: Prim Running Time

If minUnknownVertex(T) is calculated by inserting
all vertices into a Fibonacci heap (using distances
as key) updating the heap as the distances are
changed

Each minUnknownVertex call takes amortized
time Θ(lg |V |)

Called |V | times – total amortized time for all

calls to minUnknownVertex: Θ(|V | lg |V |)

If statement is executed |E| times – each time

takes amortized time O(1), since decrementing

keys takes time O(1).

Total time: O(|V | lg |V |+ |E|)

Is this better or wose than the previous methods?
Explain!

16-38: Prim Correctness

Every time we select a vertex as known, pick an
edge to add to MST

If the set of known vertices are K:

Create a partition {K,V −K}

Next vertex that we select will be connected to
the known vertices by the cheapest possible
edge

Thus, we’re always picking a light edge,
according to some partition that repsects all
edges we’ve previously chosen

	{small lecturenumber -	heblocknumber :} Spanning Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Spanning Tree Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Spanning Tree Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Spanning Tree Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Spanning Tree Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Minimal Cost Spanning Treeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} MST Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} MST Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Minimal Cost Spanning Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Minimal Cost Spanning Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Minimal Cost Spanning Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Calculating MSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Graph Cutaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Graph Cutaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Graph Cutaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Graph Cutaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Graph Cutaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Safe Edgesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Safe Edgesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Safe Edgesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Safe Edgesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithm Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prim's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prim's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prims's Algorithm Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prim's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prim Codeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prim Running Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prim Running Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prim Running Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prim Correctnessaddtocounter {blocknumber}{1}

