18-0: Flow Networks

- Directed Graph \(G \)
- Each edge weigh is a “capacity”
 - Amount of water/second that can flow through a pipe, for instance
- Single source \(S \), single sink \(t \)
- Calculate maximum flow through graph

18-1: Flow Networks

- Flow: Function: \(V \times V \to R \)
 - Flow from each vertex to every other vertex
 - \(f(u, v) \) is the direct flow from \(u \) to \(v \)
- Properties:
 - \(\forall u, v \in V, f(u, v) \leq c(u, v) \)
 - \(\forall u, v \in V, f(u, v) = -f(v, u) \)
 - \(\forall u \in V - \{s, t\}, \sum_{v \in V} f(u, v) = 0 \)
- Total flow, \(|f| = \sum_{v \in V} f(s, v) = \sum_{v \in V} f(v, t) \)

18-2: Flow Networks

- Single Source / Single Sink
 - Assume that there is always a single source and a single sink
 - Don’t lost any expressive power – always transform a problem with multiple sources and multiple sinks to an equivalent problem with a single source and a single sink
 - How?

18-3: Flow Networks

- Example: Shipping product to a warehouse
 - Product produced at a factory, put in crates
 - Crates are shipped to warehouse
 - To cut down costs, use “extra space” in other people’s trucks
 - How much product can be produced per day?

18-4: Flow Networks

![Graph of Flow Networks](image)

18-5: Flow Networks
• It would be a little silly to ship 4 crates from Dallas to Chicago, and 7 crates from Chicago to Dallas
 • Could just ship 3 crates from Chicago to Dallas instead
• We will assume that there is only every flow in one direction
 • Flow in the opposite direction “cancels” out

18-6: Flow Networks

18-7: Flow Networks

18-8: Flow Networks

• Negative flow
 • It is perfectly legal for there to be a negative flow from \(v \) to \(u \)
 • Negative flow from \(v \) to \(u \) just means that there is a positive flow from \(u \) to \(v \)
 • Recall that the total flow over all edge incident to a vertex must be zero, except for source & sink

18-9: Flow Networks

• Residual capacity
 • \(c_f(u, v) \) is the residual capacity of edge \((u, v) \)
 • \(c_f(u, v) = c(u, v) - f(u, v) \)
 • Note that it is possible for the residual capacity of an edge to be greater than the total capacity
 • Cancelling flow in the opposite direction

18-10: Flow Networks
• Residual Network
 • Given a set of capacities, and a set of current flows, we can create a residual network
 • Residual network can have different edges than the capacity network

18-11: Flow Networks

```
  a  b
/   \       \   /     \  
5  6       3  3       8
\   /       \   /       
 s\ /        s\ /        
 4  \           1
```

18-12: Flow Networks

```
  a  b
/   \       \   /     \  
3/6 3/5       0/3 2/8
\   /       \   /       
 s\ /        s\ /        
 1/4 1/3     2/2        
 0/1        0/6        
```

18-13: Flow Networks
18-14: Flow Networks

- Given a flow network, with some flows calculated
- Induced residual network
- There is a path from source to sink in the residual network such that:
 - All residual capacities along the path are > 0
- How can we increase the total flow?

18-15: Augmenting Path

- An Augmenting path in a flow network is a path through the network such that all residual capacities along the path > 0
- Given a flow network and an augmenting path, we can increase the total flow by the smallest residual capacity along the path
 - Increase flow along path by smallest residual capacity along the path
 - May involve some flow cancelling

18-16: Augmenting Path
18-17: Augmenting Path

18-18: Augmenting Path
Augmenting Path

Ford-Fulkerson Method

Ford-Fulkerson \((G, s, t)\)

- initialize flow \(f\) to 0
- while there is an augmenting path \(p\)
 - augment flow \(f\) along \(p\)
- return \(f\)

Ford-Fulkerson Method

- What is the running time of Ford-Fulkerson Method?
- Find an augmenting path
• Update flows / residuals
• Repeat until there are no more augmenting paths

18-22: **Ford-Fulkerson Method**

• What is the running time of Ford-Fulkerson Method?
 • Find an augmenting path
 • Using DFS, $O(|E|)$
 • Update flows / residuals
 • $O(|E|)$
 • Repeat until there are no more augmenting paths
 • Each iteration could increase the flow by 1, could have $|f|$ iterations!
 • Total: $O(|f| \times |E|)$

18-23: **Ford-Fulkerson Method**

• Could take as many as $|f|$ iterations:

18-24: **Ford-Fulkerson Method**

• Could take as many as $|f|$ iterations:

18-25: **Ford-Fulkerson Method**
• Could take as many as $|f|$ iterations:

<table>
<thead>
<tr>
<th>Flow Network</th>
<th>Residual Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1000000 a 0/1000000</td>
<td>b 1/1000000</td>
</tr>
<tr>
<td>s 1/1 0/1000000</td>
<td>t 1/1000000</td>
</tr>
<tr>
<td>0/1000000 b 1/1000000</td>
<td>1000000 999999</td>
</tr>
<tr>
<td>999999 a 1000000</td>
<td>b 999999</td>
</tr>
</tbody>
</table>

18-26: **Ford-Fulkerson Method**

• Could take as many as $|f|$ iterations:

<table>
<thead>
<tr>
<th>Flow Network</th>
<th>Residual Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1000000 a 0/1000000</td>
<td>b 1/1000000</td>
</tr>
<tr>
<td>s 1/1 0/1000000</td>
<td>t 1/1000000</td>
</tr>
<tr>
<td>0/1000000 b 1/1000000</td>
<td>1000000 999999</td>
</tr>
<tr>
<td>999999 a 1000000</td>
<td>b 999999</td>
</tr>
</tbody>
</table>

18-27: **Ford-Fulkerson Method**

• Could take as many as $|f|$ iterations:

<table>
<thead>
<tr>
<th>Flow Network</th>
<th>Residual Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1000000 a 1/1000000</td>
<td>b 1/1000000</td>
</tr>
<tr>
<td>s 0/1 1/1000000</td>
<td>t 1/1000000</td>
</tr>
<tr>
<td>1/1000000 b 1/1000000</td>
<td>999999</td>
</tr>
<tr>
<td>999999 a 999999</td>
<td>b 999999</td>
</tr>
</tbody>
</table>

18-28: **Ford-Fulkerson Method**

• How can we be smart about choosing the augmenting path, to avoid the previous case?

18-29: **Edmonds-Karp Algorithm**

• How can we be smart about choosing the augmenting path, to avoid the previous case?
 • We can get better performance by always picking the shortest path (path with the fewest edges)
We can quickly find the shortest path by doing a BFS from the source in the residual network, to find the shortest augmenting path.

If we always choose the shortest augmenting path (i.e., smallest number of edges), total number of iterations is $O(|V| \times |E|)$, for a total running time of $O(|V| \times |E|^2)$.

Edmonds-Karp Algorithm

If we always pick the shortest augmenting path, no more than $|V| \times |E|$ iterations:

- Lemma #1: Shortest path from source s to any other vertex in residual graph can only increase, not decrease.
 - Residual graph changes over time – edges are added and removed
 - However, shortest path from source to any vertex in the residual graph will only increase over time, never decrease.

Edmonds-Karp Algorithm

- Lemma #1: Shortest path from source s to any other vertex in residual graph can only increase, not decrease. Proof by contradiction
 - Assume shortest path from source to some other vertex changes after an augmentation
 - Let f be the flow right before the shortest path decrease, and f' be the flow right after
 - Let v be a vertex such that $\delta_{f'}(s,v) < \delta_f(s,v)$. If there is more than one such v, pick the one with the smallest $\delta_{f'}(s,v)$ value
 - Let $p = s \rightarrow \ldots \rightarrow u \rightarrow v$ be the shortest path from s to v in f'

Edmonds-Karp Algorithm

- Edge (u,v) (last edge on path from s to v in $G_{f'}$) must not be in G_f
 - $\delta_{f'}(s,u) \geq \delta_f(s,u)$
 - Because $\delta_{f'}(s,u) < \delta_{f'}(s,v)$, and we picked v to be the vertex with the smallest $\delta_{f'}(s,v)$ value that changed
 - If $(u,v) \in G_f$

$$
\delta_f(s,v) \leq \delta_{f'}(s,u) + 1 \\
\leq \delta_{f'}(s,v)
$$

Edmonds-Karp Algorithm

- Lemma #1: Shortest path from source s to any other vertex in residual graph can only increase, not decrease. Proof by contradiction
 - Edge (u,v) must be in $G_{f'}$ but not in G_f – so the augmenting path must include (v,u)
 - We always choose shortest paths as our augmenting path
 - Shortest path from s to u must include (v,u)

$$
\delta_f(s,v) = \delta_f(s,u) - 1 \\
\leq \delta_{f'}(s,u) - 1 \\
\leq \delta_{f'}(s,v) - 2
$$
• Contradiction!

18-34: **Edmonds-Karp Algorithm**

- If we always pick the shortest augmenting path, no more than $|V| \times |E|$ iterations:
 - An edge on an augmenting path is critical if it is removed when the flow is augmented (why must there always be at least one critical edge)?
 - Each edge can only be critical at most $|V|/2$ times

18-35: **Edmonds-Karp Algorithm**

- Each edge can only be critical at most $|V|/2$ times
- When edge (u, v) is critical:
 - $\delta_f(s, v) = \delta_f(s, u) + 1$
 - Critical edge is removed – before it can become critical again, it must be added back by some augmenting path – that path must contain edge (u, v)
 - Let f' be the flow when the edge is added back.
 \[
 \delta_{f'}(s, u) = \delta_{f'}(s, v) + 1 \\
 \geq \delta_f(s, v) + 1 \\
 = \delta_f(s, u) + 1 + 1
 \]

- If an edge (u, v) becomes critical twice, the shortest path from s to u must increase by 2
- Each edge can only be critical $|V|/2$ times

18-36: **Edmonds-Karp Algorithm**

- Each edge can only be critical at most $|V|/2$ times
- Let f' be the flow when the edge is added back.
 \[
 \delta_{f'}(s, u) = \delta_{f'}(s, v) + 1 \\
 \geq \delta_f(s, v) + 1 \\
 = \delta_f(s, u) + 1 + 1
 \]

- If an edge (u, v) becomes critical twice, the shortest path from s to u must increase by 2
- Each edge can only be critical $|V|/2$ times

18-37: **Edmonds-Karp Algorithm**

- If we always pick the shortest augmenting path, no more than $|V| \times |E|$ iterations:
 - An edge on an augmenting path is critical if it is removed when the flow is augmented (why must there always be at least one critical edge)?
 - Each edge can only be critical at most $|V|/2$ times
 - $|E|$ total edges – no more than $|E| \times |V|/2$ iterations
18-38: Matching Problem

- Given an undirected graph $G = (V, E)$ a matching M is
 - Subset of edges E
 - For any vertex $v \in V$, at most one edge in M is incident to v
 - Maximum matching is a matching with largest possible number of edges

18-39: Matching Problem

- Bipartite graph
 - Vertices can be divided into two groups, S_1 and S_2
 - Each edge connects a vertex in S_1 with a vertex in S_2
18-44: **Matching Problem**

- Finding a matching in a bipartite graph can be considered a maximum flow problem. How?

18-45: **Matching Problem**

- Finding a matching in a bipartite graph can be considered a maximum flow problem. How?

18-46: **Push-Relabel Algorithms**
• New algorithm for calculating maximum flow

• Basic idea:
 - Allow vertices to be “overfull” (have more inflow than outflow)
 - Push full capacity out of edges from source
 - Push overflow at each vertex forward to the sink
 - Push excess flow back to source

18-47: **Push-Relabel Algorithms**

• Think of graph as a bunch of water containers connected by pipes.

• We will raise and lower the vertices, and allow water to flow between them

 • Water can only flow from higher vertex to a lower vertex

• Initially, source is at height \(|V| \), all other vertices are at height 1

• Full capacity of each pipe out of the source flows to each vertex adjacent to the source

18-48: **Push-Relabel Algorithms**

• Full capacity of each pipe out of the source flows back to each vertex adjacent to the source

 • This causes some vertices to be overfull – inflow greater than outflow

• Raise some vertex whose inflow is greater than outflow, to allow water to flow to different vertices

• Repeat until all vertices (other than the sink, which stays at level 0) are at the same level as the source

• If there are still overfull vertices, continue to raise them so that the extra flow spills back into the source

18-49: **Push-Relabel Algorithms**

![Diagram of a network with vertex heights and capacities]
18-51: Push-Relabel Algorithms

18-52: Push-Relabel Algorithms
18-53: Push-Relabel Algorithms
18-55: Push-Relabel Algorithms

18-56: Push-Relabel Algorithms
push-relabel algorithms
Heights

s a b c d t

18-59: Push-Relabel Algorithms

Heights

s a b c d t

18-60: Push-Relabel Algorithms
18-61: **Push-Relabel Algorithms**

![Diagram of a flow network with heights and capacities]

18-62: **Push-Relabel Algorithms**
18-63: Push-Relabel Algorithms

18-64: Push-Relabel Algorithms
18-65: Push-Relabel Algorithms

18-66: Push-Relabel Algorithms
18-67: Push-Relabel Algorithms

18-68: Push-Relabel Algorithms
18-69: Push-Relabel Algorithms

18-70: Push-Relabel Algorithms
18-71: Push-Relabel Algorithms

18-72: Push-Relabel Algorithms
18-73: Push-Relabel Algorithms

Heights

18-74: Push-Relabel Algorithms
18-75: Push-Relabel Algorithms

18-76: Push-Relabel Algorithms
18-77: Push-Relabel Algorithms

18-78: Push-Relabel Algorithms
Heights

18-79: Push-Relabel Algorithms

Heights

18-80: Push-Relabel Algorithms
18-81: Push-Relabel Algorithms

18-82: Push-Relabel Algorithms
18-83: **Push-Relabel Algorithms**

Push \((u, v) \)
- Applies when:
 - \(u \) is overflowing
 - \(c_f(u, v) > 0 \)
 - \(h[u] = h[v] + 1 \)
- Action:
 - Push \(\min(\text{overflow}[u], c_f(u, v)) \) to \(v \)

18-84: **Push-Relabel Algorithms**

Relabel \((u) \)
- Applies when:
 - \(u \) is overflowing
 - For all \(v \) such that \(c_f(u, v) > 0 \)
 - \(h[v] \geq h[u] \)
- Action:
 - \(h[u] \leftarrow h[u] + 1 \)

18-85: **Push-Relabel Algorithms**

Push-Relabel \((G) \)
- Initialize-Preflow\((G, s) \)
 - while there exists an applicable push/relabel
 - implement push/relabel

18-86: **Push-Relabel Algorithms**

Push-Relabel \((G) \)
- Initialize-Preflow\((G, s) \)
while there exists an applicable push/relabel

implement push/relabel

• Pick the operations (push/relabel) arbitrarily, time is $O(|V|^2E)$
 • (We won’t prove this result, though the proof is in the book)
• Can do better with relabel-to-front
 • Specific ordering for doing push-relabel
 • Time $O(|V|^3)$, also not proven here, proof in text