
CS673-2016F-17 Shortest Path Algorithms 1

17-0: Computing Shortest Path

• Given a directed weighted graph G (all weights non-negative) and two vertices x and y, find the least-cost path

from x to y in G.

• Undirected graph is a special case of a directed graph, with symmetric edges

• Least-cost path may not be the path containing the fewest edges

• “shortest path” == “least cost path”

• “path containing fewest edges” = “path containing fewest edges”

17-1: Shortest Path Example

• Shortest path 6= path containing fewest edges

A

B

C

D

E

1

2

1

2

8

5

4

4

• Shortest Path from A to E?

17-2: Shortest Path Example

• Shortest path 6= path containing fewest edges

A

B

C

D

E

1

2

1

2

8

5

4

4

• Shortest Path from A to E:

• A, B, C, D, E

17-3: Single Source Shortest Path

CS673-2016F-17 Shortest Path Algorithms 2

• To find the shortest path from vertex x to vertex y, we need (worst case) to find the shortest path from x to all

other vertices in the graph

• Why?

17-4: Single Source Shortest Path

• To find the shortest path from vertex x to vertex y, we need (worst case) to find the shortest path from x to all

other vertices in the graph

• To find the shortest path from x to y, we need to find the shortest path from x to all nodes on the path from

x to y

• Worst case, all nodes will be on the path

17-5: Single Source Shortest Path

• If all edges have unit weight ...

17-6: Single Source Shortest Path

• If all edges have unit weight,

• We can use Breadth First Search to compute the shortest path

• BFS Spanning Tree contains shortest path to each node in the graph

• Need to do some more work to create & save BFS spanning tree

• When edges have differing weights, this obviously will not work

17-7: Single Source Shortest Path

• General Idea for finding Single Source Shortest Path

• Start with the distance estimate to each node (except the source) as∞

• Repeatedly relax distance estimate until you can relax no more

• To relax and edge (u, v)

• dist(v) > dist(u) + cost((u, v))

• Set dist(v)← dist(u) + cost((u, v))

17-8: Single Source Shortest Path

• Dijkstra’s algorithm

• Relax edges from source

• Remarkably similar to Prim’s MST algorith

• Pretty neat – algorithms are doing different things, but code is almost identical

17-9: Single Source Shortest Path

• Divide the vertices into two sets:

• Vertices whose shortest path from the initial vertex is known

CS673-2016F-17 Shortest Path Algorithms 3

• Vertices whose shortest path from the initial vertex is not known

• Initially, only the initial vertex is known

• Move vertices one at a time from the unknown set to the known set, until all vertices are known

17-10: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

• Start with the vertex A

17-11: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

• Known vertices are circled in red

• We can now extend the known set by 1 vertex

17-12: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

CS673-2016F-17 Shortest Path Algorithms 4

• Why is it safe to add D, with cost 1?

17-13: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

• Why is it safe to add D, with cost 1?

• Could we do better with a more roundabout path?

17-14: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

• Why is it safe to add D, with cost 1?

• Could we do better with a more roundabout path?

• No – to get to any other node will cost at least 1

• No negative edge weights, can’t do better than 1

17-15: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

• We can now add another vertex to our known list ...

CS673-2016F-17 Shortest Path Algorithms 5

17-16: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

• How do we know that we could not get to B cheaper by going through D?

17-17: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

• How do we know that we could not get to B cheaper by going through D?

• Costs 1 to get to D

• Costs at least 2 to get anywhere from D

• Cost at least (1+2 = 3) to get to B through D

17-18: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

• Next node we can add ...

CS673-2016F-17 Shortest Path Algorithms 6

17-19: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

3

• (We also could have added E for this step)

• Next vertex to add to Known ...

17-20: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

3

3

• Cost to add F is 8 (through C)

• Cost to add G is 5 (through D)

17-21: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

3

3

5

• Last node ...

CS673-2016F-17 Shortest Path Algorithms 7

17-22: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

3

3

5

6

• We now know the length of the shortest path from A to all other vertices in the graph

17-23: Dijkstra’s Algorithm

• Keep a table that contains, for each vertex

• Is the distance to that vertex known?

• What is the best distance we’ve found so far?

• Repeat:

• Pick the smallest unknown distance

• mark it as known

• update the distance of all unknown neighbors of that node

• Until all vertices are known

17-24: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A false 0

B false ∞
C false ∞
D false ∞
E false ∞
F false ∞

17-25: Dijkstra’s Algorithm Example

CS673-2016F-17 Shortest Path Algorithms 8

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B false 7

C false 5

D false ∞
E false ∞
F false 1

17-26: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B false 7

C false 5

D false 8

E false 3

F true 1

17-27: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B false 7

C false 4

D false 8

E true 3

F true 1

17-28: Dijkstra’s Algorithm Example

CS673-2016F-17 Shortest Path Algorithms 9

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B false 5

C true 4

D false 6

E true 3

F true 1

17-29: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B true 5

C true 4

D false 6

E true 3

F true 1

17-30: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B true 5

C true 4

D true 6

E true 3

F true 1

17-31: Dijkstra’s Algorithm

• After Dijkstra’s algorithm is complete:

CS673-2016F-17 Shortest Path Algorithms 10

• We know the length of the shortest path

• We do not know what the shortest path is

• How can we modify Dijstra’s algorithm to compute the path?

17-32: Dijkstra’s Algorithm

• After Dijkstra’s algorithm is complete:

• We know the length of the shortest path

• We do not know what the shortest path is

• How can we modify Dijstra’s algorithm to compute the path?

• Store not only the distance, but the immediate parent that led to this distance

17-33: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5
Node Known Dist Path

A false 0

B false ∞

C false ∞

D false ∞

E false ∞

F false ∞

G false ∞

17-34: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5
Node Known Dist Path

A true 0

B false 5 A

C false 3 A

D false ∞

E false ∞

F false ∞

G false ∞

17-35: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5
Node Known Dist Path

A true 0

B false 5 A

C true 3 A

D false 4 C

E false ∞

F false ∞

G false ∞

CS673-2016F-17 Shortest Path Algorithms 11

17-36: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5
Node Known Dist Path

A true 0

B false 5 A

C true 3 A

D true 4 C

E false 9 D

F false 9 D

G false 7 D

17-37: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5
Node Known Dist Path

A true 0

B true 5 A

C true 3 A

D true 4 C

E false 9 D

F false 9 D

G false 7 D

17-38: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5
Node Known Dist Path

A true 0

B true 5 A

C true 3 A

D true 4 C

E false 9 D

F false 8 G

G true 7 D

17-39: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5
Node Known Dist Path

A true 0

B true 5 A

C true 3 A

D true 4 C

E false 9 D

F true 8 G

G true 7 D

17-40: Dijkstra’s Algorithm Example

CS673-2016F-17 Shortest Path Algorithms 12

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5
Node Known Dist Path

A true 0

B true 5 A

C true 3 A

D true 4 C

E true 9 D

F true 8 G

G true 7 D

17-41: Dijkstra’s Algorithm

• Given the “path” field, we can construct the shortest path

• Work backward from the end of the path

• Follow the “path” pointers until the start node is reached

• We can use a sentinel value in the “path” field of the initial node, so we know when to stop

17-42: Dijkstra Code

void Dijkstra(Edge G[], int s, tableEntry T[]) {

int i, v;

Edge e;

for(i=0; i<G.length; i++) {

T[i].distance = Integer.MAX_VALUE;

T[i].path = -1;

T[i].known = false;

}

T[s].distance = 0;

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance >

T[v].distance + e.cost) {

T[e.neighbor].distance = T[v].distance + e.cost;

T[e.neighbor].path = v;

}

}

}

}

17-43: Dijkstra Running Time

• If minUnknownVertex(T) is calculated by doing a linear search through the table:

• Each minUnknownVertex call takes time Θ(|V |)

• Called |V | times – total time for all calls to minUnkownVertex: Θ(|V |2)

• If statement is executed |E| times, each time takes time O(1)

• Total time: O(|V |2 + |E|) = O(|V |2).

17-44: Dijkstra Running Time

• If minUnknownVertex(T) is calculated by inserting all vertices into a min-heap (using distances as key) updating

the heap as the distances are changed

• Each minUnknownVertex call tatkes time Θ(lg |V |)

• Called |V | times – total time for all calls to minUnknownVertex: Θ(|V | lg |V |)

• If statement is executed |E| times – each time takes time O(lg |V |), since we need to update (decrement)

keys in heap

CS673-2016F-17 Shortest Path Algorithms 13

• Total time: O(|V | lg |V |+ |E| lg |V |) ∈ O(|E| lg |V |)

17-45: Dijkstra Running Time

• If minUnknownVertex(T) is calculated by inserting all vertices into a Fibonacci heap (using distances as key)

updating the heap as the distances are changed

• Each minUnknownVertex call takes amortized time Θ(lg |V |)

• Called |V | times – total amortized time for all calls to minUnknownVertex: Θ(|V | lg |V |)

• If statement is executed |E| times – each time takes amortized time O(1), since decrementing keys takes

time O(1).

• Total time: O(|V | lg |V |+ |E|)

17-46: Negative Edges

• Does Dijkstra’s algorithm work when edge costs can be negative?

• Give a counterexample!

• What happens if there is a negative-weight cycle in the graph?

17-47: Bellman-Ford

• Bellman-Ford allows us to calculate shortest paths in graphs with negative edge weights, as long as there are no

negative-weight cycles

• As a bonus, we will also be able to detect negative-weight cycles

17-48: Bellman-Ford

• For each node v, maintiain:

• A “distance estimate” from source to v, d[v]

• Parent of v, π[v], that gives this distance estimate

• Start with d[v] =∞, π[v] = nil for all nodes

• Set d[source] = 0

• udpate estimates by “relaxing” edges

17-49: Bellman-Ford

• Relaxing an edge (u, v)

• See if we can get a better distance estimate for v by going thorugh u

Relax(u,v,w)

if d[v] > d[u] + w(u, v)
d[v]← d[u] + w(u, v)
π[v]← u

17-50: Bellman-Ford

CS673-2016F-17 Shortest Path Algorithms 14

• Relax all edges edges in the graph (in any order)

• Repeat until relax steps cause no change

• After first relaxing, all optimal paths from source of length 1 are computed

• After second relaxing, all optimal paths from source of length 2 are computed

• after |V | − 1 relaxing, all optimal paths of length |V | − 1 are computed

• If some path of length |V | is cheaper than a path of length |V | − 1 that means ...

17-51: Bellman-Ford

• Relax all edges edges in the graph (in any order)

• Repeat until relax steps cause no change

• After first relaxing, all optimal paths from source of length 1 are computed

• After second relaxing, all optimal paths from source of length 2 are computed

• after |V | − 1 relaxing, all optimal paths of length |V | − 1 are computed

• If some path of length |V | is cheaper than a path of length |V | − 1 that means ...

• Negative weight cycle

17-52: Bellman-Ford

BellamanFord(G, s)

Initialize d[], π[]
for i← 1 to |V | − 1 do

for each edge (u, v) ∈ G do

if d[v] > d[u] + w(u, v)
d[v]← d[u] + w(u, v)
π[v]← u

for each edge (u, v) ∈ G do

if d[v] > d[u] + w(u, v)
return false

return true

17-53: Bellman-Ford

• Running time:

• Each iteration requires us to relax all |E| edges

• Each single relaxation takes time O(1)

• |V | − 1 iterations (|V | if we are checking for negative weight cycles)

• Total running time O(|V | ∗ |E|)

17-54: Shortest Path/DAGs

• Finding Single Source Shorest path in a Directed, Acyclic graph

• Very easy! How can we do this quickly?

17-55: Shortest Path/DAGs

CS673-2016F-17 Shortest Path Algorithms 15

• Finding Single Source Shorest path in a Directed, Acyclic graph

• Very easy!

• How can we do this quickly?

• Do a topological sort

• Relax edges in topological order

• We’re done!

17-56: All-Source Shortest Path

• What if we want to find the shortest path from all vertices to all other vertices?

• How can we do it?

17-57: All-Source Shortest Path

• What if we want to find the shortest path from all vertices to all other vertices?

• How can we do it?

• Run Dijktra’s Algorithm V times

• How long will this take?

17-58: All-Source Shortest Path

• What if we want to find the shortest path from all vertices to all other vertices?

• How can we do it?

• Run Dijktra’s Algorithm V times

• How long will this take?

• Θ(V 2 lg V + V E) (using Fibonacci heaps)

• Doesn’t work if there are negative edges! Running Bellman-Ford V times (which does work with

negative edges) takes time O(V 2E) – which is Θ(V 4) for dense graphs

17-59: Multi-Source Shortest Path

• Let L(m)[i, j] (in text, l
(m)
i,j) be cost of the shortest path from i to j that contains at most m edges

• If m = 0, there is a shortest path from i to j with no edges iff i = j

L(0)[i, j] =

{

0 if i = j

∞ otherwise

• How can we calculate Lm[i, j] recursively?

17-60: Multi-Source Shortest Path

• Let L(m)[i, j] (in text, l
(m)
i,j) be cost of the shortest path from i to j that contains at most m edges

L(0)[i, j] =

{

0 if i = j

∞ otherwise

CS673-2016F-17 Shortest Path Algorithms 16

• How can we calculate Lm[i, j] recursively?

L(m)[i, j] = min

(

L(m−1)[i, j], min
1≤k≤n

(L(m−1)[i, k] + wkj)

)

= min
1≤k≤n

(L(m−1)[i, k] + wkj)

17-61: Multi-Source Shortest Path

• Create L(m+1) from L(m):

Extend-Shortest-Paths(L,W)

n← rows[L]

L′ ← new n× n matrix

for i← 1 to n do

for j ← 1 to n do

L′[i, j]←∞
for k ← 1 to n do

L′[i, j]← min(L′[i, j], L[i, k] +W [k, j])
return L′

17-62: Multi-Source Shortest Path

• Need to calculate L(n−1)

• Why L(n−1), and not L(n) or L(n+1)?

All-Pairs-Shortest-Paths(W)

n← rows[W]

L(1) ←W

for m← 2 to n− 1 do

L(m) ←Extend-Shortest-Path(L(m−1),W)

return L(n−1)

17-63: Multi-Source Shortest Path

• We really don’t care about any of the L matrices except L(n−1)

• We can save some time by not calculating all of the intermediate matrices L(1) . . . L(n−2)

• Note that Extend-Shortest-Path looks a lot like matrix multiplication

17-64: Multi-Source Shortest Path

Square-Matrix-Multiply(A,B)

n← rows[A]

C ← new n× n matrix

for i← 1 to n do

for j ← 1 to n do

C[i, j]← 0
for k ← 1 to n do

C[i, j]← C[i, j] +A[i, k] ∗B[k, j])
return L′

CS673-2016F-17 Shortest Path Algorithms 17

• Replace min with +, + with ∗

17-65: Multi-Source Shortest Path

• Using our “Extend-Multiplication”

• Replace + with min, ∗ with +

L(1) = L(0) ∗W = W

L(1) = L(1) ∗W = W 2

L(2) = L(2) ∗W = W 3

L(3) = L(3) ∗W = W 4

...

L(n−1) = L(n−2) ∗W = Wn−1

17-66: Multi-Source Shortest Path

L(1) = W

L(2) = W 2 = W ∗W

L(4) = W 4 = W 2 ∗W 2

L(8) = W 8 = W 4 ∗W 4

...

L2⌈lg(n−1)⌉

= L2⌈lg(n−1)⌉

= L2⌈lg(n−1)⌉−1 ∗ L2⌈lg(n−1)⌉−1

• Since L(n−1) = L(n) = L(n+1) = . . ., it doesn’t matter if n is an exact power of 2 – we just need to get to at

least L(n−1), not hit it exactly

17-67: Multi-Source Shortest Path

All-Pairs-Shortest-Paths(W)

n← rows[W]

L(1) ←W

m← 1
while m < n− 1 do

L(2m) ←Extend-Shortest-Path(L(m), L(m))

m→ m ∗ 2
return L(m)

17-68: Multi-Source Shortest Path

• Each call to Extend-Shortest-Path takes time:

• # of calls to Extend-Shortest-Path:

• Total time:

CS673-2016F-17 Shortest Path Algorithms 18

17-69: Multi-Source Shortest Path

• Each call to Extend-Shortest-Path takes time Θ(|V |3)

• # of calls to Extend-Shortest-Path: Θ(lg |V |)

• Total time: Θ(|V |3 lg |V |)

17-70: Floyd’s Algorithm

• Alternate solution to all pairs shortest path

• Yields Θ(V 3) running time for all graphs

17-71: Floyd’s Algorithm

• Vertices numbered from 1..n

• k-path from vertex v to vertex u is a path whose intermediate vertices (other than v and u) contain only vertices

numbered k or less

• 0-path is a direct link

17-72: k-path Examples

1

2

3

4

5

1

1

1

1

7

35

5

• Shortest 0-path from 1 to 5: 5

• Shortest 1-path from 1 to 5: 5

• Shortest 2-path from 1 to 5: 4

• Shortest 3-path from 1 to 5: 4

• Shortest 4-path from 1 to 5: 3

17-73: k-path Examples

1

2

3

4

5

1

1

1

1

7

35

5

• Shortest 0-path from 1 to 3: 7

CS673-2016F-17 Shortest Path Algorithms 19

• Shortest 1-path from 1 to 3: 7

• Shortest 2-path from 1 to 3: 6

• Shortest 3-path from 1 to 3: 6

• Shortest 4-path from 1 to 3: 6

• Shortest 5-path from 1 to 3: 4

17-74: Floyd’s Algorithm

• Shortest n-path = Shortest path

• Shortest 0-path:

• ∞ if there is no direct link

• Cost of the direct link, otherwise

17-75: Floyd’s Algorithm

• Shortest n-path = Shortest path

• Shortest 0-path:

• ∞ if there is no direct link

• Cost of the direct link, otherwise

• If we could use the shortest k-path to find the shortest (k + 1) path, we would be set

17-76: Floyd’s Algorithm

• Shortest k-path from v to u either goes through vertex k, or it does not

• If not:

• Shortest k-path = shortest (k − 1)-path

• If so:

• Shortest k-path = shortest k − 1 path from v to k, followed by the shortest k − 1 path from k to w

17-77: Floyd’s Algorithm

• If we had the shortest k-path for all pairs (v,w), we could obtain the shortest k + 1-path for all pairs

• For each pair v, w, compare:

• length of the k-path from v to w

• length of the k-path from v to k appended to the k-path from k to w

• Set the k + 1 path from v to w to be the minimum of the two paths above

17-78: Floyd’s Algorithm

• Let Dk[v, w] be the length of the shortest k-path from v to w.

• D0[v, w] = cost of arc from v to w (∞ if no direct link)

CS673-2016F-17 Shortest Path Algorithms 20

• Dk[v, w] = MIN(Dk−1[v, w], Dk−1[v, k] +Dk−1[k, w])

• Create D0, use D0 to create D1, use D1 to create D2, and so on – until we have Dn

17-79: Floyd’s Algorithm

• Use a doubly-nested loop to create Dk from Dk−1

• Use the same array to store Dk−1 and Dk – just overwrite with the new values

• Embed this loop in a loop from 1..k

17-80: Floyd’s Algorithm

Floyd(Edge G[], int D[][]) {

int i,j,k

Initialize D, D[i][j] = cost from i to j

for (k=0; k<G.length; k++;

for(i=0; i<G.length; i++)

for(j=0; j<G.length; j++)

if ((D[i][k] != Integer.MAX_VALUE) &&

(D[k][j] != Integer.MAX_VALUE) &&

(D[i][j] > (D[i,k] + D[k,j])))

D[i][j] = D[i][k] + D[k][j]

}

17-81: Floyd’s Algorithm

• We’ve only calculated the distance of the shortest path, not the path itself

• We can use a similar strategy to the PATH field for Dijkstra to store the path

• We will need a 2-D array to store the paths: P[i][j] = last vertex on shortest path from i to j

17-82: Johnson’s Algorithm

• Yet another all-pairs shortest path algorithm

• Time O(|V |2 lg |V |+ |V | ∗ |E|)

• If graph is dense (|E| ∈ Θ(|V |2)) , no better than Floyd

• If graph is sparse, better than Floyd

• Basic Idea: Run Dijkstra |V | times

• Need to modify graph to remove negative edges

17-83: Johnson’s Algorithm

• Reweighing Graph

• Create a new weight function ŵ, such that:

• For all pairs of vertices u, v ∈ V , a path from u to v is a shortest path using w if and only if it is also

a shortest path using ŵ.

CS673-2016F-17 Shortest Path Algorithms 21

• For all edges (u, v), ŵ(u, v) is non-negative

17-84: Johnson’s Algorithm

• Reweighing Graph

• First Try:

• Smallest weight is −w, for some positive w

• Add w to each edge in the graph

• Is this a valid reweighing?

17-85: Johnson’s Algorithm

• Reweighing Graph

• First Try:

• Smallest weight is −w, for some positive w

• Add w to each edge in the graph

• Is this a valid reweighing?

B C

A D

5

5 -8

4

17-86: Johnson’s Algorithm

• Reweighing Graph

• Second Try:

• Define some function on vertices h(v)

• ŵ(u, v) = w(u, v) + h(u)− h(v)

• Does this preserve shortest paths?

17-87: Johnson’s Algorithm

• Let p = v0, v1, v2, . . . , vk be a path in G

• Cost of p under ŵ:

ŵ(p) =

k
∑

i=1

ŵ(vi−1, vi)

=
k
∑

i=1

(w(vi−1, vi) + h(vi−1)− h(vi))

=

(

k
∑

i=1

(w(vi−1, vi)) + h(v0)− h(vk)

)

= w(p) + h(v0)− h(vk)

CS673-2016F-17 Shortest Path Algorithms 22

• Thus, any shortest path under w will be a shortest path under ŵ, and vice-versa

17-88: Johnson’s Algorithm

• So, if we can come up with a function h(V) such that w(u, v) + h(u) − h(v) is positive for all edges (u, v) in

the graph, we’re set

• Use the function h to reweigh the graph

• Run Dijkstra’s algorithm |V | times, starting from each vertex on the new graph, calculating shortest paths

• Shortest path in new graph = shortest path in old graph

17-89: Johnson’s Algorithm

• Add a new vertex s to the graph

• Add an edge from s to every other vertex, with cost 0

• Find the shortest path from s to every other vertex in the graph

• h(v) = δ(s, v), the cost of the shortest path from s to v

• Using this h(V) function, all new weights are guaranteed to be non-negative

17-90: Johnson’s Algorithm

• h(v) = δ(s, v), the cost of the shortest path from s to v

ŵ(u, v) = w(u, v) + h(u)− h(v)

= w(u, v) + δ(s, u)− δ(s, v)

• Since δ is a shortest path,

δ(s, v) ≤ δ(s, u) + w(u, v)

0 ≤ w(u, v) + δ(s, u)− δ(s, v)

17-91: Johnson’s Algorithm

CS673-2016F-17 Shortest Path Algorithms 23

A

B

CD

E

3
-2

-3
-2

2

5

3

2

4

1

17-92: Johnson’s Algorithm

A

B

CD

E

3
-2

-3
-2

2

5

3

2

4

1

s

0 0
0

0

0

17-93: Johnson’s Algorithm

CS673-2016F-17 Shortest Path Algorithms 24

A

B

CD

E

3
-2

-3
-2

2

5

3

2

4

1

s

0 0
0

0

0

-3

-2

-1

0

0

17-94: Johnson’s Algorithm

A

B

CD

E

3/4
-2/0

-3/0
-2/0

2/2

5/4

3/5

2/1

4/1

1/0

-3

-2

-1

0

0

17-95: Johnson’s Algorithm

CS673-2016F-17 Shortest Path Algorithms 25

A

B

CD

E

4
0

0
0

2

4

5

1

1

0

-3

-2

-1

0

0

17-96: Johnson’s Algorithm

Johnson(G)

Add s to G, with 0 weight edges to all vertices

if Bellman-Ford(G, s) = FALSE

There is a negative weight cycle, fail

for each vertex v ∈ G

set h(v)← δ(s, v) from B-F

for each edge (u, v) ∈ G

ŵ(u, v) = w(u, v) + h(u)− h(v)
for each vertex u ∈ G

run Dijkstra(G, ŵ, u) to compute δ̂(u, v)

δ(u, v) = δ̂(u, v) + h(v)− h(u)

