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17-0: Computing Shortest Path

® Given a directed weighted graph & (all weights
non-negative) and two vertices x and vy, find the
least-cost path from x to y in G.

* Undirected graph is a special case of a directed
graph, with symmetric edges
® | east-cost path may not be the path containing the
fewest edges
e “shortest path” == “least cost path”

* “path containing fewest edges” = “path
containing fewest edges”




17-1: Shortest Path Example

® Shortest path # path containing fewest edges

B 2
/*4\‘0
5 1

A

E

® Shortest Path from Ato E?




17-2: Shortest Path Example

® Shortest path # path containing fewest edges

B 2
/*4\‘0
5 1

A

E

® Shortest Path from A to E:
e AB C,DE




17-3: Single Source Shortest Path

® Jo find the shortest path from vertex x to vertex v,
we need (worst case) to find the shortest path from
x to all other vertices in the graph

e Why?




17-4: Single Source Shortest Path

® Jo find the shortest path from vertex x to vertex v,
we need (worst case) to find the shortest path from
x to all other vertices in the graph

* To find the shortest path from x to y, we need
to find the shortest path from x to all nodes on
the path from x to y

* Worst case, all nodes will be on the path




17-5: Single Source Shortest Path

® |f all edges have unit weight ...




17-6: Single Source Shortest Path

® |f all edges have unit weight,

® We can use Breadth First Search to compute the
shortest path

® BFS Spanning Tree contains shortest path to each
node in the graph

e Need to do some more work to create & save
BFS spanning tree

® \When edges have differing weights, this obviously
will not work




17.7: Single Source Shortest Path

® General ldea for finding Single Source Shortest
Path

e Start with the distance estimate to each node
(except the source) as oo

* Repeatedly relax distance estimate until you
can relax no more

e To relax and edge (u, v)
- dist(v) > dist(u) + cost((u, v))
- Set dist(v) < dist(u) + cost((u, v))




17-8: Single Source Shortest Path

® Dijkstra’s algorithm
* Relax edges from source

® Remarkably similar to Prim’s MST algorith

* Pretty neat — algorithms are doing different
things, but code is almost identical




17-0: Single Source Shortest Path

® Divide the vertices into two sets:

* Vertices whose shortest path from the initial
vertex is known

* Vertices whose shortest path from the initial
vertex Is not known

® |nitially, only the initial vertex is known

® Move vertices one at a time from the unknown set
to the known set, until all vertices are known




17-10: Single Source Shortest Path

/\/\
\/\/

® Start with the vertex A




17-11: Single Source Shortest Path

avasi
\/\/z

® Known vertices are circled in red
® We can now extend the known set by 1 vertex




17-12: Single Source Shortest Path
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® Why is it safe to add D, with cost 1?




17-13: Single Source Shortest Path
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® Why is it safe to add D, with cost 1?

e Could we do better with a more roundabout
path?




17-14: Single Source Shortest Path
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® Why is it safe to add D, with cost 17
e Could we do better with a more roundabout
path?
* No —to get to any other node will cost at least 1

* No negative edge weights, can’t do better than
!




17-15: Single Source Shortest Path
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® \We can now add another vertex to our known list ...




17-16: Single Source Shortest Path

AV ASE
N NA

® How do we know that we could not get to B
cheaper by going through D?




17-17: Single Source Shortest Path

NN
DAV

® How do we know that we could not get to B

cheaper by going through D?
e Costs 1togetto D

* Costs at least 2 to get anywhere from D
-+ Cost at least (1+2 = 3) to get to B through D




17-18: Single Source Shortest Path

AV ASE
N NA

® Next node we can add ...




17-19: Single Source Shortest Path

/\/\ o | 3
\/\/z

® (We also could have added E for this step)
® Next vertex to add to Known ...




17-20: Single Source Shortest Path

/\/\ | ;
\/ \/ :

® Costtoadd Fis 8 (through C)
® Costto add G is 5 (through D)




17-21: Single Source Shortest Path
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® | ast node ...




17-22: Single Source Shortest Path

Node |Di st ance

A 0

B 2
/ \/\ c | 3

D 1

E 3
\\/\/ i

G 6

® We now know the length of the shortest path from
A to all other vertices in the graph




17-23: Dijkstra’s Algorithm

® Keep a table that contains, for each vertex
e |s the distance to that vertex known?
e What is the best distance we’ve found so far?

® Repeat:
e Pick the smallest unknown distance

e mark it as known

e update the distance of all unknown neighbors of
that node

® Until all vertices are known




17-24: Dijkstra’s Algorithm Example
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17-25: Dijkstra’s Algorithm Example
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17-26: Dijkstra’s Algorithm Example
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17-27: Dijkstra’s Algorithm Example

B1 » D

Node | Known | Distance
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17-28: Dijkstra’s Algorithm Example

B1 » D

Node | Known | Distance
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17-20: Dijkstra’s Algorithm Example

B1 » D

Node | Known | Distance
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17-30: Dijkstra’s Algorithm Example

B1 » D
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17-31: Dijkstra’s Algorithm

® After Dijkstra’s algorithm is complete:
* We know the length of the shortest path
 We do not know what the shortest path is

® How can we modify Dijstra’s algorithm to compute
the path?




17-32: Dijkstra’s Algorithm

® After Dijkstra’s algorithm is complete:
* We know the length of the shortest path
 We do not know what the shortest path is
® How can we modify Dijstra’s algorithm to compute
the path?

e Store not only the distance, but the immediate
parent that led to this distance




17-33: Dijkstra’s Algorithm Example
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17-34: Dijkstra’s Algorithm Example
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17-35: Dijkstra’s Algorithm Example

Node | Known | Dist | Path

/ \ / \ A true 0
\ / \ / B | false | 5 | A
C true 3 A
D false 4 C

E false 00

= false 00

G false | oo




17-36: Dijkstra’s Algorithm Example

Node | Known | Dist | Path
/ \ / \ A true 0
\ / \ / B | false | 5 | A
C true 3 A
D true 4 C
E false 9 D
= false 9 D
G false 7 D




17-37: Dijkstra’s Algorithm Example

Node | Known | Dist | Path
/ \ / \ A true 0
\ / \ / B true | 5 | A
C true 3 A
D true 4 C
E false 9 D
= false 9 D
G false 7 D




17-38: Dijkstra’s Algorithm Example

Node | Known | Dist | Path

/ \ / \ A true 0

\ / \ / B true | 5 | A
C true 3 A
D true 4 C
= false 9 D
F false 8 G
G [z 7 D




17-30: Dijkstra’s Algorithm Example

Node | Known | Dist | Path

/ \ / \ A true 0

\ / \ / B true | 5 | A
C true 3 A
D true 4 C
= false 9 D
F true 8 G
G [z 7 D




17-40: Dijkstra’s Algorithm Example

Node | Known | Dist | Path

/ \ / \ A true 0

\ / \ / B true | 5 | A
C true 3 A
D true 4 C
= true 9 D
F true 8 G
G [z 7 D




17-41: Dijkstra’s Algorithm

® Given the “path” field, we can construct the
shortest path

 Work backward from the end of the path

* Follow the “path” pointers until the start node is
reached
- We can use a sentinel value in the “path” field
of the initial node, so we know when to stop




17-42: Dijkstra Code

void Dijkstra(Edge G[], int s, tableEntry T[]) {
int i, v;
Edge e;
for(i=0; i<G.length; i++) {
T[i] .distance = Integer.MAX_VALUE;
T[i] .path = -1;
T[i] .known = false;
+
T[s] .distance = 0;
for (i=0; i < G.length; i++) {
v = minUnknownVertex(T) ;
T[v] .known = true;
for (e = G[v]; e !'= null; e = e.next) {
if (T[e.neighbor].distance >
T[v] .distance + e.cost) {
Tl[e.neighbor] .distance = T[v].distance + e.cost;
T[e.neighbor] .path = v;
+




17-a3: Prim Code

void Prim(Edge G[], int s, tableEntry T[]) {
int i, v;
Edge e;
for(i=0; i<G.length; i++) {
T[i] .distance = Integer.MAX_VALUE;
T[i] .path = -1;
T[i] .known = false;
+
T[s] .distance = 0;
for (i=0; i < G.length; i++) {
v = minUnknownVertex(T) ;
T[v] .known = true;
for (e = G[v]; e !'= null; e = e.next) {
if (T[e.neighbor].distance > e.cost) {
T[e.neighbor] .distance = e.cost;
T[e.neighbor] .path = v;
+




17-.44: Dijkstra Running Time

® |[f minUnknownVertex(T) is calculated by doing a
linear search through the table:

e Each minUnknownVertex call takes time ©(|V|)
- Called |V'| times — total time for all calls to
minUnkownVertex: ©(|V|?)

e |f statement is executed | E| times, each time
takes time O(1)

 Total time: O(|V|* + |E|) = O(|V[?).




17.45: Dijkstra Running Time

® |[f minUnknownVertex(T) is calculated by inserting
all vertices into a min-heap (using distances as
key) updating the heap as the distances are
changed
 Each minUnknownVertex call tatkes time
O(lg|V])
- Called |V/| times — total time for all calls to
minUnknownVertex: ©(|V|1g|V|)
e If statement is executed | E| times — each time

takes time O(lg |V'|), since we need to update
(decrement) keys in heap

e Total time:
O(|V|ig|V]+ |E|lg|V]|) € O(|E|lg|V])




17.46: Dijkstra Running Time

® |[f minUnknownVertex(T) is calculated by inserting
all vertices into a Fibonacci heap (using distances
as key) updating the heap as the distances are

changed
e Each minUnknownVertex call takes amortized
time ©(lg |V|)
- Called |V'| times — total amortized time for all
calls to minUnknownVertex: O(|V|1g [V])

e If statement is executed | E| times — each time
takes amortized time O(1), since decrementing

keys takes time O(1).
e Total time: O(|V|1g |V | + |E|)




17.47: Negative Edges

® Does Dijkstra’s algorithm work when edge costs
can be negative?

e Give a counterexample!

® What happens if there is a negative-weight cycle in
the graph?




17-48: Bellman-Ford

® Bellman-Ford allows us to calculate shortest paths
In graphs with negative edge weights, as long as
there are no negative-weight cycles

® As a bonus, we will also be able to detect
negative-weight cycles




17-49: Bellman-Ford

® [or each node v, maintiain:
A “distance estimate” from source to v, d|v]

e Parent of v, w|v], that gives this distance
estimate

® Start with d|v] = oo, w[v] = nil for all nodes
® Set d|source| =0
® udpate estimates by “relaxing” edges




17-50: Bellman-Ford

® Relaxing an edge (u, v)

e See if we can get a better distance estimate for
v by going thorugh u

Relax(u,v,w)
if dlv] > dlu] + w(u,v)
dlv] < dlu| + w(u, v)
m|v] < u




17-51: Bellman-Ford

® Relax all edges edges in the graph (in any order)

® Repeat until relax steps cause no change

» After first relaxing, all optimal paths from source
of length 1 are computed

e After second relaxing, all optimal paths from
source of length 2 are computed

e after || — 1 relaxing, all optimal paths of length
V| — 1 are computed

e |f some path of length |V| is cheaper than a
path of length [V'| — 1 that means ...




17-52: Bellman-Ford

® Relax all edges edges in the graph (in any order)

® Repeat until relax steps cause no change

» After first relaxing, all optimal paths from source
of length 1 are computed

e After second relaxing, all optimal paths from
source of length 2 are computed

e after |V| — 1 relaxing, all optimal paths of length
V| — 1 are computed

e |f some path of length |V| is cheaper than a

path of length [V'| — 1 that means ...
- Negative weight cycle




17-53: Bellman-Ford

BellamanFord(G, s)
Initialize d|], ||
fori < 1to|V|—1do
for each edge (u,v) € G do
if dv] > du] + w(u,v)
dlv] < dlu| + w(u,v)
m|v] < u
for each edge (u,v) € G do
if djv] > dlu] + w(u,v)
return false
return true

1




17-54: Bellman-Ford

® Running time:
e Each iteration requires us to relax all | E'| edges
» Each single relaxation takes time O(1)

e |V| — literations (|V| if we are checking for
negative weight cycles)

e Total running time O(|V'| % |E|)




17-55: Shortest Path/DAGs

® Finding Single Source Shorest path in a Directed,
Acyclic graph

® Very easy! How can we do this quickly?




17-56: Shortest Path/DAGs

® Finding Single Source Shorest path in a Directed,
Acyclic graph
® \ery easy!
® How can we do this quickly?
* Do a topological sort
* Relax edges in topological order
 We're done!




17-57: All-Source Shortest Path

® What if we want to find the shortest path from all
vertices to all other vertices?

® How can we do it?




17-58: All-Source Shortest Path

® What if we want to find the shortest path from all
vertices to all other vertices?
® How can we do it?
* Run Dijktra’s Algorithm V' times
 How long will this take?




17-59: All-Source Shortest Path

® What if we want to find the shortest path from all
vertices to all other vertices?

® How can we do it?
* Run Dijktra’s Algorithm V' times
 How long will this take?
e O(V?1gV + V E) (using Fibonacci heaps)
- Doesn’t work if there are negative edges!

Running Bellman-Ford V' times (which does
work with negative edges) takes time

O(V*E) —which is ©(V*) for dense graphs




17-60: Multi-Source Shortest Path

® Let L], 4] (in text, I"”) be cost of the shortest

J 7,7]
path from ¢ to ;7 that contains at most m edges

® |[f m = 0, there is a shortest path from ¢ to 7 with no
edgesiff 1 = 3

0 ifi=

LO3, 5] = .
i) ioo otherwise

® How can we calculate L™t j] recursively?




17-61: Multi-Source Shortest Path

® Let L], 4] (in text, I"”) be cost of the shortest

J 7,7]
path from ¢ to ;7 that contains at most m edges

0 ifi=

L, 5] = .
7] <\oo otherwise

® How can we calculate L™t j] recursively?

L3} = min (L0701, min (DK + )

1<k<n

= min (L™ V[, k] + wy;)

1<k<n




17-62: Multi-Source Shortest Path

® Create L™V from L(™:

Extend-Shortest-Paths(L, IV)
n <— rows| L]
L' < new n x n matrix
fore. < 1ton do
for ) < 1ton do
L'le, j] = o0
for k < 1ton do
L'li, 4] « min(L'[i, ], Lli, K] + Wk, 5])
return L’




17-63: Multi-Source Shortest Path

® Need to calculate L™V
e Why L™=V and not L™ or L"+1)?

All-Pairs-Shortest-Paths(11)
n <— rows[W]
LW «— W
form <+« 2ton —1do
L™ « Extend-Shortest-Path(L™1 W)
return LY




17-64: Multi-Source Shortest Path

® We really don’t care about any of the L matrices
except L("~V

® \We can save some time by not calculating all of the
intermediate matrices LY ... L("=2)

® Note that Extend-Shortest-Path looks a [ot like
matrix multiplication




17-65: Multi-Source Shortest Path

Square-Matrix-Multiply(A, B)
n <— rows[A]
C' < new n X n matrix
for: < 1tondo
for ) < 1ton do
Cli, 7] < 0
for k + 1ton do
Cli, j] + Cli,j) + Ali, k] = B[k, 5])
return L’

® Replace min with +, + with x




17-66: Multi-Source Shortest Path

® Using our “Extend-Multiplication”
* Replace + with min, x with +

LY =LOxWwW = W
LYV =LWxWwW = W?
L@ — 1@ ew = W3
LB — 16)




17-67: Multi-Source Shortest Path

LYW=w
LP=W* = W«W
LYW =W* = W?xW?
L =W% = W*xW*
F2MED] ol ool o]y
® Since L"V = [ = [»+) — it doesn’t

matter if n is an exact power of 2 — we just need to
get to at least L™V, not hit it exactly




17-68: Multi-Source Shortest Path

All-Pairs-Shortest-Paths(11)

n <— rows[W]

LW «— W

m <+ 1

while m <n —1do
L®m) ¢ Extend-Shortest-Path(L™), L)
m — 1M *x 2

return L™




17-69: Multi-Source Shortest Path

® Each call to Extend-Shortest-Path takes time:
® # of calls to Extend-Shortest-Path:
® Jotal time:




17-70: Multi-Source Shortest Path

® EFach call to Extend-Shortest-Path takes time
O(|V[°)

® # of calls to Extend-Shortest-Path: ©(lg |V|)
® Total time: O(|V [*1g |V|)




17.71: Floyd’s Algorithm

® Alternate solution to all pairs shortest path
® Yields ©(V?) running time for all graphs




17.72: Floyd’s Algorithm

® \/ertices numbered from 1..n

® k-path from vertex v to vertex u is a path whose
intermediate vertices (other than v and u) contain
only vertices numbered £ or less

® (O-path is a direct link




17.73: K-path Examples

=

/“1

3
nortest O-pat
nortest 1-pat
nortest 2-pat
nortest 3-pat

nortest 4-pat

/

4
ll
5

N from
N from T
N from T
N from 1

N from 1

to5: 5
to5: 5
to 5: 4
to 5: 4
to 5: 3




17.74: K-path Examples

=
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nortest O-pat
nortest 1-pat
nortest 2-pat
nortest 3-pat
nortest 4-pat

nortest 5-pat

/

4
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N from T
N from 1
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N from 1

to 3:
to 3:
to 3:
to 3:
to 3:
to 3:

~ OO O O N N




17.75: Floyd’s Algorithm

® Shortest n-path = Shortest path

® Shortest 0-path:
e o If there is no direct link
e Cost of the direct link, otherwise




17.76: Floyd’s Algorithm

® Shortest n-path = Shortest path

® Shortest 0-path:
e o If there is no direct link
e Cost of the direct link, otherwise

® |f we could use the shortest k-path to find the
shortest (k + 1) path, we would be set




17.77: Floyd’s Algorithm

® Shortest k-path from v to u either goes through
vertex k, or it does not
® |f not:
e Shortest k-path = shortest (k — 1)-path

® |f so:

e Shortest k-path = shortest £ — 1 path from v to
k, followed by the shortest £ — 1 path from £ to
w




17.78: Floyd’s Algorithm

® |f we had the shortest k-path for all pairs (v,w), we
could obtain the shortest k& + 1-path for all pairs

e For each pair v, w, compare:
- length of the k-path from v to w
- length of the k-path from v to k appended to
the k-path from £k to w

e Setthe k + 1 path from v to w to be the
minimum of the two paths above




17.79: Floyd’s Algorithm

® et D.|v, w| be the length of the shortest k-path

from v to w.
® Dylv, w| = cost of arc from v to w (oo if no direct
link)

® Dilv,w] =MIN(D_i|v,w|, Dy_1|v, k| + Dy_1|k, w])

® Create D, use D, to create D, use D, to create
D,, and so on — until we have D,




17-80: Floyd’s Algorithm

® Use a doubly-nested loop to create D, from D,,_;

* Use the same array to store D,_; and D, — just
overwrite with the new values

® Embed this loop in a loop from 1..k




17-81: Floyd’s Algorithm

Floyd(Edge G[I, int D[I[]) A
int 1,3,k

Initialize D, D[i][j] = cost from i to j
for (k=0; k<G.length; k++;

for(i=0; i<G.length; i++)
for(j=0; j<G.length; j++)

if ((D[i]J[k] '= Integer .MAX_VALUE) &&
(D[k] [j] '= Integer.MAX_VALUE) &&
(D[i] [§] > (D[i,k] + DI[k,jl)))
D[i]l[j] = D[i]l[k] + D[k][j]




17-.82: Floyd’s Algorithm

® We've only calculated the distance of the shortest
path, not the path itself

® We can use a similar strategy to the PATH field for
Dijkstra to store the path

* We will need a 2-D array to store the paths:
P[i][]] = last vertex on shortest path from i to |




17-83: Johnson’s Algorithm

® Yet another all-pairs shortest path algorithm
® Time O(|V]*Ig |V |+ |V|* |E|)

o If graph is dense (|E| € ©(|V]?)) , no better
than Floyd

 |f graph is sparse, better than Floyd
® Basic Idea: Run Dijkstra |V| times
* Need to modify graph to remove negative edges




17-.8a: Johnson’s Algorithm

® Reweighing Graph
e Create a new weight function w, such that:
- For all pairs of vertices u,v € V', a path from
u to v Is a shortest path using w if and only if
it is also a shortest path using w.
- For all edges (u, v), w(u, v) is non-negative




17.85: Johnson’s Algorithm

® Reweighing Graph
* First Try:
e Smallest weight is —w, for some positive w
 Add w to each edge in the graph
* |s this a valid reweighing?




17.86: Johnson’s Algorithm

® Reweighing Graph
* First Try:
e Smallest weight is —w, for some positive w
 Add w to each edge in the graph
* |s this a valid reweighing?

B 5 >C

R

A » D




17.87: Johnson’s Algorithm

® Reweighing Graph
e Second Try:
e Define some function on vertices h(v)
e w(u,v)=w(u,v)+ h(u) — h(v)
* Does this preserve shortest paths?




17.88: Johnson’s Algorithm

® letp =vy,v,0y,...,0;, be apathin G
® Cost of p under w:

k
wip) = > w(viy,v;)
1=1
k

— Z (w(v;_1,v;) + h(v,i_1) — h(v;))




17-.89: Johnson’s Algorithm

® So, if we can come up with a function A(V") such
that w(u,v) + h(u) — h(v) is positive for all edges
(u,v) in the graph, we're set
e Use the function A to reweigh the graph
* Run Dijkstra’s algorithm |V/| times, starting from

each vertex on the new graph, calculating
shortest paths

e Shortest path in new graph = shortest path in
old graph




17.90: Johnson’s Algorithm

® Add a new vertex s to the graph

® Add an edge from s to every other vertex, with cost
0

® Find the shortest path from s to every other vertex
in the graph

® h(v) = d(s,v), the cost of the shortest path from s
fov

e Using this h(V') function, all new weights are
guaranteed to be non-negative




17.91: Johnson’s Algorithm

® h(v) = d(s,v), the cost of the shortest path from s
o v

w(u,v) = w(u,v)+ h(u) — h(v)

® Since o is a shortest path,

6(s,v) < 6(s,u)+ w(u,v)
0 < w(u,v)+d(s,u) —0d(s,v)




17.92. Johnson’s Algorithm
A
PR
5
[

-2




17.93: Johnson’s Algorithm




17.92: Johnson’s Algorithm




17.95: Johnson’s Algorithm

A
3/ 4 -2/0
/7 \5/4
= 4/ 1 -
2/

-2/0\ 1/0

-3/ 0
2/ 2

D = C
3/5




17.96: Johnson’s Algorithm




17.97: Johnson’s Algorithm

Johnson(G)
Add s to GG, with 0 weight edges to all vertices
if Bellman-Ford(G, s) = FALSE
There is a negative weight cycle, falil
for each vertex v € G
set h(v) < d(s,v) from B-F
for each edge (u,v) € G
w(u,v) =w(u,v) + h(u) — h(v)
for each vertex u € G
run Dijkstra(G, w, u) to compute d(u, v)
o(u,v) = d(u,v) + h(v) — h(u)
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