Graduate Algorithms
CS673-20016F-02

Probabilistic Analysis

Davi |

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

02-0: Hiring Problem

® Need an office assistant

* Employment Agency sends one candidate
every day

* Interview that person, either hire that person
(and fire the old one), or keep old person

e Always want the best person — always hire if
Interviewee Iis better than current person

02-1: Hiring Problem

HIRE-ASSISTANT (n)
best <- 0
for 1 <- 1 to n do
if candidatel[i] is better than candidate[best]
best <- 1

hire candidate 1

® (Cost to interview candidate is
® (Cost to hire a candidate is ()},
® Assume C; is much less than (',

® Total cost: O(C; x n + Cj, x m), where m = # of
hirings

02-2: Hiring Problem

® Best case cost?
® \Worst case cost?
® Average cost?

02-3: Hiring Problem

® Best case cost? C; xn + C),
® Worst case cost? C; xn + C), *xn

® Average cost?
* Assume applicants come in random order
e Each permutation of applicants is equally likely

02-2: Probability Review

® |ndicator variable associated with event A:

I{A} — 1 if A occurs

0 if A does not occur

\

® Example: Flip a coin: Y is a random variable
representing the coin flip

(1ifY=H
0 otherwise

\

Xy =I{Y = H} =«

02-5: Probability Review

® Expected value E|| of a random variable
» Value you “expect” a random variable to have

* Average (mean) value of the variable over many
trials

* Does not have to equal the value of any
particular trial
- Bus example(s)

02-6: Probability Review

® Expected value E|] of a random variable

EX]= Y zxPr{X=u}

all values x of X

® When we want the “average case” running time of
an algorithm, we want the Expected Value of the
running time

02-7
. Pr
ob
ability R
A\
ew

X
=I1{Y =H
E i
X
|
E[[{Y
1 x P v
i o 1
- 1)
v /2+O*[ﬁr+0
2 x P
r{Y
=T
s

02-8: Probability Review

® Expected # of heads in n coin flips
e X =#of heads inn flips
e X, = Indicator variable: coin flip 2 is heads

02-0: Probability Review

® Expected # of heads in n coin flips
e X =#of heads inn flips
e X, = Indicator variable: coin flip 2 is heads

E[X] = E zn:X

> X

n

1 n
=257

02-10: Probability Review

® For any event A, indicator variable X, = I[{A}
E| X, = Pr{A}

EX, = 1xPr{A} +0x Pr{-A}
= Pr{A}

02-11: Hiring Problem

® Calculate the expected number of hirings
e X = # of candidates hired
e X, = I{Candidate i is hired}
e X =X+ Xo+ ...+ X,

ElX] =

02-12: Hiring Problem

® Calculate the expected number of hirings
e X = # of candidates hired
e X, = I{Candidate i is hired}
e X =X+ Xo+ ...+ X,

E[X] = E zn:X

n

Z_: Elz;]

® Whatis F|X;|?

02-13: Hiring Problem

® Whatis F|X;|?

e F|X;| = Probability that the ¢th candidate is
hired

e When is the :th candidate hired?

02-14: Hiring Problem

® Whatis F|X;|?
e F|X;| = Probability that the ¢th candidate is
hired

e ;th candidate hired when s/he is better than the
1 — 1 candidates that came before

e Assuming that all permutations of candidates
are equally likely, what is the probability that the
1th candidate is the best of the first ¢
candidates?

02-15: Hiring Problem

® Whatis F|X;|?
e F|X;| = Probability that the ¢th candidate is
hired

e ;th candidate hired when s/he is better than the
1 — 1 candidates that came before

e Assuming that all permutations of candidates
are equally likely, what is the probability that the
1th candidate is the best of the first ¢

candidates?
. 1

1

02-16: Hiring Problem

Probability that the ith candidate is best of first i is -

® Sanity Check: (Doing a few concrete examples as
a sanity check is often a good idea)

e , = 1, probability that the first candidate is the
best so far = 1/1 = 1

e ;= 2:(1,2), (2,1) In one of the two
permutations, 2nd candidate is the best so far

e :=23:(1,2,3),(1,3,2), (2,1, 3), (2,3, 1), (3, 1,
2), (3, 2, 1) In two of the 6 permutations, the 3rd
candidate is the best so far

® Note that a few concrete examples do not prove
anything, but a counter-example can show that you
have made a mistake

02-17: Hiring Problem

* Now that we know that E[X;] = -+, we can find the
expected number of hires:

E[X] = E|» X

||
N
1S
&

||
=
S
|
=
G

02-18: Randomized Algorithms

® |n average-case analysis, we often assume that all
iInputs are equally likely
® |n actuality, some inputs might be much more likely

* |f we're really unlucky, the most likely inputs can
be the most costly (as in some implementations
of quicksort)

® \What can we do?

02-19: Randomized Algorithms

® |n average-case analysis, we often assume that all
iInputs are equally likely
® |n actuality, some inputs might be much more likely

* |f we're really unlucky, the most likely inputs can
be the most costly (as in some implementations
of quicksort)

® \What can we do?

* Force all inputs to be equally likely, by
randomizing the input

02-20: Randomized Algorithms

® |n the hire-assistant problem, we can first randomly
permute the lists of candidates, and then run the
algorithm

® Then, for any input, we'd be guaranteed that the
expected number of hires would be Inn + O(1)

® How can we randomly permute a list, so that every
permutation is equally as likely?

 Thatis, how can we shuffle a list, so that every
permutation is equally likely? Assume that we
have a good random number generator.

02-21: Randomized Algorithms

® Jo create a random permutation (method 1):
e Assign each element in the list a random
priority
e Sort based on the priority

n <- length(A)
for 1 <-1 to n do

Priority[i] = Random(1,n*n*n)
sort A (using Priority as keys)

o Why n’?
® Time?

02-22: Randomized Algorithms

® Jo create a random permutation (method 2):

n <- length(A)
for 1 <- 1 to n do
swap(A[i], A[Random(i,n)])

02-23: On-line Hiring Problem

® |nterview candidates one at a time

® After each person is interviewed:
* Tell them at once they are not wanted
* Hire them (and stop the interview process)
® How can we maximize the probability that we get
the best person (assume that they come in random

order — we can always randomize the input to
iInsure this)

02-2a: On-line Hiring Problem

Algorithm:

® |nterview first k£ candidates, reject them all

® Continue to interview candidates, hiring the first
one that is better than anyone seen so far

Problems? Can we do better?

02-25: On-line Hiring Problem

® |nterview first k£ candidates, reject them all
® Continue to interview candidates, hiring the first
one that is better than anyone seen so far
Analysis:

® The bigger k is, the larger the chance that we see

the best person in the first k£ (and don’t hire the
best person).

® The smaller k is, the larger the chance that we stop
too soon.

® How should we pick £7

02-26: On-line Hiring Problem

® S = we pick the best applicant
® S, =the best applicant is 7, and we pick z.

Pr{S} = z": Pr{S;}

1=k+1

® Why k£ + 1 instead of 17
® When is the best person picked?

02-27: On-line Hiring Problem

Pr{s} = z”: Pr{S;}

1=k+1

® Why k + 1 instead of 17
e Pr{S;} = 0ifi < k, since we never pick the
first k people

® When is the best person picked?

* |f the best person is interviewed, s/he will be
picked. The best person is interviewed when
candidates k£ + 1..best — 1 are all worse than

the bestin 1..k

02-28: On-line Hiring Problem

® 5. ==th candidate is the best
® (); == none of applicants in k£ 4+ 1..2 — 1 are picked

S; (interms of B; and O,) = ?

02-29: On-line Hiring Problem

® 5. =:th candidate is the best
® (O, = none of applicants in £+ 1..: — 1 are picked

Pr{S;} = Pr{B;NO;}
Pr{B;} « Pr{0O;|B;}
Pr{B;} x Pr{O;}

= (1/n) xk/(i — 1)

02-30: On-line Hiring Problem

Pr{S;}
Pr{S}

(1/n)*xk/(i—1)

How do we find a value of a variable to maximize a

function?

02-31: On-line Hiring Problem

Hard to take a derivative of a summation. However:

i< sy < [f@
/. Srws

(if f(z) is monotonically decreasing)
Looking at just the lower bound:

kil
D 3

Inn —Ink
n(nn nk) <

/\
~o
=
P
s
H_J

02-32: On-line Hiring Problem

Maximizing the lower bound:

® To maximize k/n(Inn — In k): Take first derivative
with respect to £, set to O.

® (recall the product rule for derivatives:

D[f(k)g(k)] = D[f(k)|g(k) + f(k)Dlg(k)))

02-33: On-line Hiring Problem

® To maximize k/n(Inn — In k): Take first derivative
with respect to £, set to O.

® (recall the product rule for derivatives:

D[f(k)g(k)] = D[f(k)|g(k) + f(k)Dlg(z))])

1
—(Inn—Ink—-1) = 0
n
Ink = Inn—1
Ink = Inn—Ine
n
Ink = In—
e
n

k= —

02-32: On-line Hiring Problem

® |nterview just under 1/3 of the applicants (hiring
none of them)

® Hire the first person better than anyone seen so far

® Probability of getting the best person >
(n/e)/n(Inn —In(n/e)) = 1/e(lne) = 1/e =~ 0.37

	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probability Reviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probability Reviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probability Reviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probability Reviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probability Reviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probability Reviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probability Reviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Randomized Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Randomized Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Randomized Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Randomized Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Randomized Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}

