CS673-2016F-18 Flow Networks 1

18-0: Flow Networks
e Directed Graph G
e Each edge weigh is a “capacity”
e Amount of water/second that can flow through a pipe, for instance
e Single source S, single sink ¢
e Calculate maximum flow through graph
18-1: Flow Networks
e Flow: Function: V x V — R

e Flow from each vertex to every other vertex
e f(u,v) is the direct flow from u to v

e Properties:
o Vu,v €V, f(u,v) < c(u,v)
o Vu,v €V, f(u,v) = —f(v,u)
o VueV —{st},> oy flu,v) =0
e Total flow, |f| =" oy f(s,0) = > oy f(v,1)
18-2: Flow Networks

e Single Source / Single Sink

e Assume that there is always a single source and a single sink

e Don’tlost any expressive power — always transform a problem with multiple sources and multiple sinks to
an equivalent problem with a single source and a single sink

e How?
18-3: Flow Networks
e Example: Shipping product to a warehouse

e Product produced at a factory, put in crates

e Crates are shipped to warehouse

e To cut down costs, use “extra space” in other people’s trucks
e How much product can be produced per day?

18-4: Flow Networks

12
Chi cago —— New York

V A \20A
\ 9 7 New Jer sey
13 /4'

Dal | as——— Pitsburgh

18-5: Flow Networks

CS673-2016F-18 Flow Networks

o It would be a little silly to ship 4 crates from Dallas to Chicago, and 7 crates from Chicago to Dallas

e Could just ship 3 crates from Chicago to Dallas instead
e We will assume that there is only every flow in one direction
e Flow in the opposite direction “cancels’ out

18-6: Flow Networks

11/ 16
/

L. A 1/ 4 0/ 10

4/ 9 717 New Jer sey

4l 4

_ 12/ 12
Chi cago —— New York

15/ 20
A

/

Dal | as—— Pitsbhurgh
11/ 14

Is this flow optimal?
18-7: Flow Networks

11/?1Chl cago — New York

19/ 20
1 \
L. A 0/ 10
174 0/ 9 717 New Jer sey
12&

4

12/ 12

N\

Dal | as—— Pi t sburgh
11/ 14

18-8: Flow Networks

e Negative flow

e It is perfectly legal for there to be a negative flow from v to u

e Negative flow from v to u just means that there is a positive flow from u to v

e Recall that the total flow over all edge incident to a vertex must be zero, except for source & sink

18-9: Flow Networks

e Residual capacity

e cy(u,v) is the residual capacity of edge (u, v)

o ci(u,v) =c(u,v) — f(u,v)

e Note that it is possible for the residual capacity of an edge to be greater than the total capacity

e Cancelling flow in the opposite direction

18-10: Flow Networks

CS673-2016F-18 Flow Networks

e Residual Network

e Given a set of capacities, and a set of current flows, we can create a residual network

e Residual network can have different edges than the capacity network

18-11: Flow Networks

6
a >

b
A 8
2\>6 t
5

18-12: Flow Networks

a

3/6
a » D
A 2/ 8

0/ 3

1/°3 2/ 2 0/ 6 t

= w
~~ ~~
/\

215

0/1

18-13: Flow Networks

CS673-2016F-18 Flow Networks 4

7’

3/6
- s> b

a
/3 \
1/ 3 2/ 2
C

w

S

[N
=
I

2/ 8
0/ 6 t
2/5

i

\

d
0/1

3
——
—_—
a 3 b

N
D

c——— d
18-14: Flow Networks
e Given a flow network, with some flows calculated
e Induced residual network
e There is a path from source to sink in the residual network such that:
o All residual capacities along the path are > 0

e How can we increase the total flow?
18-15: Augmenting Path

e An Augmenting path in a flow network is a path through the network such that all residual capacities along the
path > 0

e Given a flow network and an augmenting path, we can increase the total flow by the smallest residual capacity
along the path

e Increase flow along path by smallest residual capacity along the path

e May involve some flow cancelling

18-16: Augmenting Path

CS673-2016F-18 Flow Networks

>

215

N
=
©
—

N
N

18-18: Augmenting Path

CS673-2016F-18 Flow Networks

46

N > b s
‘V 0/3 \
s 0/3 2/2| |0/6 t
. '/ als

0

N N
e &
:/y‘

3/5
.
1/ 1
4
A/\

4 a2—> b 2
% k‘
S 3 3 8 t

3
1
3
cCe—
1 d

18-20: Ford-Fulkerson Method

Ford-Fulkerson(G, s, t)
initialize flow f to 0
while there is an augmenting path p
augment flow f along p
return f

18-21: Ford-Fulkerson Method

e What is the running time of Ford-Fulkerson Method?

e Find an augmenting path

CS673-2016F-18 Flow Networks

e Update flows / residuals

e Repeat until there are no more augmenting paths
18-22: Ford-Fulkerson Method

e What is the running time of Ford-Fulkerson Method?

e Find an augmenting path
e Using DFS, O(|E|)

e Update flows / residuals
» O(|E)

e Repeat until there are no more augmenting paths

e Each iteration could increase the flow by 1, could have | f| iterations!

e Total: O(|f| % |E|)

18-23: Ford-Fulkerson Method

e Could take as many as | f| iterations:

a
1000000 1000000

1000000 \/ 1000000
b

18-24: Ford-Fulkerson Method

e Could take as many as | f| iterations:

Flow Network Residual Network

a a
0/1000? &/1\000000 1000007 W‘OOOO

0/1000$« Aloooooo 1000000\« Aooooo

b b
18-25: Ford-Fulkerson Method

CS673-2016F-18

Flow Networks

e Could take as many as | f| iterations:

Flow Network

a
1/ 1000?4 xw‘oooooo

o/ 1000$A AlOOOOOO

b
18-26: Ford-Fulkerson Method

e Could take as many as | f| iterations:

Flow Network

a
1/ 1000?4 *oooooo

o/ 1000% Aloooooo

b
18-27: Ford-Fulkerson Method

e Could take as many as | f| iterations:

Flow Network

a
1/ 1000%4 X/ioooooo

1/ 1000(%« A;OOOOOO

b
18-28: Ford-Fulkerson Method

Residual Network

a
999999 / Q‘OOOO

s 1 t

1000000\« Agggg

b

Residual Network

a
999999 / Qoooo

s 1 t

1000000\ Agggg

b

Residual Network

a
999999/ gj%

s 1 t

999999\ 49999

b

e How can we be smart about choosing the augmenting path, to avoid the previous case?

18-29: Edmonds-Karp Algorithm

e How can we be smart about choosing the augmenting path, to avoid the previous case?

e We can get better performance by always picking the shortest path (path with the fewest edges)

CS673-2016F-18 Flow Networks 9

e We can quickly find the shortest path by doing a BES from the source in the residual network, to find the
shortest augmenting path

e If we always choose the shortest augmenting path (i.e., smallest number of edges), total number of itera-
tions is O(|V| * | E|), for a total running time of O(|V| * |E|?)
18-30: Edmonds-Karp Algorithm
e If we always pick the shortest augmenting path, no more than |V| x | E| iterations:
e Lemma #1: Shortest path from source s to any other vertex in residual graph can only increase, not
decrease.

e Residual graph changes over time — edges are added and removed

e However, shortest path from source to any vertex in the residual graph will only increase over time,
never decrease

18-31: Edmonds-Karp Algorithm

e Lemma #1: Shortest path from source s to any other vertex in residual graph can only increase, not decrease.
Proof by contradiction

e Assume shortest path from source to some other vertex changes after an augmentation

e Let f be the flow right before the shortest path decrease, and f” be the flow right after

e Let v be a vertex such that 6/ (s,v) < d7(s,v). If there is more than once such v, pick the one with the
smallest 0/ (s, v) value

e Letp =5 — ... — u — v be the shortest path from s to v in f’

18-32: Edmonds-Karp Algorithm

e Lemma #1: Shortest path from source s to any other vertex in residual graph can only increase, not decrease.
Proof by contradiction

e Edge (u,v) (last edge on path from s to v in G4/) must not be in G5
o dp(s,u) > ds(s,u)
e Because §/(s,u) < (s, v), and we picked v to be the vertex with the smallest d (s, v) value
that changed
o If (u,v) € Gy

5f(s,u) 5f(s,u)+1

Spr(siu) +1

IN AN

5f/ (s,v)
18-33: Edmonds-Karp Algorithm

e Lemma #1: Shortest path from source s to any other vertex in residual graph can only increase, not decrease.
Proof by contradiction

e Edge (u,v) must be in G but not in Gy — so the augmenting path must include (v, u)
e We always choose shortest paths as our augmenting path

e Shortest path from s to v must include (v, u)

dr(s,v)

dr(s,u)—1
dpr(s,u) —1
dpi(s,v) —2

IA A

CS673-2016F-18 Flow Networks 10

e Contradiction!
18-34: Edmonds-Karp Algorithm

e If we always pick the shortest augmenting path, no more than |V| x | E| iterations:
e An edge on an augmenting path is critical if it is removed when the flow is augmented (why must there
always be at least one critical edge)?

e Each edge can only be critical at most |V|/2 times
18-35: Edmonds-Karp Algorithm

e Each edge can only be critical at most |V'|/2 times

e When edge (u,v) is critical:
o ¢(s,v) =0d5(s,u)+1

e (Critical edge is removed — before it can become critical again, it must be added back by some augmenting
path — that path must contain edge (u, v)

e Let f’ be the flow when the edge is added back.

dp(s,u) = dp(s,v)+1
> dr(s,v)+1
Op(s,u) +1+1

e If an edge (u, v) becomes critical twice, the shortest path from s to u must increase by 2

e Each edge can only be critical [V|/2 times
18-36: Edmonds-Karp Algorithm
e Each edge can only be critical at most |V'|/2 times
e Let [’ be the flow when the edge is added back.

dp(s,u) = dp(s,v)+1
Or(s,v) +1
Or(s,u)+1+1

Y

e If an edge (u, v) becomes critical twice, the shortest path from s to v must increase by 2

e Each edge can only be critical [V'|/2 times
18-37: Edmonds-Karp Algorithm

e If we always pick the shortest augmenting path, no more than |V| x | E| iterations:
e An edge on an augmenting path is critical if it is removed when the flow is augmented (why must there
always be at least one critical edge)?
e Each edge can only be critical at most |V|/2 times

e |E]| total edges — no more than |E| % |V|/2 iterations

CS673-2016F-18 Flow Networks

11

18-38: Matching Problem

e Given an undirected graph G = (V, F) a matching M is
e Subset of edges F

e For any vertex v € V, at most one edge in M is incident to v

e Maximum matching is a matching with largest possible number of edges
18-39: Matching Problem

e Bipartite graph

e Vertices can be divided into two groups, S7 and So

e Each edge connects a vertex in S; with a vertex in So

18-40: Matching Problem

A

18-41: Matching Problem

CS673-2016F-18 Flow Networks

12

18-42: Matching Problem

WY

18-43: Matching Problem

CS673-2016F-18 Flow Networks

13

18-44: Matching Problem

e Finding a matching in a bipartite graph can be considered a maximum flow problem. How?

>

18-45: Matching Problem

e Finding a matching in a bipartite graph can be considered a maximum flow problem. How?

~_

s t

18-46: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks 14

e New algorithm for calculating maximum flow
e Basic idea:

e Allow vertices to be “overfull” (have more inflow than outflow)
e Push full capacity out of edges from source
e Push overflow at each vertex forward to the sink

e Push excess flow back to source
18-47: Push-Relabel Algorithms

e Think of graph as a bunch of water containers connected by pipes.

e We will raise and lower the vertices, and allow water to flow between them
e Water can only flow from higher vertex to a lower vertex

e Initially, source is at height | V|, all other vertices are at height 1

e Full capacity of each pipe out of the source flows to each vertex adjacent to the source
18-48: Push-Relabel Algorithms

e Full capacity of each pipe out of the source flows back to each vertex adjacent to the source
e This causes some vertices to be overfull — inflow greater than outflow
e Raise some vertex whose inflow is greater than outflow, to allow water to flow to different vertices
e Repeat until all vertices (other than the sink, which stays at level 0) are at the same level as the source

o [f there are still overfull vertices, continue to raise them so that the extra flow spills back into the source

18-49: Push-Relabel Algorithms

7]
=
(@]
-
s abocdt
5
a > b
6
4 \
3 3
S 2| |6 t
R‘
2
c >
1

18-50: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

15

Hei ght s

0/1

18-51: Push-Relabel Algorithms

Hei ghts

0/1

18-52: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

16

Hei ght s

0/1

18-53: Push-Relabel Algorithms

Hei ghts

0/1

18-54: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

17

Hei ght s

0/1

18-55: Push-Relabel Algorithms

Hei ghts

0/1

18-56: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

18

Hei ght s

1/1

18-57: Push-Relabel Algorithms

Hei ghts

171

18-58: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

19

Hei ght s

s 0/3 o/ 2| |0/6 t
N
R 0/ 2
1 1/1 1
18-59: Push-Relabel Algorithms
(2]
<
(o]
U nal
[0 1
s abocdt
Ly 8
a—— > b
4/ 6
4V 3/3
S 1/3 o/ 2| |0/6 t
N
0/ 2
Cc >
0 1/1 1

18-60: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

20

Hei ght s

s 1/3 o/ 2| |0/6 t
N
_ 0/ 2
0 1/1 1
18-61: Push-Relabel Algorithms
(2]
<
(o]
U nal
00110
s abocdt
Ly 8
a————— > b
4/ 6
4V 3/3
S 1/3 o/ 2| |0/6 t
N
1/2
C >
0 1/1 0

18-62: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

21

Hei ght s

s 1/3 o/ 2| |0/6 t
N
R 1/2
0 1/1 0
18-63: Push-Relabel Algorithms
(2]
<
(o]
“ULal
0110
s abocdt
0 g5 4
a——— > b
4/ 6
4V 3/3
S 1/3 o/ 2| |0/6 t
N
1/2
C >
0 1/1 0

18-64: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

22

Hei ght s

1/1

18-65: Push-Relabel Algorithms

Hei ghts

171

18-66: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

23

Hei ght s

s 1/3 2/ 2| |0/6 t
N
R 1/2
0 1/1 2
18-67: Push-Relabel Algorithms
(2]
<
(o]
“LLIND
[
s abocdt
0 g5 0
a——— > b
6/ 6
4V 3/3
S 1/3 2/2| |0/6 t
N
2/2
C >
0 1/1 1

18-68: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

24

Hei ght s

s 1/3 2/ 2| |0/6 t
N
R 2/2
0 1/1 1
18-69: Push-Relabel Algorithms
(2]
<
(o]
“lnnnl
s abocdt
0 g5 0
a——— > b
6/ 6
4V 3/3
S 1/3 2/2| |0/6 t
N
2/2
C >
1 0/1 0

18-70: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

25

Hei ght s

s 1/3 2/ 2| |0/6 t
N
_ 2/2
1 0/1 0
18-71: Push-Relabel Algorithms
(2]
<
(o]
Ll
s abocdt
L 0
a————— > b
6/ 6
4V 3/3
S 2/3 2/2| |0/6 t
N
2/2
C >
0 0/1 0

18-72: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

26

Hei ght s

s 2/3 2/ 2| |0/6 t
N
R 2/2
0 0/1 0
18-73: Push-Relabel Algorithms
(2]
<
(o]
Ll
s abocdt
0 g5 0
a——— > b
6/ 6
4V 3/3
S 1/3 2/2| |0/6 t
N
2/2
Cc >
1 0/1 0

18-74: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

27

Hei ght s
o]
o[
o —
o[

0/1

18-75: Push-Relabel Algorithms

Hei ghts

171

18-76: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

28

Hei ght s
o]
o[
o —
o[

1/1

18-77: Push-Relabel Algorithms

Hei ghts
o[——

171

18-78: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

29

Hei ght s
o]
o[—
o —
o[

1/1

18-79: Push-Relabel Algorithms

Hei ghts

171

18-80: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

30

Hei ght s

—

Il

5/
_—

0 5
a
6/ 6
474 3/3
1/3
C
o/

S

o O

S 2/ 2 0/ 6 t

[

/5
2/ 2

\
o &

1 1

18-81: Push-Relabel Algorithms

7))
b
(@)
£
s abocdt
0 5/5 0
a—— > b
6/ 6
47 3/3
S 1/3 2/ 2 0/ 6 t
N
2/ 2
c— ¢
1 0/1 0

18-82: Push-Relabel Algorithms

CS673-2016F-18 Flow Networks

31

Hei ght's
o[1

o
i

C—Pd
0 0

18-83: Push-Relabel Algorithms

Push(u, v)
Applies when:
u is overflowing
cf(u,v) >0
hlu] = hv] + 1
Action:
Push min(overflow[u],c;(u, v)) to v

18-84: Push-Relabel Algorithms

Relabel(u)
Applies when:
u is overflowing
For all v such that ¢ (u,v) > 0
hfv] > hlu]
Action:
hlu] +— hlu] +1

18-85: Push-Relabel Algorithms
Push-Relabel(()
Initialize-Preflow (G, s)
while there exists an applicable push/relabel
implement push/relabel

18-86: Push-Relabel Algorithms

Push-Relabel(()
Initialize-Preflow (G, s)

CS673-2016F-18 Flow Networks

32

while there exists an applicable push/relabel
implement push/relabel

e Pick the operations (push/relabel) arbitrarily, time is O(|V'|?E)
e (We won’t prove this result, though the proof is in the book)
e Can do better with relabel-to-front

e Specific ordering for doing push-relabel

e Time O(|V|?), also not proven here, proof in text

