16-0: Spanning Trees

- Given a connected, undirected graph G
 - A subgraph of G contains a subset of the vertices and edges in G
 - A Spanning Tree T of G is:
 - subgraph of G
 - contains all vertices in G
 - connected
 - acyclic
16-1: Spanning Tree Examples

- Graph

![Graph Diagram]

Nodes: 0, 1, 2, 3, 4, 5, 6
Edges: 0-1, 0-2, 0-3, 1-4, 1-3, 2-3, 2-5, 3-6, 4-5, 4-6
16-2: Spanning Tree Examples

- Spanning Tree

```
 0 ---- 1
 |     |
2 ---- 3 ---- 4
     |
 5 ---- 6
```
Graph
16-4: Spanning Tree Examples

- Spanning Tree

Diagram:

- Nodes: 0, 1, 2, 3, 4, 5, 6
- Edges: (0, 3), (1, 3), (3, 2), (3, 5), (3, 6), (4, 3)
16-5: **Minimal Cost Spanning Tree**

- **Minimal Cost Spanning Tree**
 - Given a weighted, undirected graph \(G \)
 - Spanning tree of \(G \) which minimizes the sum of all weights on edges of spanning tree
16-6: MST Example
16-7: MST Example
Can there be more than one minimal cost spanning tree for a particular graph?
Can there be more than one minimal cost spanning tree for a particular graph?

YES!

What happens when all edges have unit cost?
Can there be more than one minimal cost spanning tree for a particular graph?

YES!

- What happens when all edges have unit cost?
- All spanning trees are MSTs
16-11: Calculating MST

• Generic MST algorithm:

\[A \leftarrow \{ \} \]

while \(A \) does not form a spanning tree

find an edge \((u, v)\) that is safe for \(A \)

\[A \leftarrow A \cup \{(u, v)\} \]

• \((u, v)\) is safe to for \(A \) when \(A \cup \{(u, v)\} \) is a subset of some MST
“Cut” of a undirected graph is a partition of the vertices in the graph

- An edge crosses a cut if the vertices are in different sets of the partition
- A cut respects a series of edges of no edge crosses the cut
- Light edge is an edge that crosses the cut that has minimum cost
16-13: Graph Cut
16-14: Graph Cut

Cut Respects These Edges
These edges cross the cut
16-16: Graph Cut

Light Edges
16-17: **Safe Edges**

- A is a set of edges, which is a subset of some MST
- Cut $\{S, V - S\}$ which respects A
- Any light edge (with respect to the cut $\{S, V - S\}$) is safe
 - That is, $A \cup \{(u, v)\}$ is a subset of some MST if $\{(u, v)\}$ is a light edge in a cut that respects A
Proof by contradiction:

Assume there is:

- a subset of a MST A
- a Cut $\{S, V - S\}$ that respects A
- a light edge (u, v)

such that $A \cup \{(u, v)\}$ is not a subset of any MST

We will show that this leads to a contradiction
Let A' be a MST that is a superset of A

Add (u, v) to A' to get A'' – now have a cycle

This cycle must cross the cut at least twice

- (u, v) is one crossing
- Must be another crossing (u', v') back across the cut

remove (u', v') from A'' to get A'''

A''' is a spanning tree

$$\text{cost}(A''') = \text{cost}(A') - \text{cost}((u', v')) + \text{cost}((u, v))$$

$$\text{cost}((u, v)) \leq \text{cost}((u', v')) \Rightarrow \text{cost}(A''') \leq \text{cost}(A')$$
Let A' be a MST that is a superset of A

Add (u, v) to A' to get A'' – now have a cycle

This cycle must cross the cut at least twice

Must be another crossing (u', v') back across the cut

remove (u', v') from A'' to get $A'''

A''' is a spanning tree

$\text{cost}(A''') = \text{cost}(A') - \text{cost}((u', v')) + \text{cost}((u, v))$

$\text{cost}((u, v)) \leq \text{cost}((u', v')) \Rightarrow \text{cost}(A''') \leq \text{cost}(A')$

Thus A''' must be a MST that contains A and $\{(u, v)\}$, a contradiction
Kruskal’s Algorithm

- Start with an empty graph (no edges)
- Sort the edges by cost
- For each edge e (in increasing order of cost)
 - Add e to G if it would not cause a cycle
16-22: Kruskal’s Algorithm Examples
Correctness proof:

Kruskal’s algorithm always selects a light edge, with according to some cut that respects all edges added so far.

- Let \((u, v)\) be the cheapest edge that does not cause a cycle.
- Let \(S\) be the connected component that contains \(u\).
- \(\{S, V - S\}\) respects edges chosen so far.
- \((u, v)\) crosses the cut, and is the edge with the smallest cost that crosses the cut \(\Rightarrow (u, v)\) is a light edge.

Thus, Kruskal’s algorithm always selects a safe edge, and produces a MST.
Kruskal’s Algorithm

Coding Kruskal’s Algorithm:

- Place all edges into a list
- Sort list of edges by cost
- For each edge in the list
 - Select the edge if it does not form a cycle with previously selected edges
 - How can we do this?
Kruskal’s Algorithm

- Determining of adding an edge will cause a cycle
 - Start with a forest of V trees (each containing one node)
 - Each added edge merges two trees into one tree
 - An edge causes a cycle if both vertices are in the same tree
 - (examples)
Kruskal’s Algorithm

- We need to:
 - Put each vertex in its own tree
 - Given any two vertices v_1 and v_2, determine if they are in the same tree
 - Given any two vertices v_1 and v_2, merge the tree containing v_1 and the tree containing v_2
- ... sound familiar?
Kruskal’s Algorithm

- Disjoint sets!
- Create a list of all edges
- Sort list of edges
- For each edge \(e = (v_1, v_2) \) in the list
 - if \(\text{FIND}(v_1) \neq \text{FIND}(v_2) \)
 - Add \(e \) to spanning tree
 - UNION\((v_1, v_2)\)
Kruskal’s Algorithm

- Running time?
16-29: Kruskal’s Algorithm

- Running time?
 - Sort edges: $\Theta(|E| \lg |E|)$
 - Build tree: $O(E)$
- Total: $\Theta(|E| \lg |E|)$
Prim’s Algorithm

- Grow that spanning tree out from an initial vertex
- Divide the graph into two sets of vertices
 - vertices in the spanning tree
 - vertices *not* in the spanning tree
- Initially, Start vertex is in the spanning tree, all other vertices are not in the tree
 - Pick the initial vertex arbitrarily
Prim’s Algorithm

• While there are vertices not in the spanning tree
 • Add the cheapest vertex to the spanning tree
Prims’s Algorithm Examples
16-33: Prim’s Algorithm

- Maintain a table, which keeps track of:
 - Whether or not the vertex has been added to the MST (Known)
 - Current cheapest cost to add the vertex to the MST (Cost)
 - Neighbor to connect to, to get the cheapest cost (Path)
void Prim(Edge G[], int s, tableEntry T[]) {
 int i, v;
 Edge e;
 for (i=0; i<G.length; i++) {
 T[i].distance = Integer.MAX_VALUE;
 T[i].path = -1;
 T[i].known = false;
 }
 T[s].distance = 0;
 for (i=0; i < G.length; i++) {
 v = minUnknownVertex(T);
 T[v].known = true;
 for (e = G[v]; e != null; e = e.next) {
 if (T[e.neighbor].distance > e.cost) {
 T[e.neighbor].distance = e.cost;
 T[e.neighbor].path = v;
 }
 }
 }
}
16-35: Prim Running Time

- If `minUnknownVertex(T)` is calculated by doing a linear search through the table:
 - Each `minUnknownVertex` call takes time $\Theta(|V|)$
 - Called $|V|$ times – total time for all calls to `minUnknownVertex`: $\Theta(|V|^2)$
- If statement is executed $|E|$ times, each time takes time $O(1)$
- Total time: $O(|V|^2 + |E|) = O(|V|^2)$.
Prim Running Time

- If `minUnknownVertex(T)` is calculated by inserting all vertices into a min-heap (using distances as key) updating the heap as the distances are changed
 - Each `minUnknownVertex` call takes time $\Theta(\lg |V|)$
 - Called $|V|$ times – total time for all calls to `minUnknownVertex`: $\Theta(|V| \lg |V|)$
- If statement is executed $|E|$ times – each time takes time $O(\lg |V|)$, since we need to update (decrement) keys in heap
- Total time:
 $O(|V| \lg |V| + |E| \lg |V|) \in O(|E| \lg |V|)$
- Is this better or worse than the previous method?
If \(\text{minUnknownVertex}(T) \) is calculated by inserting all vertices into a Fibonacci heap (using distances as key) updating the heap as the distances are changed:

- Each \(\text{minUnknownVertex} \) call takes amortized time \(\Theta(\lg |V|) \)
 - Called \(|V| \) times – total amortized time for all calls to \(\text{minUnknownVertex} \): \(\Theta(|V| \lg |V|) \)
- If statement is executed \(|E| \) times – each time takes amortized time \(O(1) \), since decrementing keys takes time \(O(1) \).
- Total time: \(O(|V| \lg |V| + |E|) \)

Is this better or wose than the previous methods? Explain.
Prim Correctness

Every time we select a vertex as known, pick an edge to add to MST

If the set of known vertices are K:

- Create a partition $\{K, V - K\}$
- Next vertex that we select will be connected to the known vertices by the cheapest possible edge
- Thus, we’re always picking a light edge, according to some partition that respects all edges we’ve previously chosen