16-0: Spanning Trees

- Given a connected, undirected graph G
 - A subgraph of G contains a subset of the vertices and edges in G
 - A Spanning Tree T of G is:
 - subgraph of G
 - contains all vertices in G
 - connected
 - acyclic

16-1: Spanning Tree Examples

- Graph

![Graph](image1)

16-2: Spanning Tree Examples

- Spanning Tree

![Spanning Tree](image2)

16-3: Spanning Tree Examples

- Graph

![Graph](image3)
16-4: Spanning Tree Examples

- Spanning Tree

16-5: Minimal Cost Spanning Tree

- Minimal Cost Spanning Tree
 - Given a weighted, undirected graph G
 - Spanning tree of G which minimizes the sum of all weights on edges of spanning tree

16-6: MST Example

16-7: MST Example
16-8: Minimal Cost Spanning Trees
- Can there be more than one minimal cost spanning tree for a particular graph?

16-9: Minimal Cost Spanning Trees
- Can there be more than one minimal cost spanning tree for a particular graph?
- YES!
 - What happens when all edges have unit cost?

16-10: Minimal Cost Spanning Trees
- Can there be more than one minimal cost spanning tree for a particular graph?
- YES!
 - What happens when all edges have unit cost?
 - All spanning trees are MSTs

16-11: Calculating MST
- Generic MST algorithm:

\[
A \leftarrow \emptyset
\]
while \(A\) does not form a spanning tree
 find an edge \((u, v)\) that is safe for \(A\)
 \(A \leftarrow A \cup \{(u, v)\}\)

- \((u, v)\) is safe to for \(A\) when \(A \cup \{(u, v)\}\) is a subset of some MST

16-12: Graph Cut
- “Cut” of a undirected graph is a partition of the vertices in the graph
 - An edge crosses a cut if the vertices are in different sets of the partition
 - A cut respects a series of edges of no edge crosses the cut
 - light edge is an edge that crosses the cut that has minimum cost
16-13: Graph Cut

16-14: Graph Cut

16-15: Graph Cut
These edges cross the cut

16-16: **Graph Cut**

16-17: **Safe Edges**

- A is a set of edges, which is a subset of some MST
- Cut $\{S, V - S\}$ which respects A
- Any light edge (with respect to the cut $\{S, V - S\}$) is safe
 - That is, $A \cup \{(u, v)\}$ is a subset of some MST if $\{(u, v)\}$ is a light edge in a cut that respects A

16-18: **Safe Edges**

- Proof by contradiction:
 - Assume there is:
• a subset of a MST A
• a Cut $\{S, V - S\}$ that respects A
• a light edge (u, v)
 • such that $A \cup \{(u, v)\}$ is not a subset of any MST
• We will show that this leads to a contradiction

16-19: **Safe Edges**

• Let A' be a MST that is a superset of A
• Add (u, v) to A' to get A'' – now have a cycle
• This cycle must cross the cut at least twice
 • (u, v) is one crossing
 • Must be another crossing (u', v') back across the cut
• remove (u', v') from A'' to get A'''
• A''' is a spanning tree
• $\text{cost}(A''') = \text{cost}(A') - \text{cost}((u', v')) + \text{cost}((u, v))$
• $\text{cost}((u, v)) \leq \text{cost}((u', v')) \Rightarrow \text{cost}(A''') \leq \text{cost}(A')$

16-20: **Safe Edges**

• Let A' be a MST that is a superset of A
• Add (u, v) to A' to get A'' – now have a cycle
• This cycle must cross the cut at least twice
• Must be another crossing (u', v') back across the cut
• remove (u', v') from A'' to get A'''
• A''' is a spanning tree
• $\text{cost}(A''') = \text{cost}(A') - \text{cost}((u', v')) + \text{cost}((u, v))$
• $\text{cost}((u, v)) \leq \text{cost}((u', v')) \Rightarrow \text{cost}(A''') \leq \text{cost}(A')$
• Thus A''' must be a MST that contains A and $\{(u, v)\}$, a contradiction

16-21: **Kruskal’s Algorithm**

• Start with an empty graph (no edges)
• Sort the edges by cost
• For each edge e (in increasing order of cost)
 • Add e to G if it would not cause a cycle
16-22: **Kruskal’s Algorithm Examples**

![Kruskal's Algorithm Graph](image)

16-23: **Kruskal’s Algorithm**

- **Correctness proof:**
 - Kruskal’s algorithm always selects a light edge, with according to some cut that respects all edges added so far.
 - Let \((u, v)\) be the cheapest edge that does not cause a cycle
 - Let \(S\) be the connected component that contains \(u\).
 - \(\{S, V - S\}\) respects edges chosen so far
 - \((u, v)\) crosses the cut, and is the edge with the smallest cost that crosses the cut \(\Rightarrow (u, v)\) is a light edge
 - Thus, Kruskal’s algorithm always selects a safe edge, and produces a MST

16-24: **Kruskal’s Algorithm**

- **Coding Kruskal’s Algorithm:**
 - Place all edges into a list
 - Sort list of edges by cost
 - For each edge in the list
 - Select the edge if it does not form a cycle with previously selected edges
 - How can we do this?

16-25: **Kruskal’s Algorithm**

- Determining of adding an edge will cause a cycle
 - Start with a forest of \(V\) trees (each containing one node)
 - Each added edge merges two trees into one tree
 - An edge causes a cycle if both vertices are in the same tree
 - (examples)

16-26: **Kruskal’s Algorithm**

- We need to:
 - Put each vertex in its own tree
Given any two vertices \(v_1 \) and \(v_2 \), determine if they are in the same tree

Given any two vertices \(v_1 \) and \(v_2 \), merge the tree containing \(v_1 \) and the tree containing \(v_2 \)

... sound familiar?

16-27: **Kruskal’s Algorithm**

- Disjoint sets!
- Create a list of all edges
- Sort list of edges
- For each edge \(e = (v_1, v_2) \) in the list
 - if FIND\((v_1) \) \(\neq \) FIND\((v_2) \)
 - Add \(e \) to spanning tree
 - UNION\((v_1, v_2) \)

16-28: **Kruskal’s Algorithm**

- Running time?

16-29: **Kruskal’s Algorithm**

- Running time?
 - Sort edges: \(\Theta(|E| \lg |E|) \)
 - Build tree: \(O(E) \)
 - Total: \(\Theta(|E| \lg |E|) \)

16-30: **Prim’s Algorithm**

- Grow that spanning tree out from an initial vertex
- Divide the graph into two sets of vertices
 - vertices in the spanning tree
 - vertices not in the spanning tree
- Initially, Start vertex is in the spanning tree, all other vertices are not in the tree
 - Pick the initial vertex arbitrarily

16-31: **Prim’s Algorithm**

- While there are vertices not in the spanning tree
 - Add the cheapest vertex to the spanning tree
16-32: Prim’s Algorithm Examples

16-33: Prim’s Algorithm

- Maintain a table, which keeps track of:
 - Whether or not the vertex has been added to the MST (Known)
 - Current cheapest cost to add the vertex to the MST (Cost)
 - Neighbor to connect to, to get the cheapest cost (Path)

16-34: Prim Code

```java
void Prim(Edge G[], int s, tableEntry T[]) {
    int i, v;
    Edge e;
    for(i=0; i<G.length; i++) {
        T[i].distance = Integer.MAX_VALUE;
        T[i].path = -1;
        T[i].known = false;
    }  
    T[s].distance = 0;
    for (i=0; i < G.length; i++) {
        v = minUnknownVertex(T);
        T[v].known = true;
        for (e = G[v]; e != null; e = e.next) {
            if (T[e.neighbor].distance > e.cost) {
                T[e.neighbor].distance = e.cost;
                T[e.neighbor].path = v;
            }
        }
    }
}
```

16-35: Prim Running Time

- If minUnknownVertex(T) is calculated by doing a linear search through the table:
 - Each minUnknownVertex call takes time $\Theta(|V|)$
 - Called $|V|$ times – total time for all calls to minUnknownVertex: $\Theta(|V|^2)$
 - If statement is executed $|E|$ times, each time takes time $O(1)$
 - Total time: $O(|V|^2 + |E|) = O(|V|^2)$.

16-36: Prim Running Time

- If minUnknownVertex(T) is calculated by inserting all vertices into a min-heap (using distances as key) updating the heap as the distances are changed
 - Each minUnknownVertex call takes time $\Theta(\log |V|)$
 - Called $|V|$ times – total time for all calls to minUnknownVertex: $\Theta(|V| \log |V|)$
• If statement is executed $|E|$ times – each time takes time $O(|V| \times \log |V|)$, since we need to update (decrement) keys in heap
• Total time: $O(|V| \log |V| + |E| \log |V|) \in O(|E| \log |V|)$
• Is this better or worse than the previous method? Explain!

16-37: **Prim Running Time**

• If minUnknownVertex(T) is calculated by inserting all vertices into a Fibonacci heap (using distances as key) updating the heap as the distances are changed
 • Each minUnknownVertex call takes amortized time $\Theta(|V| \log |V|)$
 • Called $|V|$ times – total amortized time for all calls to minUnknownVertex: $\Theta(|V| \log |V|)$
 • If statement is executed $|E|$ times – each time takes amortized time $O(1)$, since decrementing keys takes time $O(1)$.
 • Total time: $O(|V| \log |V| + |E|)$
• Is this better or worse than the previous methods? Explain!

16-38: **Prim Correctness**

• Every time we select a vertex as known, pick an edge to add to MST
• If the set of known vertices are K:
 • Create a partition $\{K, V - K\}$
 • Next vertex that we select will be connected to the known vertices by the cheapest possible edge
 • Thus, we’re always picking a light edge, according to some partition that respects all edges we’ve previously chosen