Graduate Algorithms
CS673-2016F-18

Flow Networks

Davi |

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

18-0: Flow Networks

® Directed Graph ¢
® Each edge weigh is a “capacity”

 Amount of water/second that can flow through a
pipe, for instance

® Single source S, single sink ¢
® Calculate maximum flow through graph

18-1: Flow Networks

® Flow: Function: V xV — R
* Flow from each vertex to every other vertex
e f(u,v) is the direct flow from u to v
® Properties:
e Yu,v €V, f(u,v) < c(u,v)
e Vu,v €V, f(u,v) = —f(v,u)
s Vu eV —{s,t}, Y0y flu,v) =0

® Total flow, |f| => .o f(s,v) => v f(v,t)

18-2: Flow Networks

® Single Source / Single Sink

* Assume that there is always a single source
and a single sink

 Don't lost any expressive power — always
transform a problem with multiple sources and
multiple sinks to an equivalent problem with a
single source and a single sink

e How?

18-3: Flow Networks

® Example: Shipping product to a warehouse
* Product produced at a factory, put in crates
e Crates are shipped to warehouse

* To cut down costs, use “extra space” in other
people’s trucks

* How much product can be produced per day?

18-4: Flow Networks

L. A

Chi cago

1o

4

N

10

Dal | as

A

» New Yor k

=

New Jer sey

S

» Pitsburgh

18-5: Flow Networks

® |t would be a little silly to ship 4 crates from Dallas
to Chicago, and 7 crates from Chicago to Dallas

e Could just ship 3 crates from Chicago to Dallas
iInstead
® We will assume that there is only every flow in one
direction
* Flow in the opposite direction “cancels” out

18-6: Flow Networks

: 12/ 12
Chi cago » New Yor k

11/ 16 15/ 20
////' A A \\\\\\‘

L. A 1/ 4 0/ 10

\\\\\\ 4/ 9 77 New Jer sey
\/
8/13 /1'/4

Dal | as » Pitsburgh
11/ 14

Is this flow optimal?

18-7: Flow Networks

: 12/ 12
Chi cago » New Yor k

11/ 16 19/ 20
/ A A \

L. A 1/ 4 0/ 10

\\\\\\ 0/ 9 77 New Jer sey
\
12/ 13 /:/ g

Dal | as » Pitsburgh
11/ 14

18-8: Flow Networks

® Negative flow
* |t is perfectly legal for there to be a negative
flow from v to u

* Negative flow from v to u just means that there
IS a positive flow from u to v

* Recall that the total flow over all edge incident
to a vertex must be zero, except for source &
sink

18-9: Flow Networks

® Residual capacity
e c¢(u,v) is the residual capacity of edge (u, v)
* ¢s(u,v) = c(u,v) — f(u,v)
* Note that it is possible for the residual capacity

of an edge to be greater than the total capacity
- Cancelling flow in the opposite direction

18-10: Flow Networks

® Residual Network

e Given a set of capacities, and a set of current
flows, we can create a residual network

* Residual network can have different edges than
the capacity network

18-11: Flow Networks

18-12: Flow Networks

3/ 6

a > D 5/

A |
3’74 0/ 3 \
: 1/ 3 2/ 2 0/ 6
N

VI o
C - 4

18-13: Flow Networks

° . /
97‘0/3 Xﬁ
< s,/
DN
C

AN

18-14: Flow Networks

® Given a flow network, with some flows calculated
® |nduced residual network

® There is a path from source to sink in the residual
network such that:

e All residual capacities along the path are > 0
® How can we increase the total flow?

18-15: Augmenting Path

® An Augmenting path in a flow network is a path
through the network such that all residual
capacities along the path > 0

® Given a flow network and an augmenting path, we
can increase the total flow by the smallest residual
capacity along the path

* Increase flow along path by smallest residual
capacity along the path

* May involve some flow cancelling

18-16: Augmenting Path

3/6
» b

a
A
3’74 E
. s,/ .,
1/4\‘
C

> d
0/ 1
3
/\
a » b
3 " 3
2 3
S 2 1

K
1
C

\ 7

2/ 8

0/ 6 t

18-17: Augmenting Path

= e e
(\'
o~
S~~~
N
—
~~
S
™
~~
=
™
~~
S
T = o

18-18: Augmenting Path

4/ 6
b
0/ 3
0/ 3 2/ 2
d

)

2/ 8
0/ 6
A:

1/ 1

18-19: Augmenting Path

4/ 6
» b

a
A
4’74 E
. 3,/ .,
1/4\‘
C

> d
1/ 1

a
E A 2 A
1
S 3 3
“
1
C =«

2/ 8

0/ 6 t

Ny

18-20: Ford-Fulkerson Method

Ford-Fulkerson(G, s, t)
initialize flow f to O
while there is an augmenting path p
augment flow f along p
return f

18-21: Ford-Fulkerson Method

® What is the running time of Ford-Fulkerson
Method?

* Find an augmenting path
* Update flows / residuals

* Repeat until there are no more augmenting
paths

18-22: Ford-Fulkerson Method

® What is the running time of Ford-Fulkerson
Method?

* Find an augmenting path
- Using DFS, O(|F|)
* Update flows / residuals
+ O(|E])
* Repeat until there are no more augmenting
paths
- Each iteration could increase the flow by 1,
could have | f| iterations!

® Total: O(|f| * |E])

18-23: Ford-Fulkerson Method

® Could take as many as | f| iterations:

a

1()000V w‘OOOO
1

S t

1000000\« v Aooooo

b

18-24: Ford-Fulkerson Method

® Could take as many as | f| iterations:

Flow Network

a
0/ 1000(V &/1(000000

0/ 1000(%« A 1000000

b

Residual Network

a
1000007 wj‘)oo

S 1 t

1000000\« Aooooo

b

18-25: Ford-Fulkerson Method

® Could take as many as | f| iterations:

Flow Network

1/ 1000000/’

S

0/ 1000(%«

a

\\\Sii?ooooo

1/1 ;

v ////:j;oooooo

b

Residual Network

—> QO

999999/

S

1000000\A

\\\igz?ooo
////;:;999

18-26: Ford-Fulkerson Method

® Could take as many as | f| iterations:

Flow Network

a

1/ 1oooooo/4 *oooooo

0/ 1ooo$ Af 1000000

b

Residual Network

a

999999 / QOOOO

S 1 t

1000000\ 49999

b

18-27: Ford-Fulkerson Method

® Could take as many as | f| iterations:

Flow Network Residual Network
a |
1/ 10000()0/4 &L‘OOOOOO 999999/ %999
S 0/ 1 t S 1 t

1/ 1000(%« v A(loooooo 999999\ v 49999

b b

18-28: Ford-Fulkerson Method

® How can we be smart about choosing the
augmenting path, to avoid the previous case?

18-20: EdMonds-Karp Algorithm

® How can we be smart about choosing the
augmenting path, to avoid the previous case?

* We can get better performance by always
picking the shortest path (path with the fewest
edges)

 We can quickly find the shortest path by doing a

BFS from the source in the residual network, to
find the shortest augmenting path

* |f we always choose the shortest augmenting
path (i.e., smallest number of edges), total
number of iterations is O(|V| x | E), for a total
running time of O(|V| x |E]?)

18-30: Edmonds-Karp Algorithm

® |f we always pick the shortest augmenting path, no
more than |V| x | E| iterations:

e Lemma #1: Shortest path from source s to any
other vertex in residual graph can only
Increase, not decrease.

- Residual graph changes over time — edges
are added and removed

- However, shortest path from source to any
vertex in the residual graph will only increase
over time, never decrease

18-31: Edmonds-Karp Algorithm

® | emma #1: Shortest path from source s to any
other vertex in residual graph can only increase,
not decrease. Proof by contradiction

* Assume shortest path from source to some
other vertex changes after an augmentation

e Let f be the flow right before the shortest path
decrease, and [’ be the flow right after

 Let v be a vertex such that d,/(s,v) < d¢(s,).
If there is more than once such v, pick the one
with the smallest §, (s, v) value

e letp=5s— ... — u — v be the shortest path
from sto v in f’

18-32: Edmonds-Karp Algorithm

® | emma #1: Shortest path from source s to any
other vertex in residual graph can only increase,
not decrease. Proof by contradiction

e Edge (u,v) (last edge on path from s to v in
G) must not be in G4
« Op(s,u) > ds(s,u)
e Because 6 (s,u) < dp(s,v), and we
picked v to be the vertex with the smallest
04 (s,v) value that changed

e If (u,v) € Gy

dr(s,v) dr(s,u) +1
dpr(s,u) +1

dsr(s,v)

VAN VAN VA

18-33: EdmMonds-Karp Algorithm

® | emma #1: Shortest path from source s to any
other vertex in residual graph can only increase,
not decrease. Proof by contradiction

e Edge (u,v) mustbe in G4 but notin G, —so
the augmenting path must include (v, u)

 We always choose shortest paths as our
augmenting path

e Shortest path from s to u must include (v, u)

0¢(s,v)

Or(s,u) —1
5]0/(8,?1,) — 1
6]0/(8711) — 2

VARRVAN

18-32: Edmonds-Karp Algorithm

® |f we always pick the shortest augmenting path, no
more than |V| x | E| iterations:
* An edge on an augmenting path is critical if it is

removed when the flow is augmented (why
must there always be at least one critical

edge)?
e Each edge can only be critical at most |V/|/2
times

18-35: EdMonds-Karp Algorithm

® Each edge can only be critical at most |V/|/2 times
e When edge (u,v) is critical:
+ 0¢(s5,v) = 0¢(s,u) +1
e Critical edge is removed — before it can become

critical again, it must be added back by some
augmenting path — that path must contain edge

(u,v)

e Let ' be the flow when the edge is added back.

5f’(57u)

5]0/(8,?}) —l_]_
5]0(8,?}) +1
Or(s,u) +1+1

IV

18-36: EdMonds-Karp Algorithm

® Each edge can only be critical at most |V/|/2 times
e Let f' be the flow when the edge is added back.

5f’(57u)

5]0/(8,?]) _I_ 1
0¢(s,v) +1
Or(s,u) +1+1

IV

e If an edge (u,v) becomes critical twice, the
shortest path from s to « must increase by 2

e Each edge can only be critical |V|/2 times

18-37: Edmonds-Karp Algorithm

® |f we always pick the shortest augmenting path, no
more than |V| x | E| iterations:

* An edge on an augmenting path is critical if it is
removed when the flow is augmented (why
must there always be at least one critical
edge)?

e Each edge can only be critical at most |V/|/2
times

e || total edges — no more than |E| x |[V|/2
iterations

18-38: Matching Problem

® Given an undirected graph G = (V, E') a matching
M is
 Subset of edges E
* For any vertex v € V', at most one edge in M is
incident to v

¢ Maximum matching is a matching with largest
possible number of edges

18-39: Matching Problem

® Bipartite graph
* Vertices can be divided into two groups, S; and
So

 Each edge connects a vertex in S; with a vertex
N SQ

O

\

18-20: Matching Problem

O

1

18-41: Matching Problem

\

18-42: Matching Problem

ANV

18-43: Matching Problem

NV

18-44: Matching Problem

® Finding a matching in a bipartite graph can be
considered a maximum flow problem. How?

Y

18-45: Matching Problem

® Finding a matching in a bipartite graph can be
considered a maximum flow problem. How?

@
| <>< |
OL—O o
@
O/
o

18-46: Push-Relabel Algorithms

® New algorithm for calculating maximum flow
® Basic idea:
* Allow vertices to be “overfull” (have more inflow

than outflow)
e Push full capacity out of edges from source

e Pus
e Pus

n overflow at each vertex forward to the sink
n excess flow back to source

18-47: Push-Relabel Algorithms

® Think of graph as a bunch of water containers
connected by pipes.

® \We will raise and lower the vertices, and allow
water to flow between them

 Water can only flow from higher vertex to a
lower vertex

® |nitially, source is at height |V/
are at height 1

® Full capacity of each pipe out of the source flows to
each vertex adjacent to the source

. all other vertices

18-48: Push-Relabel Algorithms

® Full capacity of each pipe out of the source flows
back to each vertex adjacent to the source

e This causes some vertices to be overfull —
inflow greater than outflow

® Raise some vertex whose inflow is greater than
outflow, to allow water to flow to different vertices

® Repeat until all vertices (other than the sink, which
stays at level 0) are at the same level as the source

® |f there are still overfull vertices, continue to raise
them so that the extra flow spills back into the
source

18-49: Push-Relabel Algorithms

Hei ght s

wn
y\
(@) > Q

w
\
) \/
- ————
_/

(@))
\ .

18-50: Push-Relabel Algorithms

Hei ght s

18-51:

Push-Relabel Algorithms

Hei ght s

18-52:

Push-Relabel Algorithms

Hei ght s

18-53: PUsh-Relabel Algorithms

(7))}
<
(@)
£
[[]
S ab c dt
4/ 5
a » D
A
4V 0/ 3 /
S 0/ 3 0/ 2
N &
> d

Push-Relabel Algorithms

18-54:

Hei ght s

18-55: PUsh-Relabel Algorithms

Hei ght s

18-56: PUsh-Relabel Algorithms

Hei ght s

Push-Relabel Algorithms

18-57:

Hei ght s

18-58: PUsh-Relabel Algorithms

(7))}
<
(@)
; |
[[]
S ab c dt
4/ 5
a >
A
4V 3/ 3
S 0/ 3 0/ 2
N

18-50: PUsh-Relabel Algorithms

(7))}
<
(@)
; |
[[]
S ab c dt
4/ 5
a >
A
4V 3/ 3
S 1/ 3 0/ 2
N

18-60: Push-Relabel Algorithms

(7))}
<
(@)
; |
INIRiNl
S ab c dt
4/ 5
a >
A
4V 3/ 3
S 1/ 3 0/ 2
N

Push-Relabel Algorithms

18-61:

Hei ght s

Push-Relabel Algorithms

18-62:

Hei ght s

18-63: PUush-Relabel Algorithms

Hei ght s

Push-Relabel Algorithms

18-64:

Hei ght s

18-65: PUsh-Relabel Algorithms

Hei ght s

18-66: PUsh-Relabel Algorithms

Hei ght s

Push-Relabel Algorithms

18-67:

Hei ght s

18-68: PUsh-Relabel Algorithms

(7))
c
(@))
sl H
S 7ar b 7C7 d t
5/5
a >
A
4V 3/3
S 1/ 3 2/ 2
N

18-60: PUsh-Relabel Algorithms

(7))
c
(@))
sl H
S 7ar b 7C7 d t
5/5
a >
A
4V 3/3
S 1/ 3 2/ 2
N

18-70: Push-Relabel Algorithms

(7))
c
(@))
sl H H
S 7ar b 7C7 d t
5/5
a >
A
4V 3/3
S 1/ 3 2/ 2
N

Push-Relabel Algorithms

18-71:

Hei ght s

Push-Relabel Algorithms

18-72:

Hei ght s

18-73: Push-Relabel Algorithms

(7))
E _
(@)
; HHH
S a 7bf 7cf 7d7 t
5/5
a » D
A
4V 3/ 3 /
S 1/ 3 2/ 2
N &
> d

Push-Relabel Algorithms

18-74:

Hei ght s

18-75: Push-Relabel Algorithms

(7))
E _ _
(@)
UL H
S a 7bf C 7d7 t
5/5
a » D
A
4V 3/ 3 /
S 1/ 3 2/ 2
N &
> d

18-76: PUush-Relabel Algorithms

(7))}
E _ _
(@))
UL H
S a 7bf C 7d7 t
5/5
a » D
A
4V 3/ 3 /
S 1/ 3 1/ 2
N &
> d

18-77:

Push-Relabel Algorithms

Hei ght s
1

A
4V 3/ 3
1/ 3 1/ 2 0/ 6 t

18-78: Push-Relabel Algorithms

Hei ght s
1

A
4V 3/3
1/ 3 20| lore

18-79: Push-Relabel Algorithms

Hei ght s

18-80: Push-Relabel Algorithms

Hei ght s

Push-Relabel Algorithms

18-81:

Hei ght s

A
47 3/ 3
1/ 3 2/ 2 0/ 6 t

Push-Relabel Algorithms

18-82:

Hei ght s

A
47 3/ 3
1/ 3 2/ 2 0/ 6 t

18-83: PUsh-Relabel Algorithms

Push(u, v)
Applies when:
u IS overflowing
ce(u,v) >0
hlu] = hlv] + 1
Action:
Push min(overflow|u],c;(u,v)) to v

18-84: Push-Relabel Algorithms

Relabel(u)
Applies when:
u Is overflowing
For all v such that ¢/ (u,v) > 0
hlv] > hlu]
Action:
hlu] < hlu] + 1

18-85: PUsh-Relabel Algorithms

Push-Relabel(G)
Initialize-Preflow(G, s)
while there exists an applicable push/relabel
iImplement push/relabel

18-86: PUsh-Relabel Algorithms

Push-Relabel(G)
Initialize-Preflow(G, s)
while there exists an applicable push/relabel
iImplement push/relabel

® Pick the operations (push/relabel) arbitrarily, time is
O(|VIE)
* (We won't prove this result, though the proof is
In the book)
® Can do better with relabel-to-front
* Specific ordering for doing push-relabel

e Time O(|V|*), also not proven here, proof in
text

	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Augmenting Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Augmenting Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Augmenting Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Augmenting Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Augmenting Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}

