
Graduate Algorithms
CS673-2016F-17

Shortest Path Algorithms

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

17-0: Computing Shortest Path

Given a directed weighted graph G (all weights
non-negative) and two vertices x and y, find the
least-cost path from x to y in G.

Undirected graph is a special case of a directed
graph, with symmetric edges

Least-cost path may not be the path containing the
fewest edges

“shortest path” == “least cost path”

“path containing fewest edges” = “path
containing fewest edges”

17-1: Shortest Path Example

Shortest path 6= path containing fewest edges

A

B

C

D

E

1

2

1

2

8

5

4

4

Shortest Path from A to E?

17-2: Shortest Path Example

Shortest path 6= path containing fewest edges

A

B

C

D

E

1

2

1

2

8

5

4

4

Shortest Path from A to E:

A, B, C, D, E

17-3: Single Source Shortest Path

To find the shortest path from vertex x to vertex y,
we need (worst case) to find the shortest path from
x to all other vertices in the graph

Why?

17-4: Single Source Shortest Path

To find the shortest path from vertex x to vertex y,
we need (worst case) to find the shortest path from
x to all other vertices in the graph

To find the shortest path from x to y, we need
to find the shortest path from x to all nodes on
the path from x to y

Worst case, all nodes will be on the path

17-5: Single Source Shortest Path

If all edges have unit weight ...

17-6: Single Source Shortest Path

If all edges have unit weight,

We can use Breadth First Search to compute the
shortest path

BFS Spanning Tree contains shortest path to each
node in the graph

Need to do some more work to create & save
BFS spanning tree

When edges have differing weights, this obviously
will not work

17-7: Single Source Shortest Path

General Idea for finding Single Source Shortest
Path

Start with the distance estimate to each node
(except the source) as∞

Repeatedly relax distance estimate until you
can relax no more

To relax and edge (u, v)
dist(v) > dist(u) + cost((u, v))
Set dist(v)← dist(u) + cost((u, v))

17-8: Single Source Shortest Path

Dijkstra’s algorithm

Relax edges from source

Remarkably similar to Prim’s MST algorith

Pretty neat – algorithms are doing different
things, but code is almost identical

17-9: Single Source Shortest Path

Divide the vertices into two sets:

Vertices whose shortest path from the initial
vertex is known

Vertices whose shortest path from the initial
vertex is not known

Initially, only the initial vertex is known

Move vertices one at a time from the unknown set
to the known set, until all vertices are known

17-10: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Start with the vertex A

17-11: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

Known vertices are circled in red

We can now extend the known set by 1 vertex

17-12: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

Why is it safe to add D, with cost 1?

17-13: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

Why is it safe to add D, with cost 1?

Could we do better with a more roundabout
path?

17-14: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

Why is it safe to add D, with cost 1?

Could we do better with a more roundabout
path?

No – to get to any other node will cost at least 1

No negative edge weights, can’t do better than
1

17-15: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

We can now add another vertex to our known list ...

17-16: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

How do we know that we could not get to B
cheaper by going through D?

17-17: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

How do we know that we could not get to B
cheaper by going through D?

Costs 1 to get to D

Costs at least 2 to get anywhere from D
Cost at least (1+2 = 3) to get to B through D

17-18: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

Next node we can add ...

17-19: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

3

(We also could have added E for this step)

Next vertex to add to Known ...

17-20: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

3

3

Cost to add F is 8 (through C)

Cost to add G is 5 (through D)

17-21: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

3

3

5

Last node ...

17-22: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

3

3

5

6

We now know the length of the shortest path from
A to all other vertices in the graph

17-23: Dijkstra’s Algorithm

Keep a table that contains, for each vertex

Is the distance to that vertex known?

What is the best distance we’ve found so far?

Repeat:

Pick the smallest unknown distance

mark it as known

update the distance of all unknown neighbors of
that node

Until all vertices are known

17-24: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A false 0

B false ∞

C false ∞

D false ∞

E false ∞

F false ∞

17-25: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B false 7

C false 5

D false ∞

E false ∞

F false 1

17-26: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B false 7

C false 5

D false 8

E false 3

F true 1

17-27: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B false 7

C false 4

D false 8

E true 3

F true 1

17-28: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B false 5

C true 4

D false 6

E true 3

F true 1

17-29: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B true 5

C true 4

D false 6

E true 3

F true 1

17-30: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B true 5

C true 4

D true 6

E true 3

F true 1

17-31: Dijkstra’s Algorithm

After Dijkstra’s algorithm is complete:

We know the length of the shortest path

We do not know what the shortest path is

How can we modify Dijstra’s algorithm to compute
the path?

17-32: Dijkstra’s Algorithm

After Dijkstra’s algorithm is complete:

We know the length of the shortest path

We do not know what the shortest path is

How can we modify Dijstra’s algorithm to compute
the path?

Store not only the distance, but the immediate
parent that led to this distance

17-33: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A false 0

B false ∞

C false ∞

D false ∞

E false ∞

F false ∞

G false ∞

17-34: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A true 0

B false 5 A

C false 3 A

D false ∞

E false ∞

F false ∞

G false ∞

17-35: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A true 0

B false 5 A

C true 3 A

D false 4 C

E false ∞

F false ∞

G false ∞

17-36: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A true 0

B false 5 A

C true 3 A

D true 4 C

E false 9 D

F false 9 D

G false 7 D

17-37: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A true 0

B true 5 A

C true 3 A

D true 4 C

E false 9 D

F false 9 D

G false 7 D

17-38: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A true 0

B true 5 A

C true 3 A

D true 4 C

E false 9 D

F false 8 G

G true 7 D

17-39: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A true 0

B true 5 A

C true 3 A

D true 4 C

E false 9 D

F true 8 G

G true 7 D

17-40: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A true 0

B true 5 A

C true 3 A

D true 4 C

E true 9 D

F true 8 G

G true 7 D

17-41: Dijkstra’s Algorithm

Given the “path” field, we can construct the
shortest path

Work backward from the end of the path

Follow the “path” pointers until the start node is
reached

We can use a sentinel value in the “path” field
of the initial node, so we know when to stop

17-42: Dijkstra Code

void Dijkstra(Edge G[], int s, tableEntry T[]) {

int i, v;

Edge e;

for(i=0; i<G.length; i++) {

T[i].distance = Integer.MAX_VALUE;

T[i].path = -1;

T[i].known = false;

}

T[s].distance = 0;

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance >

T[v].distance + e.cost) {

T[e.neighbor].distance = T[v].distance + e.cost;

T[e.neighbor].path = v;

}

}

}

}

17-43: Prim Code

void Prim(Edge G[], int s, tableEntry T[]) {

int i, v;

Edge e;

for(i=0; i<G.length; i++) {

T[i].distance = Integer.MAX_VALUE;

T[i].path = -1;

T[i].known = false;

}

T[s].distance = 0;

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance > e.cost) {

T[e.neighbor].distance = e.cost;

T[e.neighbor].path = v;

}

}

}

}

17-44: Dijkstra Running Time

If minUnknownVertex(T) is calculated by doing a
linear search through the table:

Each minUnknownVertex call takes time Θ(|V |)
Called |V | times – total time for all calls to

minUnkownVertex: Θ(|V |2)

If statement is executed |E| times, each time

takes time O(1)

Total time: O(|V |2 + |E|) = O(|V |2).

17-45: Dijkstra Running Time

If minUnknownVertex(T) is calculated by inserting
all vertices into a min-heap (using distances as
key) updating the heap as the distances are
changed

Each minUnknownVertex call tatkes time
Θ(lg |V |)

Called |V | times – total time for all calls to

minUnknownVertex: Θ(|V | lg |V |)

If statement is executed |E| times – each time

takes time O(lg |V |), since we need to update
(decrement) keys in heap

Total time:
O(|V | lg |V |+ |E| lg |V |) ∈ O(|E| lg |V |)

17-46: Dijkstra Running Time

If minUnknownVertex(T) is calculated by inserting
all vertices into a Fibonacci heap (using distances
as key) updating the heap as the distances are
changed

Each minUnknownVertex call takes amortized
time Θ(lg |V |)

Called |V | times – total amortized time for all

calls to minUnknownVertex: Θ(|V | lg |V |)

If statement is executed |E| times – each time

takes amortized time O(1), since decrementing

keys takes time O(1).

Total time: O(|V | lg |V |+ |E|)

17-47: Negative Edges

Does Dijkstra’s algorithm work when edge costs
can be negative?

Give a counterexample!

What happens if there is a negative-weight cycle in
the graph?

17-48: Bellman-Ford

Bellman-Ford allows us to calculate shortest paths
in graphs with negative edge weights, as long as
there are no negative-weight cycles

As a bonus, we will also be able to detect
negative-weight cycles

17-49: Bellman-Ford

For each node v, maintiain:

A “distance estimate” from source to v, d[v]

Parent of v, π[v], that gives this distance
estimate

Start with d[v] =∞, π[v] = nil for all nodes

Set d[source] = 0

udpate estimates by “relaxing” edges

17-50: Bellman-Ford

Relaxing an edge (u, v)

See if we can get a better distance estimate for
v by going thorugh u

Relax(u,v,w)
if d[v] > d[u] + w(u, v)

d[v]← d[u] + w(u, v)
π[v]← u

17-51: Bellman-Ford

Relax all edges edges in the graph (in any order)

Repeat until relax steps cause no change

After first relaxing, all optimal paths from source
of length 1 are computed

After second relaxing, all optimal paths from
source of length 2 are computed

after |V | − 1 relaxing, all optimal paths of length

|V | − 1 are computed

If some path of length |V | is cheaper than a

path of length |V | − 1 that means ...

17-52: Bellman-Ford

Relax all edges edges in the graph (in any order)

Repeat until relax steps cause no change

After first relaxing, all optimal paths from source
of length 1 are computed

After second relaxing, all optimal paths from
source of length 2 are computed

after |V | − 1 relaxing, all optimal paths of length

|V | − 1 are computed

If some path of length |V | is cheaper than a

path of length |V | − 1 that means ...
Negative weight cycle

17-53: Bellman-Ford

BellamanFord(G, s)
Initialize d[], π[]
for i← 1 to |V | − 1 do

for each edge (u, v) ∈ G do
if d[v] > d[u] + w(u, v)

d[v]← d[u] + w(u, v)
π[v]← u

for each edge (u, v) ∈ G do
if d[v] > d[u] + w(u, v)

return false
return true

17-54: Bellman-Ford

Running time:

Each iteration requires us to relax all |E| edges

Each single relaxation takes time O(1)

|V | − 1 iterations (|V | if we are checking for
negative weight cycles)

Total running time O(|V | ∗ |E|)

17-55: Shortest Path/DAGs

Finding Single Source Shorest path in a Directed,
Acyclic graph

Very easy! How can we do this quickly?

17-56: Shortest Path/DAGs

Finding Single Source Shorest path in a Directed,
Acyclic graph

Very easy!

How can we do this quickly?

Do a topological sort

Relax edges in topological order

We’re done!

17-57: All-Source Shortest Path

What if we want to find the shortest path from all
vertices to all other vertices?

How can we do it?

17-58: All-Source Shortest Path

What if we want to find the shortest path from all
vertices to all other vertices?

How can we do it?

Run Dijktra’s Algorithm V times

How long will this take?

17-59: All-Source Shortest Path

What if we want to find the shortest path from all
vertices to all other vertices?

How can we do it?

Run Dijktra’s Algorithm V times

How long will this take?

Θ(V 2 lg V + V E) (using Fibonacci heaps)
Doesn’t work if there are negative edges!
Running Bellman-Ford V times (which does
work with negative edges) takes time

O(V 2E) – which is Θ(V 4) for dense graphs

17-60: Multi-Source Shortest Path

Let L(m)[i, j] (in text, l
(m)
i,j) be cost of the shortest

path from i to j that contains at most m edges

If m = 0, there is a shortest path from i to j with no
edges iff i = j

L(0)[i, j] =

{

0 if i = j

∞ otherwise

How can we calculate Lm[i, j] recursively?

17-61: Multi-Source Shortest Path

Let L(m)[i, j] (in text, l
(m)
i,j) be cost of the shortest

path from i to j that contains at most m edges

L(0)[i, j] =

{

0 if i = j

∞ otherwise

How can we calculate Lm[i, j] recursively?

L(m)[i, j] = min

(

L(m−1)[i, j], min
1≤k≤n

(L(m−1)[i, k] + wkj)

)

= min
1≤k≤n

(L(m−1)[i, k] + wkj)

17-62: Multi-Source Shortest Path

Create L(m+1) from L(m):

Extend-Shortest-Paths(L,W)
n← rows[L]
L′ ← new n× n matrix
for i← 1 to n do

for j ← 1 to n do
L′[i, j]←∞
for k ← 1 to n do

L′[i, j]← min(L′[i, j], L[i, k] +W [k, j])
return L′

17-63: Multi-Source Shortest Path

Need to calculate L(n−1)

Why L(n−1), and not L(n) or L(n+1)?

All-Pairs-Shortest-Paths(W)
n← rows[W]

L(1) ← W
for m← 2 to n− 1 do

L(m) ←Extend-Shortest-Path(L(m−1),W)

return L(n−1)

17-64: Multi-Source Shortest Path

We really don’t care about any of the L matrices

except L(n−1)

We can save some time by not calculating all of the

intermediate matrices L(1) . . . L(n−2)

Note that Extend-Shortest-Path looks a lot like
matrix multiplication

17-65: Multi-Source Shortest Path

Square-Matrix-Multiply(A,B)
n← rows[A]
C ← new n× n matrix
for i← 1 to n do

for j ← 1 to n do
C[i, j]← 0
for k ← 1 to n do

C[i, j]← C[i, j] + A[i, k] ∗B[k, j])
return L′

Replace min with +, + with ∗

17-66: Multi-Source Shortest Path

Using our “Extend-Multiplication”

Replace + with min, ∗ with +

L(1) = L(0) ∗W = W

L(1) = L(1) ∗W = W 2

L(2) = L(2) ∗W = W 3

L(3) = L(3) ∗W = W 4

...

L(n−1) = L(n−2) ∗W = W n−1

17-67: Multi-Source Shortest Path

L(1) = W

L(2) = W 2 = W ∗W

L(4) = W 4 = W 2 ∗W 2

L(8) = W 8 = W 4 ∗W 4

...

L2⌈lg(n−1)⌉

= L2⌈lg(n−1)⌉

= L2⌈lg(n−1)⌉
−1 ∗ L2⌈lg(n−1)⌉

−1

Since L(n−1) = L(n) = L(n+1) = . . ., it doesn’t
matter if n is an exact power of 2 – we just need to

get to at least L(n−1), not hit it exactly

17-68: Multi-Source Shortest Path

All-Pairs-Shortest-Paths(W)
n← rows[W]

L(1) ← W
m← 1
while m < n− 1 do

L(2m) ←Extend-Shortest-Path(L(m), L(m))
m→ m ∗ 2

return L(m)

17-69: Multi-Source Shortest Path

Each call to Extend-Shortest-Path takes time:

of calls to Extend-Shortest-Path:

Total time:

17-70: Multi-Source Shortest Path

Each call to Extend-Shortest-Path takes time
Θ(|V |3)

of calls to Extend-Shortest-Path: Θ(lg |V |)

Total time: Θ(|V |3 lg |V |)

17-71: Floyd’s Algorithm

Alternate solution to all pairs shortest path

Yields Θ(V 3) running time for all graphs

17-72: Floyd’s Algorithm

Vertices numbered from 1..n

k-path from vertex v to vertex u is a path whose
intermediate vertices (other than v and u) contain
only vertices numbered k or less

0-path is a direct link

17-73: k-path Examples

1

2

3

4

5

1

1

1

1

7

35

5

Shortest 0-path from 1 to 5: 5

Shortest 1-path from 1 to 5: 5

Shortest 2-path from 1 to 5: 4

Shortest 3-path from 1 to 5: 4

Shortest 4-path from 1 to 5: 3

17-74: k-path Examples

1

2

3

4

5

1

1

1

1

7

35

5

Shortest 0-path from 1 to 3: 7

Shortest 1-path from 1 to 3: 7

Shortest 2-path from 1 to 3: 6

Shortest 3-path from 1 to 3: 6

Shortest 4-path from 1 to 3: 6

Shortest 5-path from 1 to 3: 4

17-75: Floyd’s Algorithm

Shortest n-path = Shortest path

Shortest 0-path:

∞ if there is no direct link

Cost of the direct link, otherwise

17-76: Floyd’s Algorithm

Shortest n-path = Shortest path

Shortest 0-path:

∞ if there is no direct link

Cost of the direct link, otherwise

If we could use the shortest k-path to find the
shortest (k + 1) path, we would be set

17-77: Floyd’s Algorithm

Shortest k-path from v to u either goes through
vertex k, or it does not

If not:

Shortest k-path = shortest (k − 1)-path

If so:

Shortest k-path = shortest k − 1 path from v to
k, followed by the shortest k − 1 path from k to
w

17-78: Floyd’s Algorithm

If we had the shortest k-path for all pairs (v,w), we
could obtain the shortest k + 1-path for all pairs

For each pair v, w, compare:
length of the k-path from v to w
length of the k-path from v to k appended to
the k-path from k to w

Set the k + 1 path from v to w to be the
minimum of the two paths above

17-79: Floyd’s Algorithm

Let Dk[v, w] be the length of the shortest k-path
from v to w.

D0[v, w] = cost of arc from v to w (∞ if no direct
link)

Dk[v, w] = MIN(Dk−1[v, w], Dk−1[v, k] +Dk−1[k, w])

Create D0, use D0 to create D1, use D1 to create
D2, and so on – until we have Dn

17-80: Floyd’s Algorithm

Use a doubly-nested loop to create Dk from Dk−1

Use the same array to store Dk−1 and Dk – just
overwrite with the new values

Embed this loop in a loop from 1..k

17-81: Floyd’s Algorithm

Floyd(Edge G[], int D[][]) {
int i,j,k

Initialize D, D[i][j] = cost from i to j

for (k=0; k<G.length; k++;
for(i=0; i<G.length; i++)

for(j=0; j<G.length; j++)
if ((D[i][k] != Integer.MAX_VALUE) &&

(D[k][j] != Integer.MAX_VALUE) &&
(D[i][j] > (D[i,k] + D[k,j])))

D[i][j] = D[i][k] + D[k][j]
}

17-82: Floyd’s Algorithm

We’ve only calculated the distance of the shortest
path, not the path itself

We can use a similar strategy to the PATH field for
Dijkstra to store the path

We will need a 2-D array to store the paths:
P[i][j] = last vertex on shortest path from i to j

17-83: Johnson’s Algorithm

Yet another all-pairs shortest path algorithm

Time O(|V |2 lg |V |+ |V | ∗ |E|)

If graph is dense (|E| ∈ Θ(|V |2)) , no better
than Floyd

If graph is sparse, better than Floyd

Basic Idea: Run Dijkstra |V | times

Need to modify graph to remove negative edges

17-84: Johnson’s Algorithm

Reweighing Graph

Create a new weight function ŵ, such that:
For all pairs of vertices u, v ∈ V , a path from
u to v is a shortest path using w if and only if
it is also a shortest path using ŵ.

For all edges (u, v), ŵ(u, v) is non-negative

17-85: Johnson’s Algorithm

Reweighing Graph

First Try:

Smallest weight is −w, for some positive w

Add w to each edge in the graph

Is this a valid reweighing?

17-86: Johnson’s Algorithm

Reweighing Graph

First Try:

Smallest weight is −w, for some positive w

Add w to each edge in the graph

Is this a valid reweighing?

B C

A D

5

5 -8

4

17-87: Johnson’s Algorithm

Reweighing Graph

Second Try:

Define some function on vertices h(v)

ŵ(u, v) = w(u, v) + h(u)− h(v)

Does this preserve shortest paths?

17-88: Johnson’s Algorithm

Let p = v0, v1, v2, . . . , vk be a path in G

Cost of p under ŵ:

ŵ(p) =
k
∑

i=1

ŵ(vi−1, vi)

=
k
∑

i=1

(w(vi−1, vi) + h(vi−1)− h(vi))

=

(

k
∑

i=1

(w(vi−1, vi)) + h(v0)− h(vk)

)

= w(p) + h(v0)− h(vk)

17-89: Johnson’s Algorithm

So, if we can come up with a function h(V) such

that w(u, v) + h(u)− h(v) is positive for all edges

(u, v) in the graph, we’re set

Use the function h to reweigh the graph

Run Dijkstra’s algorithm |V | times, starting from
each vertex on the new graph, calculating
shortest paths

Shortest path in new graph = shortest path in
old graph

17-90: Johnson’s Algorithm

Add a new vertex s to the graph

Add an edge from s to every other vertex, with cost
0

Find the shortest path from s to every other vertex
in the graph

h(v) = δ(s, v), the cost of the shortest path from s
to v

Using this h(V) function, all new weights are
guaranteed to be non-negative

17-91: Johnson’s Algorithm

h(v) = δ(s, v), the cost of the shortest path from s
to v

ŵ(u, v) = w(u, v) + h(u)− h(v)

= w(u, v) + δ(s, u)− δ(s, v)

Since δ is a shortest path,

δ(s, v) ≤ δ(s, u) + w(u, v)

0 ≤ w(u, v) + δ(s, u)− δ(s, v)

17-92: Johnson’s Algorithm

A

B

CD

E

3
-2

-3
-2

2

5

3

2

4

1

17-93: Johnson’s Algorithm

A

B

CD

E

3
-2

-3
-2

2

5

3

2

4

1

s

0 0
0

0

0

17-94: Johnson’s Algorithm

A

B

CD

E

3
-2

-3
-2

2

5

3

2

4

1

s

0 0
0

0

0

-3

-2

-1

0

0

17-95: Johnson’s Algorithm

A

B

CD

E

3/4
-2/0

-3/0
-2/0

2/2

5/4

3/5

2/1

4/1

1/0

-3

-2

-1

0

0

17-96: Johnson’s Algorithm

A

B

CD

E

4
0

0
0

2

4

5

1

1

0

-3

-2

-1

0

0

17-97: Johnson’s Algorithm

Johnson(G)
Add s to G, with 0 weight edges to all vertices
if Bellman-Ford(G, s) = FALSE

There is a negative weight cycle, fail
for each vertex v ∈ G

set h(v)← δ(s, v) from B-F
for each edge (u, v) ∈ G

ŵ(u, v) = w(u, v) + h(u)− h(v)
for each vertex u ∈ G

run Dijkstra(G, ŵ, u) to compute δ̂(u, v)

δ(u, v) = δ̂(u, v) + h(v)− h(u)

	{small lecturenumber -	heblocknumber :} Computing Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shortest Path Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shortest Path Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra Codeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prim Codeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra Running Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra Running Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra Running Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Negative Edgesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Bellman-Fordaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Bellman-Fordaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Bellman-Fordaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Bellman-Fordaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Bellman-Fordaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Bellman-Fordaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Bellman-Fordaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shortest Path/DAGsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shortest Path/DAGsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} All-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} All-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} All-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multi-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multi-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multi-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multi-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multi-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multi-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multi-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multi-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multi-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multi-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multi-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} k-path Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} k-path Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Johnson's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Johnson's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Johnson's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Johnson's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Johnson's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Johnson's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Johnson's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Johnson's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Johnson's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Johnson's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Johnson's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Johnson's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Johnson's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Johnson's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Johnson's Algorithmaddtocounter {blocknumber}{1}

